1
|
Franciosa F, Acuña MA, Nevian NE, Nevian T. A cellular mechanism contributing to pain-induced analgesia. Pain 2024; 165:2517-2529. [PMID: 38968393 PMCID: PMC11474934 DOI: 10.1097/j.pain.0000000000003315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT The anterior cingulate cortex (ACC) plays a crucial role in the perception of pain. It is consistently activated by noxious stimuli and its hyperactivity in chronic pain indicates plasticity in the local neuronal network. However, the way persistent pain effects and modifies different neuronal cell types in the ACC and how this contributes to sensory sensitization is not completely understood. This study confirms the existence of 2 primary subtypes of pyramidal neurons in layer 5 of the rostral, agranular ACC, which we could classify as intratelencephalic (IT) and cortico-subcortical (SC) projecting neurons, similar to other cortical brain areas. Through retrograde labeling, whole-cell patch-clamp recording, and morphological analysis, we thoroughly characterized their different electrophysiological and morphological properties. When examining the effects of peripheral inflammatory pain on these neuronal subtypes, we observed time-dependent plastic changes in excitability. During the acute phase, both subtypes exhibited reduced excitability, which normalized to pre-inflammatory levels after day 7. Daily conditioning with nociceptive stimuli during this period induced an increase in excitability specifically in SC neurons, which was correlated with a decrease in mechanical sensitization. Subsequent inhibition of the activity of SC neurons projecting to the periaqueductal gray with in vivo chemogenetics, resulted in reinstatement of the hypersensitivity. Accordingly, it was sufficient to enhance the excitability of these neurons chemogenetically in the inflammatory pain condition to induce hypoalgesia. These findings suggest a cell type-specific effect on the descending control of nociception and a cellular mechanism for pain-induced analgesia. Furthermore, increased excitability in this neuronal population is hypoalgesic rather than hyperalgesic.
Collapse
Affiliation(s)
| | - Mario A. Acuña
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Park M, Koh CS, Chang H, Kim TJ, Mun W, Chang JW, Jung HH. Low-frequency (5-Hz) stimulation of ventrolateral periaqueductal gray modulates the descending serotonergic system in the peripheral neuropathic pain. Pain 2024; 165:1774-1783. [PMID: 38422490 DOI: 10.1097/j.pain.0000000000003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
ABSTRACT Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury. We found that 5-Hz deep brain stimulation effectively modulated mechanical allodynia and induced neuronal activation in the rostral ventromedial medulla, restoring impaired descending serotonergic system. At the spinal level, glial cells were still activated but only the 5-HT1a receptor in the spinal cord was activated, implying its inhibitory role in mechanical allodynia. This study found that peripheral neuropathy caused dysfunction in the descending serotonergic system, and prolonged stimulation of ventrolateral periaqueductal gray can modulate the pathway in an efficient manner. This work would provide new opportunities for the development of targeted and effective treatments for this debilitating disease, possibly giving us lower chances of side effects from repeated high-frequency stimulation or long-term use of medication.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Jun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonki Mun
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Graeff P, Ruscheweyh R, Flanagin VL. Longitudinal changes in human supraspinal processing after RIII-feedback training to improve descending pain inhibition. Neuroimage 2023; 283:120432. [PMID: 37914092 DOI: 10.1016/j.neuroimage.2023.120432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023] Open
Abstract
The human body has the ability to influence its sensation of pain by modifying the transfer of nociceptive information at the spinal level. This modulation, known as descending pain inhibition, is known to originate supraspinally and can be activated by a variety of ways including positive mental imagery. However, its exact mechanisms remain unknown. We investigated, using a longitudinal fMRI design, the brain activity leading up and in response to painful electrical stimulation when applying positive mental imagery before and after undergoing a previously established RIII-feedback paradigm. Time course analysis of the time preceding painful stimulation shows increased haemodynamic activity during the application of the strategy in the PFC, ACC, insula, thalamus, and hypothalamus. Time course analysis of the reaction to painful stimulation shows decreased reaction post-training in brainstem and thalamus, as well as the insula and dorsolateral PFC. Our work suggests that feedback training increases activity in areas involved in pain inhibition, while simultaneously decreasing the reaction to painful stimuli in brain areas related to pain processing, which points to an activation of decreased spinal nociception. We further suggest that the insula and the thalamus may play a more important role in pain modulation than previously assumed.
Collapse
Affiliation(s)
- Philipp Graeff
- Research Training Group (RTG) 2175 perception in Context and Its Neural Basis, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Ruth Ruscheweyh
- Research Training Group (RTG) 2175 perception in Context and Its Neural Basis, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Department of Neurology, University Hospital Großhadern, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Virginia L Flanagin
- Research Training Group (RTG) 2175 perception in Context and Its Neural Basis, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; German Center for Vertigo and Balance Disorders (DSGZ), University Hospital Munich, Ludwig-Maximilians-University, 81377 Munich, Germany.
| |
Collapse
|
4
|
Mandat V, Zdunek PR, Krolicki B, Szalecki K, Koziara HM, Ciecierski K, Mandat TS. Periaqueductal/periventricular gray deep brain stimulation for the treatment of neuropathic facial pain. Front Neurol 2023; 14:1239092. [PMID: 38020618 PMCID: PMC10660684 DOI: 10.3389/fneur.2023.1239092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The Periaqueductal gray (PAG) and the periventricular gray (PVG) are the anatomical targets for deep brain stimulation (DBS) to treat severe, refractory neuropathic pain. Methods Seven (four female and three male) patients were qualified for PAG/PVG DBS because of neuropathic facial pain. Frame-based unilateral implantations of DBS were conducted according to indirect planning of the PAG/PVG, contralateral to reported pain (3389, Activa SC 37603, Medtronic). The efficacy of PAG/PVG DBS on pain was measured with Numeric Pain Rating Scale (NRS) and Neuropathic Pain Symptom Inventory (NPSI) before surgery and 3, 12, and 24 months after surgery. Results The mean age of the group at the implantation was 43.7 years (range: 28-62; SD: 12.13). The mean duration of pain varied from 2 to 12 years (mean: 7.3; SD: 4.11). Five patients suffered from left-sided facial pain and two suffered right-sided facial pain. The etiology of pain among four patients was connected to ischemic brain stroke and in one patient to cerebral hemorrhagic stroke. Patients did not suffer from any other chronic medical condition The beginnings of ailments among two patients were related to craniofacial injury. NRS decreased by 54% at the 3 months follow-up. The efficacy of the treatment measured with mean NRS decreased at one-year follow-up to 48% and to 45% at 24 months follow-up. The efficacy of the treatment measured with NPSI decreased from 0.27 to 0.17 at 2 years follow-up (mean reduction by 38%). The most significant improvement was recorded in the first section of NPSI (Q1: burning- reduced by 53%). The records of the last section (number five) of the NPSI (paresthesia/dysesthesia- Q11/Q12) have shown aggravation of those symptoms by 10% at the two-years follow-up. No surgery- or hardware-related complications were reported in the group. Transient adverse effects related to the stimulation were eliminated during the programming sessions. Conclusion PAG/PVG DBS is an effective and safe method of treatment of medically refractory neuropathic facial pain. The effectiveness of the treatment tends to decrease at 2 years follow-up. The clinical symptoms which tend to respond the best is burning pain. Symptoms like paresthesia and dysesthesia might increase after DBS treatment, even without active stimulation.
Collapse
Affiliation(s)
- Victor Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Pawel R. Zdunek
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Bartosz Krolicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Krzysztof Szalecki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Henryk M. Koziara
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Konrad Ciecierski
- Research and Academic Computer Network Organization (NASK), Warsaw, Poland
| | - Tomasz S. Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
5
|
Lee MT, Mackie K, Chiou LC. Alternative pain management via endocannabinoids in the time of the opioid epidemic: Peripheral neuromodulation and pharmacological interventions. Br J Pharmacol 2023; 180:894-909. [PMID: 34877650 PMCID: PMC9170838 DOI: 10.1111/bph.15771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/18/2023] Open
Abstract
The use of opioids in pain management is hampered by the emergence of analgesic tolerance, which leads to increased dosing and side effects, both of which have contributed to the opioid epidemic. One promising potential approach to limit opioid analgesic tolerance is activating the endocannabinoid system in the CNS, via activation of CB1 receptors in the descending pain inhibitory pathway. In this review, we first discuss preclinical and clinical evidence revealing the potential of pharmacological activation of CB1 receptors in modulating opioid tolerance, including activation by phytocannabinoids, synthetic CB1 receptor agonists, endocannabinoid degradation enzyme inhibitors, and recently discovered positive allosteric modulators of CB1 receptors. On the other hand, as non-pharmacological pain relief is advocated by the US-NIH to combat the opioid epidemic, we also discuss contributions of peripheral neuromodulation, involving the electrostimulation of peripheral nerves, in addressing chronic pain and opioid tolerance. The involvement of supraspinal endocannabinoid systems in peripheral neuromodulation-induced analgesia is also discussed. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Grants
- MOST 108-2321-B-002-005 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002-008 Ministry of Science and Technology, Taiwan
- R01 DA041229 NIDA NIH HHS
- MOST 107-2321-B-002-010 Ministry of Science and Technology, Taiwan
- R01 DA047858 NIDA NIH HHS
- 107M4022-3 Ministry of Education, Taiwan
- MOST 106-2321-B-002-019 Ministry of Science and Technology, Taiwan
- NHRI-EX111-11114NI National Health Research Institutes, Taiwan
- FRGS/1/2021/WAB13/UCSI/02/1 Ministry of Higher Education, Malaysia
- R21 DA042584 NIDA NIH HHS
- REIG-FPS-2020/065 UCSI University Research Excellence and Innovation Grant, Malaysia
- NHRI-EX109-10733NI National Health Research Institutes, Taiwan
- MOST 104-2745-B-002-004 Ministry of Science and Technology, Taiwan
- MOST 109-2320-B-002-042-MY3 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002 -008 Ministry of Science and Technology, Taiwan
- MOST 108-2320-B-002-029-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Ming Tatt Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ken Mackie
- Gill Center for Biomolecular Research, Indiana University, Bloomington, Indiana 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Lih-Chu Chiou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
6
|
Purushothaman S, Kundra P, Senthilnathan M, Sistla SC, Kumar S. Assessment of efficiency of mirror therapy in preventing phantom limb pain in patients undergoing below-knee amputation surgery-a randomized clinical trial. J Anesth 2023; 37:387-393. [PMID: 36809505 DOI: 10.1007/s00540-023-03173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE AND OBJECTIVES Phantom limb pain (PLP) is a major cause of physical limitation and disability accounting for about 85% of amputated patients. Mirror therapy is used as a therapeutic modality for patients with phantom limb pain. Primary objective was to study the incidence of PLP at 6 months following below-knee amputation between the mirror therapy group and control group. METHODS Patients posted for below-knee amputation surgery were randomized into two groups. Patients allocated to group M received mirror therapy in post-operative period. Two sessions of therapy were given per day for 7 days and each session lasted for 20 min. Patients who developed pain from the missing portion of the amputated limb were considered to have PLP. All patients were followed up for six months and the time of occurrence of PLP and intensity of the pain were recorded among other demographic factors. RESULTS A total of 120 patients completed the study after recruitment. The demographic parameters were comparable between the two groups. Overall incidence of phantom limb pain was significantly higher in the control group (Group C) when compared to the mirror therapy (Group M) group [Group M = 7 (11.7%) vs Group C = 17 (28.3%); p = 0.022]. Intensity of PLP measured on the Numerical Rating Scale (NRS) was significantly lower at 3 months in Group M compared to Group C among patients who developed PLP [NRS - median (Inter quartile range): Group M 5 (4,5) vs Group C 6 (5,6); p 0.001]. CONCLUSION Mirror therapy reduced the incidence of phantom limb pain when administered pre-emptively in patients undergoing amputation surgeries. The severity of the pain was also found to be lower at 3 months in patients who received pre-emptive mirror therapy. TRIAL REGISTRATION This prospective study was registered in the clinical trial registry of India. TRIAL REGISTRATION NUMBER CTRI/2020/07/026488.
Collapse
Affiliation(s)
- Samatharman Purushothaman
- Department of Anaesthesiology and Critical Care, Second Floor, Institute Block, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Pankaj Kundra
- Department of Anaesthesiology and Critical Care, Second Floor, Institute Block, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India.
| | - Muthapillai Senthilnathan
- Department of Anaesthesiology and Critical Care, Second Floor, Institute Block, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Sarath Chandra Sistla
- Department of Surgery, Sri Manakula Vinayagar Medical College and Hospital, Puducherry, India
| | - Shathish Kumar
- Department of Anaesthesiology, Manipal Hospital Whitefield, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Detailed organisation of the human midbrain periaqueductal grey revealed using ultra-high field magnetic resonance imaging. Neuroimage 2023; 266:119828. [PMID: 36549431 DOI: 10.1016/j.neuroimage.2022.119828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The midbrain periaqueductal grey (PAG) is a critical region for the mediation of pain-related behavioural responses. Neuronal tract tracing techniques in experimental animal studies have demonstrated that the lateral column of the PAG (lPAG) displays a crude somatotopy, which is thought to be critical for the selection of contextually appropriate behavioural responses, without the need for higher brain input. In addition to the different behavioural responses to cutaneous and muscle pain - active withdrawal versus passive coping - there is evidence that cutaneous pain is processed in the region of the lPAG and muscle pain in the adjacent ventrolateral PAG (vlPAG). Given the fundamental nature of these behavioural responses to cutaneous and muscle pain, these PAG circuits are assumed to have been preserved, though yet to be definitively documented in humans. Using ultra-high field (7-Tesla) functional magnetic resonance imaging we determined the locations of signal intensity changes in the PAG during noxious cutaneous heat stimuli and muscle pain in healthy control participants. Images were processed and blood oxygen level dependant (BOLD) signal changes within the PAG determined. It was observed that noxious cutaneous stimulation of the lip, cheek, and ear evoked maximal increases in BOLD activation in the rostral contralateral PAG, whereas noxious cutaneous stimulation of the thumb and toe evoked increases in the caudal contralateral PAG. Analysis of individual participants demonstrated that these activations were located in the lPAG. Furthermore, we found that deep muscular pain evoked the greatest increases in signal intensity in the vlPAG. These data suggest that the crude somatotopic organization of the PAG may be phyletically preserved between experimental animals and humans, with a body-face delineation capable of producing an appropriate behavioural response based on the location and tissue origin of a noxious stimulus.
Collapse
|
8
|
Pagano RL, Dale CS, Campos ACP, Hamani C. Translational aspects of deep brain stimulation for chronic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1084701. [PMID: 36713643 PMCID: PMC9874335 DOI: 10.3389/fpain.2022.1084701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
The use of deep brain stimulation (DBS) for the treatment of chronic pain was one of the first applications of this technique in functional neurosurgery. Established brain targets in the clinic include the periaqueductal (PAG)/periventricular gray matter (PVG) and sensory thalamic nuclei. More recently, the anterior cingulum (ACC) and the ventral striatum/anterior limb of the internal capsule (VS/ALIC) have been investigated for the treatment of emotional components of pain. In the clinic, most studies showed a response in 20%-70% of patients. In various applications of DBS, animal models either provided the rationale for the development of clinical trials or were utilized as a tool to study potential mechanisms of stimulation responses. Despite the complex nature of pain and the fact that animal models cannot reliably reflect the subjective nature of this condition, multiple preparations have emerged over the years. Overall, DBS was shown to produce an antinociceptive effect in rodents when delivered to targets known to induce analgesic effects in humans, suggesting a good predictive validity. Compared to the relatively high number of clinical trials in the field, however, the number of animal studies has been somewhat limited. Additional investigation using modern neuroscience techniques could unravel the mechanisms and neurocircuitry involved in the analgesic effects of DBS and help to optimize this therapy.
Collapse
Affiliation(s)
- Rosana L. Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Camila S. Dale
- Laboratory of Neuromodulation and Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | | | - Clement Hamani
- Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Toronto, ON, Canada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada,Correspondence: Clement Hamani
| |
Collapse
|
9
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
10
|
Abdallat M, Saryyeva A, Blahak C, Wolf ME, Weigel R, Loher TJ, Runge J, Heissler HE, Kinfe TM, Krauss JK. Centromedian-Parafascicular and Somatosensory Thalamic Deep Brain Stimulation for Treatment of Chronic Neuropathic Pain: A Contemporary Series of 40 Patients. Biomedicines 2021; 9:731. [PMID: 34202202 PMCID: PMC8301341 DOI: 10.3390/biomedicines9070731] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction: The treatment of neuropathic and central pain still remains a major challenge. Thalamic deep brain stimulation (DBS) involving various target structures is a therapeutic option which has received increased re-interest. Beneficial results have been reported in several more recent smaller studies, however, there is a lack of prospective studies on larger series providing long term outcomes. Methods: Forty patients with refractory neuropathic and central pain syndromes underwent stereotactic bifocal implantation of DBS electrodes in the centromedian-parafascicular (CM-Pf) and the ventroposterolateral (VPL) or ventroposteromedial (VPM) nucleus contralateral to the side of pain. Electrodes were externalized for test stimulation for several days. Outcome was assessed with five specific VAS pain scores (maximum, minimum, average pain, pain at presentation, allodynia). Results: The mean age at surgery was 53.5 years, and the mean duration of pain was 8.2 years. During test stimulation significant reductions of all five pain scores was achieved with either CM-Pf or VPL/VPM stimulation. Pacemakers were implanted in 33/40 patients for chronic stimulation for whom a mean follow-up of 62.8 months (range 3-180 months) was available. Of these, 18 patients had a follow-up beyond four years. Hardware related complications requiring secondary surgeries occurred in 11/33 patients. The VAS maximum pain score was improved by ≥50% in 8/18, and by ≥30% in 11/18 on long term follow-up beyond four years, and the VAS average pain score by ≥50% in 10/18, and by ≥30% in 16/18. On a group level, changes in pain scores remained statistically significant over time, however, there was no difference when comparing the efficacy of CM-Pf versus VPL/VPM stimulation. The best results were achieved in patients with facial pain, poststroke/central pain (except thalamic pain), or brachial plexus injury, while patients with thalamic lesions had the least benefit. Conclusion: Thalamic DBS is a useful treatment option in selected patients with severe and medically refractory pain.
Collapse
Affiliation(s)
- Mahmoud Abdallat
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
- Department of Neurosurgery, University of Jordan, Amman 11183, Jordan
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
| | - Christian Blahak
- Department of Neurology, University Hospital Mannheim, 68167 Mannheim, Germany; (C.B.); (M.E.W.)
- Department of Neurology, Ortenau-Klinikum Lahr-Ettenheim, 77933 Lahr Ettenheim, Germany
| | - Marc E. Wolf
- Department of Neurology, University Hospital Mannheim, 68167 Mannheim, Germany; (C.B.); (M.E.W.)
- Department of Neurology, Katharinenhospital, 70174 Stuttgart, Germany
| | - Ralf Weigel
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
- Department of Neurosurgery, St. Katharinen Krankenhaus, 60389 Frankfurt, Germany
| | | | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
| | - Hans E. Heissler
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
| | - Thomas M. Kinfe
- Department of Neurosurgery, Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University, 91054 Erlangen-Nürnberg, Germany;
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany; (M.A.); (R.W.); (J.R.); (H.E.H.); (J.K.K.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| |
Collapse
|
11
|
Shirvalkar P, Sellers KK, Schmitgen A, Prosky J, Joseph I, Starr PA, Chang EF. A Deep Brain Stimulation Trial Period for Treating Chronic Pain. J Clin Med 2020; 9:jcm9103155. [PMID: 33003443 PMCID: PMC7600449 DOI: 10.3390/jcm9103155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Early studies of deep brain stimulation (DBS) for various neurological disorders involved a temporary trial period where implanted electrodes were externalized, in which the electrical contacts exiting the patient's brain are connected to external stimulation equipment, so that stimulation efficacy could be determined before permanent implant. As the optimal brain target sites for various diseases (i.e., Parkinson's disease, essential tremor) became better established, such trial periods have fallen out of favor. However, deep brain stimulation trial periods are experiencing a modern resurgence for at least two reasons: (1) studies of newer indications such as depression or chronic pain aim to identify new targets and (2) a growing interest in adaptive DBS tools necessitates neurophysiological recordings, which are often done in the peri-surgical period. In this review, we consider the possible approaches, benefits, and risks of such inpatient trial periods with a specific focus on developing new DBS therapies for chronic pain.
Collapse
Affiliation(s)
- Prasad Shirvalkar
- Department of Anesthesiology (Pain Management), University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| | - Kristin K. Sellers
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Ashlyn Schmitgen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Jordan Prosky
- Department of Anesthesiology (Pain Management), University of California San Francisco, San Francisco, CA 94143, USA;
| | - Isabella Joseph
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Philip A. Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| | - Edward F. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (K.K.S.); (A.S.); (I.J.); (P.A.S.); (E.F.C.)
| |
Collapse
|
12
|
Yu S, Ortiz A, Gollub RL, Wilson G, Gerber J, Park J, Huang Y, Shen W, Chan ST, Wasan AD, Edwards RR, Napadow V, Kaptchuk TJ, Rosen B, Kong J. Acupuncture Treatment Modulates the Connectivity of Key Regions of the Descending Pain Modulation and Reward Systems in Patients with Chronic Low Back Pain. J Clin Med 2020; 9:E1719. [PMID: 32503194 PMCID: PMC7356178 DOI: 10.3390/jcm9061719] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic low back pain (cLBP) is a common disorder with unsatisfactory treatment options. Acupuncture has emerged as a promising method for treating cLBP. However, the mechanism underlying acupuncture remains unclear. In this study, we investigated the modulation effects of acupuncture on resting state functional connectivity (rsFC) of the periaqueductal gray (PAG) and ventral tegmental area (VTA) in patients with cLBP. Seventy-nine cLBP patients were recruited and assigned to four weeks of real or sham acupuncture. Resting state functional magnetic resonance imaging data were collected before the first and after the last treatment. Fifty patients completed the study. We found remission of pain bothersomeness in all treatment groups after four weeks, with greater pain relief after real acupuncture compared to sham acupuncture. We also found that real acupuncture can increase VTA/PAG rsFC with the amygdala, and the increased rsFC was associated with decreased pain bothersomeness scores. Baseline PAG-amygdala rsFC could predict four-week treatment response. Our results suggest that acupuncture may simultaneously modulate the rsFC of key regions in the descending pain modulation (PAG) and reward systems (VTA), and the amygdala may be a key node linking the two systems to produce antinociceptive effects. Our findings highlight the potential of acupuncture for chronic low back pain management.
Collapse
Affiliation(s)
- Siyi Yu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
| | - Ana Ortiz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
| | - Randy L. Gollub
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
| | - Jessica Gerber
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.G.); (S.-T.C.); (V.N.); (B.R.)
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
| | - Wei Shen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
| | - Suk-Tak Chan
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.G.); (S.-T.C.); (V.N.); (B.R.)
| | - Ajay D. Wasan
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15206, USA;
| | - Robert R. Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02467, USA;
| | - Vitaly Napadow
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.G.); (S.-T.C.); (V.N.); (B.R.)
| | - Ted J. Kaptchuk
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Bruce Rosen
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.G.); (S.-T.C.); (V.N.); (B.R.)
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.Y.); (A.O.); (R.L.G.); (G.W.); (J.P.); (Y.H.); (W.S.)
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.G.); (S.-T.C.); (V.N.); (B.R.)
| |
Collapse
|
13
|
Meda KS, Patel T, Braz JM, Malik R, Turner ML, Seifikar H, Basbaum AI, Sohal VS. Microcircuit Mechanisms through which Mediodorsal Thalamic Input to Anterior Cingulate Cortex Exacerbates Pain-Related Aversion. Neuron 2019; 102:944-959.e3. [PMID: 31030955 PMCID: PMC6554049 DOI: 10.1016/j.neuron.2019.03.042] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/21/2019] [Accepted: 03/27/2019] [Indexed: 02/05/2023]
Abstract
Hyperexcitability of the anterior cingulate cortex (ACC) is thought to drive aversion associated with chronic neuropathic pain. Here, we studied the contribution of input from the mediodorsal thalamus (MD) to ACC, using sciatic nerve injury and chemotherapy-induced mouse models of neuropathic pain. Activating MD inputs elicited pain-related aversion in both models. Unexpectedly, excitatory responses of layer V ACC neurons to MD inputs were significantly weaker in pain models compared to controls. This caused the ratio between excitation and feedforward inhibition elicited by MD input to shift toward inhibition, specifically for subcortically projecting (SC) layer V neurons. Furthermore, direct inhibition of SC neurons reproduced the pain-related aversion elicited by activating MD inputs. Finally, both the ability to elicit pain-related aversion and the decrease in excitation were specific to MD inputs; activating basolateral amygdala inputs produced opposite effects. Thus, chronic pain-related aversion may reflect activity changes in specific pathways, rather than generalized ACC hyperactivity.
Collapse
Affiliation(s)
- Karuna S Meda
- Department of Anatomy and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tosha Patel
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joao M Braz
- Department of Anatomy and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ruchi Malik
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marc L Turner
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helia Seifikar
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allan I Basbaum
- Department of Anatomy and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Vikaas S Sohal
- Department of Psychiatry, Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Median nerve stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in the periaqueductal gray. Proc Natl Acad Sci U S A 2018; 115:E10720-E10729. [PMID: 30348772 DOI: 10.1073/pnas.1807991115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Adequate pain management remains an unmet medical need. We previously revealed an opioid-independent analgesic mechanism mediated by orexin 1 receptor (OX1R)-initiated 2-arachidonoylglycerol (2-AG) signaling in the ventrolateral periaqueductal gray (vlPAG). Here, we found that low-frequency median nerve stimulation (MNS) through acupuncture needles at the PC6 (Neiguan) acupoint (MNS-PC6) induced an antinociceptive effect that engaged this mechanism. In mice, MNS-PC6 reduced acute thermal nociceptive responses and neuropathy-induced mechanical allodynia, increased the number of c-Fos-immunoreactive hypothalamic orexin neurons, and led to higher orexin A and lower GABA levels in the vlPAG. Such responses were not seen in mice with PC6 needle insertion only or electrical stimulation of the lateral deltoid, a nonmedian nerve-innervated location. Directly stimulating the surgically exposed median nerve also increased vlPAG orexin A levels. MNS-PC6-induced antinociception (MNS-PC6-IA) was prevented by proximal block of the median nerve with lidocaine as well as by systemic or intravlPAG injection of an antagonist of OX1Rs or cannabinoid 1 receptors (CB1Rs) but not by opioid receptor antagonists. Systemic blockade of OX1Rs or CB1Rs also restored vlPAG GABA levels after MNS-PC6. A cannabinoid (2-AG)-dependent mechanism was also implicated by the observations that MNS-PC6-IA was prevented by intravlPAG inhibition of 2-AG synthesis and was attenuated in Cnr1 -/- mice. These findings suggest that PC6-targeting low-frequency MNS activates hypothalamic orexin neurons, releasing orexins to induce analgesia through a CB1R-dependent cascade mediated by OX1R-initiated 2-AG retrograde disinhibition in the vlPAG. The opioid-independent characteristic of MNS-PC6-induced analgesia may provide a strategy for pain management in opioid-tolerant patients.
Collapse
|
15
|
Abstract
Along with the well-known rewarding effects, activation of nicotinic acetylcholine receptors (nAChRs) can also relieve pain, and some nicotinic agonists have analgesic efficacy similar to opioids. A major target of analgesic drugs is the descending pain modulatory pathway, including the ventrolateral periaqueductal gray (vlPAG) and the rostral ventromedial medulla (RVM). Although activating nAChRs within this circuitry can be analgesic, little is known about the subunit composition and cellular effects of these receptors, particularly within the vlPAG. Using electrophysiology in brain slices from adult male rats, we examined nAChR effects on vlPAG neurons that project to the RVM. We found that 63% of PAG-RVM projection neurons expressed functional nAChRs, which were exclusively of the α7-subtype. Interestingly, the neurons that express α7 nAChRs were largely nonoverlapping with those expressing μ-opioid receptors (MOR). As nAChRs are excitatory and MORs are inhibitory, these data suggest distinct roles for these neuronal classes in pain modulation. Along with direct excitation, we also found that presynaptic nAChRs enhanced GABAergic release preferentially onto neurons that lacked α7 nAChRs. In addition, presynaptic nAChRs enhanced glutamatergic inputs onto all PAG-RVM projection neuron classes to a similar extent. In behavioral testing, both systemic and intra-vlPAG administration of the α7 nAChR-selective agonist, PHA-543,613, was antinociceptive in the formalin assay. Furthermore, intra-vlPAG α7 antagonist pretreatment blocked PHA-543,613-induced antinociception via either administration method. Systemic administration of submaximal doses of the α7 agonist and morphine produced additive antinociceptive effects. Together, our findings indicate that the vlPAG is a key site of action for α7 nAChR-mediated antinociception.
Collapse
|
16
|
Meriaux C, Hohnen R, Schipper S, Zare A, Jahanshahi A, Birder LA, Temel Y, van Koeveringe GA. Neuronal Activation in the Periaqueductal Gray Matter Upon Electrical Stimulation of the Bladder. Front Cell Neurosci 2018; 12:133. [PMID: 29867366 PMCID: PMC5968116 DOI: 10.3389/fncel.2018.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022] Open
Abstract
Reflexes, that involve the spinobulbospinal pathway control both storage and voiding of urine. The periaqueductal gray matter (PAG), a pontine structure is part of the micturition pathway. Alteration in this pathway could lead to micturition disorders and urinary incontinence, such as the overactive bladder symptom complex (OABS). Although different therapeutic options exist for the management of OABS, these are either not effective in all patients. Part of the pathology of OABS is faulty sensory signaling about the filling status of the urinary bladder, which results in aberrant efferent signaling leading to overt detrusor contractions and the sensation of urgency and frequent voiding. In order to identify novel targets for therapy (i.e., structures in the central nervous system) and explore novel treatment modalities such as neuromodulation, we aimed at investigating which areas in the central nervous system are functionally activated upon sensory afferent stimulation of the bladder. Hence, we designed a robust protocol with multiple readout parameters including immunohistological and behavioral parameters during electrical stimulation of the rat urinary bladder. Bladder stimulation induced by electrical stimulation, below the voiding threshold, influences neural activity in: (1) the caudal ventrolateral PAG, close to the aqueduct; (2) the pontine micturition center and locus coeruleus; and (3) the superficial layers of the dorsal horn, sacral parasympathetic nucleus and central canal region of the spinal cord. In stimulated animals, a higher voiding frequency was observed but was not accompanied by increase in anxiety level and locomotor deficits. Taken together, this work establishes a critical role for the vlPAG in the processing of sensory information from the urinary bladder and urges future studies to investigate the potential of neuromodulatory approaches for urological diseases.
Collapse
Affiliation(s)
- Céline Meriaux
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands,European Graduate School of Neuroscience (EURON), Maastricht, Netherlands,*Correspondence: Céline Meriaux
| | - Ramona Hohnen
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands,European Graduate School of Neuroscience (EURON), Maastricht, Netherlands
| | - Sandra Schipper
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands,European Graduate School of Neuroscience (EURON), Maastricht, Netherlands,Department of Urology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Aryo Zare
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands,European Graduate School of Neuroscience (EURON), Maastricht, Netherlands
| | - Ali Jahanshahi
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands,European Graduate School of Neuroscience (EURON), Maastricht, Netherlands,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lori A. Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yasin Temel
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands,European Graduate School of Neuroscience (EURON), Maastricht, Netherlands,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Gommert A. van Koeveringe
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands,European Graduate School of Neuroscience (EURON), Maastricht, Netherlands,Department of Urology, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
17
|
Sims-Williams H, Matthews JC, Talbot PS, Love-Jones S, Brooks JC, Patel NK, Pickering AE. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans. Neuroimage 2016; 146:833-842. [PMID: 27554530 PMCID: PMC5312788 DOI: 10.1016/j.neuroimage.2016.08.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/25/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) of the periaqueductal gray (PAG) is used in the treatment of severe refractory neuropathic pain. We tested the hypothesis that DBS releases endogenous opioids to exert its analgesic effect using [11C]diprenorphine (DPN) positron emission tomography (PET). Patients with de-afferentation pain (phantom limb pain or Anaesthesia Dolorosa (n=5)) who obtained long-lasting analgesic benefit from DBS were recruited. [11C]DPN and [15O]water PET scanning was performed in consecutive sessions; first without, and then with PAG stimulation. The regional cerebral tracer distribution and kinetics were quantified for the whole brain and brainstem. Analysis was performed on a voxel-wise basis using statistical parametric mapping (SPM) and also within brainstem regions of interest and correlated to the DBS-induced improvement in pain score and mood. Brain-wide analysis identified a single cluster of reduced [11C]DPN binding (15.5% reduction) in the caudal, dorsal PAG following DBS from effective electrodes located in rostral dorsal/lateral PAG. There was no evidence for an accompanying focal change in blood flow within the PAG. No correlation was found between the change in PAG [11C]DPN binding and the analgesic effect or the effect on mood (POMSSV) of DBS. The analgesic effect of DBS in these subjects was not altered by systemic administration of the opioid antagonist naloxone (400 ug). These findings indicate that DBS of the PAG does indeed release endogenous opioid peptides focally within the midbrain of these neuropathic pain patients but we are unable to further resolve the question of whether this release is responsible for the observed analgesic benefit. Sequential opioid-PET imaging study of deafferentation pain patients. All obtained analgesic benefit from deep brain stimulators (DBS) in periaqueductal grey (PAG). PET imaging with diprenorphine showed DBS reduced binding of the radioligand in the PAG. Change in binding consistent with DBS-evoked release of endogenous opioids.
Collapse
Affiliation(s)
- Hugh Sims-Williams
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Julian C Matthews
- Imaging Sciences, MAHSC, University of Manchester, M20 3LJ, United Kingdom
| | - Peter S Talbot
- Imaging Sciences, MAHSC, University of Manchester, M20 3LJ, United Kingdom
| | - Sarah Love-Jones
- Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Jonathan Cw Brooks
- Clinical Research Imaging Centre (CRiCBristol), University of Bristol, Bristol BS2 8DZ, United Kingdom
| | - Nikunj K Patel
- Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Department of Anaesthesia, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
18
|
Morishita T, Inoue T. Brain Stimulation Therapy for Central Post-Stroke Pain from a Perspective of Interhemispheric Neural Network Remodeling. Front Hum Neurosci 2016; 10:166. [PMID: 27148019 PMCID: PMC4838620 DOI: 10.3389/fnhum.2016.00166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022] Open
Abstract
Central post-stroke pain (CPSP) is a debilitating, severe disorder affecting patient quality of life. Since CPSP is refractory to medication, various treatment modalities have been tried with marginal results. Following the first report of epidural motor cortex (M1) stimulation (MCS) for CPSP, many researchers have investigated the mechanisms of electrical stimulation of the M1. CPSP is currently considered to be a maladapted network reorganization problem following stroke, and recent studies have revealed that the activities of the impaired hemisphere after stroke may be inhibited by the contralesional hemisphere. Even though this interhemispheric inhibition (IHI) theory was originally proposed to explain the motor recovery process in stroke patients, we considered that IHI may also contribute to the CPSP mechanism. Based on the IHI theory and the fact that electrical stimulation of the M1 suppresses CPSP, we hypothesized that the inhibitory signals from the contralesional hemisphere may suppress the activities of the M1 in the ipsilesional hemisphere, and therefore pain suppression mechanisms may be malfunctioning in CPSP patients. In this context, transcranial direct current stimulation (tDCS) was considered to be a reasonable procedure to address the interhemispheric imbalance, as the bilateral M1 can be simultaneously stimulated using an anode (excitatory) and cathode (inhibitory). In this article, we review the potential mechanisms and propose a new model of CPSP. We also report two cases where CPSP was addressed with tDCS, discuss the potential roles of tDCS in the treatment of CPSP, and make recommendations for future studies.
Collapse
Affiliation(s)
- Takashi Morishita
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University Fukuoka, Japan
| | - Tooru Inoue
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University Fukuoka, Japan
| |
Collapse
|
19
|
William A, Azad TD, Brecher E, Cherry T, Bernstein I, Bruce DM, Rohrer S, Smith Z, William M, Sabelman E, Heit G, Pezeshkian P, Sedrak M. Trigeminal and sphenopalatine ganglion stimulation for intractable craniofacial pain--case series and literature review. Acta Neurochir (Wien) 2016; 158:513-20. [PMID: 26743912 DOI: 10.1007/s00701-015-2695-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Facial pain is often debilitating and can be characterized by a sharp, stabbing, burning, aching, and dysesthetic sensation. Specifically, trigeminal neuropathic pain (TNP), anesthesia dolorosa, and persistent idiopathic facial pain (PIFP) are difficult diseases to treat, can be quite debilitating and an effective, enduring treatment remains elusive. METHODS We retrospectively reviewed our early experience with stimulation involving the trigeminal and sphenopalatine ganglion stimulation for TNP, anesthesia dolorosa, and PIFP between 2010-2014 to assess the feasibility of implanting at these ganglionic sites. Seven patients received either trigeminal and/or sphenopalatine ganglion stimulation with or without peripheral nerve stimulation, having failed multiple alternative modalities of treatment. The treatments were tailored on the physical location of pain to ensure regional coverage with the stimulation. RESULTS Fluoroscopy or frameless stereotaxy was utilized to place the sphenopalatine and/or trigeminal ganglion stimulator. All patients were initially trialed before implantation. Trial leads implanted in the pterygopalatine fossa near the sphenopalatine ganglion were implanted via transpterygoid (lateral-medial, infrazygomatic) approach. Trial leads were implanted in the trigeminal ganglion via percutaneous Hartel approach, all of which resulted in masseter contraction. Patients who developed clinically significant pain improvement underwent implantation. The trigeminal ganglion stimulation permanent implants involved placing a grid electrode over Meckel's cave via subtemporal craniotomy, which offered a greater ability to stimulate subdivisions of the trigeminal nerve, without muscular (V3) side effects. Two of the seven overall patients did not respond well to the trial and were not implanted. Five patients reported pain relief with up to 24-month follow-up. Several of the sphenopalatine ganglion stimulation patients had pain relief without any paresthesias. There were no electrode migrations or post-surgical complications. CONCLUSIONS Refractory facial pain may respond positively to ganglionic forms of stimulation. It appears safe and durable to implant electrodes in the pterygopalatine fossa via a lateral transpterygoid approach. Also, implantation of an electrode grid overlying Meckel's cave appears to be a feasible alternative to the Hartel approach. Further investigation is needed to evaluate the usefulness of these approaches for various facial pain conditions.
Collapse
|
20
|
Szűcs A, Horváth A, Rásonyi G, Fabó D, Szabó G, Sákovics A, Kamondi A. Ictal analgesia in temporal lobe epilepsy – The mechanism of seizure-related burns. Med Hypotheses 2015; 85:173-7. [DOI: 10.1016/j.mehy.2015.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 12/12/2022]
|
21
|
Boccard SGJ, Pereira EAC, Aziz TZ. Deep brain stimulation for chronic pain. J Clin Neurosci 2015; 22:1537-43. [PMID: 26122383 DOI: 10.1016/j.jocn.2015.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/11/2015] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention popularised in movement disorders such as Parkinson's disease, and also reported to improve symptoms of epilepsy, Tourette's syndrome, obsessive compulsive disorders and cluster headache. Since the 1950s, DBS has been used as a treatment to relieve intractable pain of several aetiologies including post stroke pain, phantom limb pain, facial pain and brachial plexus avulsion. Several patient series have shown benefits in stimulating various brain areas, including the sensory thalamus (ventral posterior lateral and medial), the periaqueductal and periventricular grey, or, more recently, the anterior cingulate cortex. However, this technique remains "off label" in the USA as it does not have Federal Drug Administration approval. Consequently, only a small number of surgeons report DBS for pain using current technology and techniques and few regions approve it. Randomised, blinded and controlled clinical trials that may use novel trial methodologies are desirable to evaluate the efficacy of DBS in patients who are refractory to other therapies. New imaging techniques, including tractography, may help optimise electrode placement and clinical outcome.
Collapse
Affiliation(s)
- Sandra G J Boccard
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| | - Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, Level 6, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
22
|
Keifer OP, Riley JP, Boulis NM. Deep brain stimulation for chronic pain: intracranial targets, clinical outcomes, and trial design considerations. Neurosurg Clin N Am 2015; 25:671-92. [PMID: 25240656 DOI: 10.1016/j.nec.2014.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For over half a century, neurosurgeons have attempted to treat pain from a diversity of causes using acute and chronic intracranial stimulation. Targets of stimulation have included the sensory thalamus, periventricular and periaqueductal gray, the septum, the internal capsule, the motor cortex, posterior hypothalamus, and more recently, the anterior cingulate cortex. The current work focuses on presenting and evaluating the evidence for the efficacy of these targets in a historical context while also highlighting the major challenges to having a double-blind placebo-controlled clinical trial. Considerations for pain research in general and use of intracranial targets specifically are included.
Collapse
Affiliation(s)
- Orion Paul Keifer
- MD/PhD Program, School of Medicine, Emory University, Suite 375-B, 1648 Pierce Drive, Atlanta, GA 30322, USA
| | - Jonathan P Riley
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite 2200, Atlanta, GA 30322, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite 2200, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Pereira EAC, Boccard SG, Aziz TZ. Deep brain stimulation for pain: distinguishing dorsolateral somesthetic and ventromedial affective targets. Neurosurgery 2015; 61 Suppl 1:175-81. [PMID: 25032548 DOI: 10.1227/neu.0000000000000397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Erlick A C Pereira
- *Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom; ‡Department of Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal
| | | | | |
Collapse
|
24
|
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention the efficacy, safety, and utility of which are established in the treatment of Parkinson's disease. For the treatment of chronic, neuropathic pain refractory to medical therapies, many prospective case series have been reported, but few have published findings from patients treated with current standards of neuroimaging and stimulator technology over the last decade . We summarize the history, science, selection, assessment, surgery, programming, and personal clinical experience of DBS of the ventral posterior thalamus, periventricular/periaqueductal gray matter, and latterly rostral anterior cingulate cortex (Cg24) in 113 patients treated at 2 centers (John Radcliffe, Oxford, UK, and Hospital de São João, Porto, Portugal) over 13 years. Several experienced centers continue DBS for chronic pain, with success in selected patients, in particular those with pain after amputation, brachial plexus injury, stroke, and cephalalgias including anesthesia dolorosa. Other successes include pain after multiple sclerosis and spine injury. Somatotopic coverage during awake surgery is important in our technique, with cingulate DBS under general anesthesia considered for whole or hemibody pain, or after unsuccessful DBS of other targets. Findings discussed from neuroimaging modalities, invasive neurophysiological insights from local field potential recording, and autonomic assessments may translate into improved patient selection and enhanced efficacy, encouraging larger clinical trials.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, OX3 9DU, UK,
| | | |
Collapse
|
25
|
Gray AM, Pounds-Cornish E, Eccles FJR, Aziz TZ, Green AL, Scott RB. Deep brain stimulation as a treatment for neuropathic pain: a longitudinal study addressing neuropsychological outcomes. THE JOURNAL OF PAIN 2013; 15:283-92. [PMID: 24333399 DOI: 10.1016/j.jpain.2013.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED Deep brain stimulation (DBS) of the periventricular/periaqueductal gray area and sensory thalamus can reduce pain intensity in patients with neuropathic pain. However, little is known about its impact on quality of life, emotional well-being, and cognition. This study followed up 18 patients who had received DBS for neuropathic pain. Each participant had previously undergone psychometric evaluation of each of the above areas as part of a routine presurgical neuropsychological assessment. Commensurate measures were employed at a follow-up assessment at least 6 months postsurgery. DBS significantly improved mood, anxiety, and aspects of quality of life. Improvements correlated with reduced pain severity. However, the sample continued to show impairments in most areas when compared against normative data published on nonclinical samples. There was little change in general cognitive functioning, aside from deterioration in spatial working memory. However, improvements in pain severity were associated with less improvement (and even deterioration) on measures of executive cognitive functioning. Improvements in emotional well-being also were correlated with changes in cognition. These results suggest that DBS of the periventricular/periaqueductal gray and/or sensory thalamus improves quality of life and emotional well-being in sufferers, although there is some indication of executive dysfunction, particularly among those reporting greatest pain alleviation. PERSPECTIVE This article examines the neuropsychological outcomes of DBS surgery as a treatment for neuropathic pain. This intervention was found to improve pain severity, emotional well-being, and quality of life, although such benefits may be accompanied by reduced ability on tasks measuring executive functioning.
Collapse
Affiliation(s)
- Alan M Gray
- Headwise Ltd, Birmingham, England, United Kingdom; Clinical Psychology Unit, University of Sheffield, Sheffield, England, United Kingdom.
| | - Elizabeth Pounds-Cornish
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury, Buckinghamshire, England
| | - Fiona J R Eccles
- Division of Health Research, Lancaster University, Lancaster, England, United Kingdom
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery and Experimental Neurology, John Radcliffe Hospital, Oxford, England, United Kingdom
| | - Alexander L Green
- Oxford Functional Neurosurgery and Experimental Neurology, John Radcliffe Hospital, Oxford, England, United Kingdom
| | - Richard B Scott
- Oxford Functional Neurosurgery and Experimental Neurology, John Radcliffe Hospital, Oxford, England, United Kingdom
| |
Collapse
|
26
|
Pereira EAC, Wang S, Owen SLF, Aziz TZ, Green AL. Human periventricular grey somatosensory evoked potentials suggest rostrocaudally inverted somatotopy. Stereotact Funct Neurosurg 2013; 91:290-7. [PMID: 23797328 DOI: 10.1159/000348324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 01/20/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Somatosensory homunculi have been demonstrated in primary somatosensory cortex and ventral posterior thalamus but not periaqueductal and periventricular grey matter (PAVG), a therapeutic target for deep brain stimulation (DBS) in chronic pain. AIMS The study is an investigation of somatotopic representation in PAVG and assessment for a somatosensory homunculus. METHODS Five human subjects were investigated using electrical somatosensory stimulation and deep brain macroelectrode recording. DBS were implanted in the contralateral PAVG. Cutaneous arm, leg and face regions were stimulated while event-related potentials were recorded from deep brain electrodes. Electrode contact positions were mapped using MRI and brain atlas information. RESULTS Monopolar P1 somatosensory evoked potential amplitudes were highest and onset latencies shortest in contralateral caudal PAVG with facial stimulation and rostral with leg stimulation, in agreement with reported subjective sensation during intra-operative electrode advancement. CONCLUSIONS A rostrocaudally inverted somatosensory homunculus exists in the human PAVG region. Objective human evidence of PAVG somatotopy increases understanding of a brainstem region important to pain and autonomic control that is a clinical target for both pharmacological and neurosurgical therapies. Such knowledge may assist DBS target localisation for neuropathic pain syndromes related to particular body regions like brachial plexopathies, anaesthesia dolorosa and phantom limb pain.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
27
|
Rasskazoff SY, Slavin KV. Neuromodulation for cephalgias. Surg Neurol Int 2013; 4:S136-50. [PMID: 23682340 PMCID: PMC3654780 DOI: 10.4103/2152-7806.110662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 01/05/2023] Open
Abstract
Headaches (cephalgias) are a common reason for patients to seek medical care. There are groups of patients with recurrent headache and craniofacial pain presenting with malignant course of their disease that becomes refractory to pharmacotherapy and other medical management options. Neuromodulation can be a viable treatment modality for at least some of these patients. We review the available evidence related to the use of neuromodulation modalities for the treatment of medically refractory craniofacial pain of different nosology based on the International Classification of Headache Disorders, 2(nd) edition (ICHD-II) classification. This article also reviews the scientific rationale of neuromodulation application in management of cephalgias.
Collapse
|
28
|
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention whose efficacy, safety, and utility have been shown in the treatment of movement disorders. For the treatment of chronic pain refractory to medical therapies, many prospective case series have been reported, but few have published findings from patients treated during the past decade using current standards of neuroimaging and stimulator technology. We summarize the history, science, selection, assessment, surgery, and personal clinical experience of DBS of the ventral posterior thalamus, periventricular/periaqueductal gray matter, and, latterly, the rostral anterior cingulate cortex (Cg24) in 100 patients treated now at two centers (John Radcliffe Hospital, Oxford, UK, and Hospital de São João, Porto, Portugal) over 12 years. Several experienced centers continue DBS for chronic pain with success in selected patients, in particular those with pain after amputation, brachial plexus injury, stroke, and cephalalgias including anesthesia dolorosa. Other successes include pain after multiple sclerosis and spine injury. Somatotopic coverage during awake surgery is important in our technique, with cingulate DBS considered for whole-body pain or after unsuccessful DBS of other targets. Findings discussed from neuroimaging modalities, invasive neurophysiological insights from local field potential recording, and autonomic assessments may translate into improved patient selection and enhanced efficacy, encouraging larger clinical trials.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
29
|
Pereira EA, Wang S, Peachey T, Lu G, Shlugman D, Stein JF, Aziz TZ, Green AL. Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Exp Neurol 2013; 239:248-55. [DOI: 10.1016/j.expneurol.2012.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/24/2012] [Indexed: 11/29/2022]
|
30
|
Nguyen JP, Nizard J, Keravel Y, Lefaucheur JP. Invasive brain stimulation for the treatment of neuropathic pain. Nat Rev Neurol 2011; 7:699-709. [DOI: 10.1038/nrneurol.2011.138] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Abstract
UNLABELLED Brain-computer interfaces (BCIs) include stimulators, infusion devices, and neuroprostheses. They all belong to functional neurosurgery. Deep brain stimulators (DBS) are widely used for therapy and are in need of innovative evolutions. Robotized exoskeletons require BCIs able to drive up to 26 degrees of freedom (DoF). We report the nanomicrotechnology development of prototypes for new 3D DBS and for motor neuroprostheses. For this complex project, all compounds have been designed and are being tested. Experiments were performed in rats and primates for proof of concepts and development of the electroencephalogram (EEG) recognition algorithm. METHODS Various devices have been designed. (A) In human, a programmable multiplexer connecting five tetrapolar (20 contacts) electrodes to one DBS channel has been designed and implanted bilaterally into STN in two Parkinsonian patients. (B) A 50-mm diameter titanium implant, telepowered, including a radioset, emitting ECoG data recorded by a 64-electrode array using an application-specific integrated circuit, is being designed to be implanted in a 50-mm trephine opening. Data received by the radioreceiver are processed through an original wavelet-based Iterative N-way Partial Least Square algorithm (INPLS, CEA patent). Animals, implanted with ECoG recording electrodes, had to press a lever to obtain a reward. The brain signature associated to the lever press (LP) was detected online by ECoG processing using INPLS. This detection allowed triggering the food dispenser. RESULTS (A) The 3D multiplexer allowed tailoring the electrical field to the STN. The multiplication of the contacts affected the battery life and suggested different implantation schemes. (B) The components of the human implantable cortical BCI are being tested for reliability and toxicology to meet criteria for chronicle implantation in 2012. (C) In rats, the algorithm INPLS could detect the cortical signature with an accuracy of about 80% of LPs on the electrodes with the best correlation coefficient (located over the cerebellar cortex), 1% of the algorithm decisions were false positives. We aim to pilot effectors with DoF up to 3 in monkeys. CONCLUSION We have designed multielectrodes wireless implants to open the way for BCI ECoG-driven effectors. These technologies are also used to develop new generations of brain stimulators, either cortical or for deep targets. This chapter is aimed at illustrating that BCIs are actually the daily background of DBS, that the evolution of the method involves a growing multiplicity of targets and indications, that new technologies make possible and simpler than before to design innovative solutions to improve DBS methodology, and that the coming out of BCI-driven neuroprostheses for compensation of motor and sensory deficits is a natural evolution of functional neurosurgery.
Collapse
|
32
|
Leone M, Franzini A, Proietti Cecchini A, Mea E, Broggi G, Bussone G. Deep brain stimulation in trigeminal autonomic cephalalgias. Neurotherapeutics 2010; 7:220-8. [PMID: 20430322 PMCID: PMC5084104 DOI: 10.1016/j.nurt.2010.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/11/2010] [Indexed: 11/24/2022] Open
Abstract
Cluster headache (CH), paroxysmal hemicrania (PH), and short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT syndrome) are primary headaches grouped together as trigeminal autonomic cephalalgias (TACs). All are characterized by short-lived unilateral head pain attacks associated with oculofacial autonomic phenomena. Neuroimaging studies have demonstrated that the posterior hypothalamus is activated during attacks, implicating hypothalamic hyperactivity in TAC pathophysiology and suggesting stimulation of the ipsilateral posterior hypothalamus as a means of preventing intractable CH. After almost 10 years of experience, hypothalamic stimulation has proved successful in preventing pain attacks in approximately 60% of the 58 documented chronic drug-resistant CH patients implanted at various centers. Positive results have also been reported in drug-resistant SUNCT and PH. Microrecording studies on hypothalamic neurons are increasingly being performed and promise to make it possible to more precisely identify the target site. The implantation procedure has generally proved safe, although it carries a small risk of brain hemorrhage. Long-term stimulation is proving to be safe: studies on patients under continuous hypothalamic stimulation have identified nonsymptomatic impairment of orthostatic adaptation as the only noteworthy change. Studies on pain threshold in chronically stimulated patients show increased threshold for cold pain in the distribution of the first trigeminal branch ipsilateral to stimulation. When the stimulator is switched off, changes in sensory and pain thresholds do not occur immediately, indicating that long-term hypothalamic stimulation is necessary to produce sensory and nociceptive changes, as also indicated by clinical experience that CH attacks are brought under control only after weeks of stimulation. Infection, transient loss of consciousness, and micturition syncope have been reported, but treatment interruption usually is not required.
Collapse
Affiliation(s)
- Massimo Leone
- Headache Center, Neuromodulation Unit, Department of Neurology, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Pereira EAC, Lu G, Wang S, Schweder PM, Hyam JA, Stein JF, Paterson DJ, Aziz TZ, Green AL. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol 2010; 223:574-81. [PMID: 20178783 DOI: 10.1016/j.expneurol.2010.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The midbrain periaqueductal grey (PAG) area is important for both pain modulation and cardiovascular control via the autonomic nervous system (ANS). While changes in blood pressure dependent upon dorsal or ventral electrode positioning have been described with PAG deep brain stimulation (DBS), little is known mechanistically about the relationships between pain and cardiovascular regulation in humans. Heart rate variability (HRV) is an established measure of cardiovascular regulation, and an index of autonomic function. METHODS AND RESULTS 16 patients undergoing DBS of the rostral PAG for chronic neuropathic pain were investigated post-operatively to determine whether PAG stimulation would alter HRV, and the subjects' perception of pain. Mean heart rate together with HRV, time and frequency domain measures, low frequency (LF) and high frequency (HF) power components of heart rate and the ratio of LF to HF were calculated before and during DBS. Ventral but not dorsal PAG DBS significantly decreased the ratio of LF to HF power (p<0.05, n=8) with HF power significantly increased. Changes in LF/HF ratio correlated significantly with subjective reporting of analgesic efficacy using a visual analogue score (VAS; gamma(2)=0.36, p=0.01, n=16). Diffusion tensor imaging and probabilistic tractography of 17 normal controls' seeding voxels from the mean ventral and dorsal PAG stimulation sites of the 16 patient cohort revealed significant differences between rostral tract projections and separate, adjacent projections to ipsilateral dorsolateral medulla. CONCLUSIONS Ventral PAG DBS may increase parasympathetic activity to reduce pain via anatomical connections distinct from dorsal PAG DBS, which may act by sympathetic mechanisms.
Collapse
|
34
|
Yousif N, Bayford R, Wang S, Liu X. Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation. Neuroscience 2008; 152:683-91. [PMID: 18304747 DOI: 10.1016/j.neuroscience.2008.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/15/2008] [Accepted: 01/17/2008] [Indexed: 11/26/2022]
Abstract
A depth electrode-brain interface (EBI) is formed once electrodes are implanted into the human brain. We investigated the impact of the EBI on the crossing electric currents during both deep brain recording (DBR) and deep brain stimulation (DBS) over the acute, chronic and transitional stages post-implantation, in order to investigate and quantify the effect which changes at the EBI have on both DBR and DBS. We combined two complementary methods: (1) physiological recording of local field potentials via the implanted electrode in patients; and (2) computational simulations of an EBI model. Our depth recordings revealed that the physiological modulation of the EBI in the acute stage via brain pulsation selectively affected the crossing neural signals in a frequency-dependent manner, as the amplitude of the electrode potential was inversely correlated with that of the tremor-related oscillation, but not the beta oscillation. Computational simulations of DBS during the transitional period showed that the shielding effect of partial giant cell growth on the injected current could shape the field in an unpredictable manner. These results quantitatively demonstrated that physiological modulation of the EBI significantly affected the crossing currents in both DBR and DBS. Studying the microenvironment of the EBI may be a key step in investigating the mechanisms of DBR and DBS, as well as brain-computer interactions in general.
Collapse
Affiliation(s)
- N Yousif
- The Movement Disorders and Neurostimulation Unit, Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, 10 East, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | | | | | | |
Collapse
|
35
|
Wager TD, Scott DJ, Zubieta JK. Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 2007; 104:11056-61. [PMID: 17578917 PMCID: PMC1894566 DOI: 10.1073/pnas.0702413104] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Placebo-induced expectancies have been shown to decrease pain in a manner reversible by opioid antagonists, but little is known about the central brain mechanisms of opioid release during placebo treatment. This study examined placebo effects in pain by using positron-emission tomography with [(11)C]carfentanil, which measures regional mu-opioid receptor availability in vivo. Noxious thermal stimulation was applied at the same temperature for placebo and control conditions. Placebo treatment affected endogenous opioid activity in a number of predicted mu-opioid receptor-rich regions that play central roles in pain and affect, including periaqueductal gray and nearby dorsal raphe and nucleus cuneiformis, amygdala, orbitofrontal cortex, insula, rostral anterior cingulate, and lateral prefrontal cortex. These regions appeared to be subdivided into two sets, one showing placebo-induced opioid activation specific to noxious heat and the other showing placebo-induced opioid reduction during warm stimulation in anticipation of pain. These findings suggest that a mechanism of placebo analgesia is the potentiation of endogenous opioid responses to noxious stimuli. Opioid activity in many of these regions was correlated with placebo effects in reported pain. Connectivity analyses on individual differences in endogenous opioid system activity revealed that placebo treatment increased functional connectivity between the periaqueductal gray and rostral anterior cingulate, as hypothesized a priori, and also increased connectivity among a number of limbic and prefrontal regions, suggesting increased functional integration of opioid responses. Overall, the results suggest that endogenous opioid release in core affective brain regions is an integral part of the mechanism whereby expectancies regulate affective and nociceptive circuits.
Collapse
Affiliation(s)
- Tor D. Wager
- *Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027; and
- To whom correspondence should be addressed. E-mail:
| | - David J. Scott
- Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720
| | - Jon-Kar Zubieta
- Departments of Radiology and
- Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720
| |
Collapse
|
36
|
Rasche D, Rinaldi PC, Young RF, Tronnier VM. Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 2006; 21:E8. [PMID: 17341052 DOI: 10.3171/foc.2006.21.6.10] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Electrical intracerebral stimulation (also referred to as deep brain stimulation [DBS]) is a tool for the treatment of chronic pain states that do not respond to less invasive or conservative treatment options. Careful patient selection, accurate target localization, and identification with intraoperative neurophysiological techniques and blinded test evaluation are the key requirements for success and good long-term results. The authors present their experience with DBS for the treatment of various chronic pain syndromes. METHODS In this study 56 patients with different forms of neuropathic and mixed nociceptive/neuropathic pain syndromes were treated with DBS according to a rigorous protocol. The postoperative follow-up duration ranged from 1 to 8 years, with a mean of 3.5 years. Electrodes were implanted in the somatosensory thalamus and the periventricular gray region. Before implantation of the stimulation device, a double-blinded evaluation was carefully performed to test the effect of each electrode on its own as well as combined stimulation with different parameter settings. The best long-term results were attained in patients with chronic low-back and leg pain, for example, in so-called failed-back surgery syndrome. Patients with neuropathic pain of peripheral origin (such as complex regional pain syndrome Type II) also responded well to DBS. Disappointing results were documented in patients with central pain syndromes, such as pain due to spinal cord injury and poststroke pain. Possible reasons for the therapeutic failures are discussed; these include central reorganization and neuroplastic changes of the pain-transmitting pathways and pain modulation centers after brain and spinal cord lesions. CONCLUSIONS The authors found that, in carefully selected patients with chronic pain syndromes, DBS can be helpful and can add to the quality of life.
Collapse
Affiliation(s)
- Dirk Rasche
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Lübeck, Germany.
| | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND The therapeutic use of deep brain stimulation to relieve intractable pain began in the 1950s. In some patients, stimulation of the periaqueductal grey matter induced headache with migrainous features, indicating a pathophysiological link between neuromodulation of certain brain structures and headache. RECENT DEVELOPMENTS Neuroimaging studies have revealed specific activation patterns in various primary headaches. In the trigeminal autonomic cephalgias, neuroimaging findings support the hypothesis that activation of posterior hypothalamic neurons have a pivotal role in the pathophysiology and prompted the idea that hypothalamic stimulation might inhibit this activation to improve or eliminate the pain in intractable chronic cluster headache and other trigeminal autonomic cephalgias. Over the past 6 years, hypothalamic implants have been used in various centres in patients with intractable chronic cluster headache. The results are encouraging: most patients achieved stable and notable pain reduction and many became pain free. All deep-brain-electrode implantation procedures carry a small risk of mortality due to intracerebral haemorrhage. Before implantation, all patients must undergo complete preoperative neuroimaging to exclude disorders associated with increased haemorrhagic risk. No substantial changes in hypothalamus-controlled functions have been reported during hypothalamic stimulation. Hypothalamic stimulation may also be beneficial in patients with SUNCT (short-lasting, unilateral, neuralgiform headache attacks with conjunctival injection and tearing)--a disorder with close clinical and neuroimaging similarities to the cluster headache. WHERE NEXT?: Neuroimaging findings in patients undergoing posterior hypothalamic stimulation have shown activation of the trigeminal nucleus and ganglion. This evidence supports the hypothesis that hypothalamic stimulation exerts its effect by modulating the activity of the trigeminal nucleus caudalis, which in turn might control the brainstem trigeminofacial reflex--thought to cause cluster headache pain. Future studies might determine whether other areas of the pain matrix are suitable targets for neuromodulation in patients with cluster headache who do not respond to hypothalamic modulation.
Collapse
Affiliation(s)
- Massimo Leone
- Department of Neurology and Headache Centre, Istituto Nazionale Neurologico Carlo Besta, via Celoria 11, 20133 Milano, Italy.
| |
Collapse
|
38
|
Bittar RG, Otero S, Carter H, Aziz TZ. Deep brain stimulation for phantom limb pain. J Clin Neurosci 2006; 12:399-404. [PMID: 15925769 DOI: 10.1016/j.jocn.2004.07.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 07/26/2004] [Indexed: 12/29/2022]
Abstract
Phantom limb pain is an often severe and debilitating phenomenon that has been reported in up to 85% of amputees. Its pathophysiology is poorly understood. Peripheral and spinal mechanisms are thought to play a role in pain modulation in affected individuals; however central mechanisms are also likely to be of importance. The neuromatrix theory postulates a genetically determined representation of body image, which is modified by sensory input to create a neurosignature. Persistence of the neurosignature may be responsible for painless phantom limb sensations, whereas phantom limb pain may be due to abnormal reorganisation within the neuromatrix. This study assessed the clinical outcome of deep brain stimulation of the periventricular grey matter and somatosensory thalamus for the relief of chronic neuropathic pain associated with phantom limb in three patients. These patients were assessed preoperatively and at 3 month intervals postoperatively. Self-rated visual analogue scale pain scores assessed pain intensity, and the McGill Pain Questionnaire assessed the quality of the pain. Quality of life was assessed using the EUROQOL EQ-5D scale. Periventricular gray stimulation alone was optimal in two patients, whilst a combination of periventricular gray and thalamic stimulation produced the greatest degree of relief in one patient. At follow-up (mean 13.3 months) the intensity of pain was reduced by 62% (range 55-70%). In all three patients, the burning component of the pain was completely alleviated. Opiate intake was reduced in the two patients requiring morphine sulphate pre-operatively. Quality of life measures indicated a statistically significant improvement. This data supports the role for deep brain stimulation in patients with phantom limb pain. The medical literature relating to the epidemiology, pathogenesis, and treatment of this clinical entity is reviewed in detail.
Collapse
|
39
|
Bittar RG, Kar-Purkayastha I, Owen SL, Bear RE, Green A, Wang S, Aziz TZ. Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci 2006; 12:515-9. [PMID: 15993077 DOI: 10.1016/j.jocn.2004.10.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 10/15/2004] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation (DBS) has been used to treat intractable pain for over 50 years. Variations in targets and surgical technique complicate the interpretation of many studies. To better understand its efficacy, we performed a meta-analysis of DBS for pain relief. MEDLINE (1966 to February 2003) and EMBASE (1980 to January 2003) databases were searched using key words deep brain stimulation, sensory thalamus, periventricular gray and pain. Inclusion criteria were based on patient characteristics and protocol clarity. Six studies (between 1977-1997) fitting the criteria were identified. Stimulation sites included the periventricular/periaqueductal grey matter (PVG/PAG), internal capsule (IC), and sensory thalamus (ST). The long-term pain alleviation rate was highest with DBS of the PVG/PAG (79%), or the PVG/PAG plus sensory thalamus/internal capsule (87%). Stimulation of the sensory thalamus alone was less effective (58% long-term success) (p < 0.05). DBS was more effective for nociceptive than deafferentation pain (63% vs 47% long-term success; p < 0.01). Long-term success was attained in over 80% of patients with intractable low back pain (failed back surgery) following successful trial stimulation. Trial stimulation was successful in approximately 50% of those with post-stroke pain, and 58% of patients permanently implanted achieved ongoing pain relief. Higher rates of success were seen with phantom limb pain and neuropathies. We conclude that DBS is frequently effective when used in well-selected patients. Neuroimaging and neuromodulation technology advances complicate the application of these results to modern practice. Ongoing investigations should shed further light on this complex clinical conundrum.
Collapse
|
40
|
Shin MS, Helmstetter FJ. Antinociception following application of DAMGO to the basolateral amygdala results from a direct interaction of DAMGO with Mu opioid receptors in the amygdala. Brain Res 2005; 1064:56-65. [PMID: 16289487 DOI: 10.1016/j.brainres.2005.09.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Previous studies from our laboratory have shown that application of the mu opioid agonist DAMGO into the basolateral region of the amygdala (BLA) suppresses the radiant heat tail flick (TF) reflex in anesthetized rats. This antinociceptive effect can be blocked by lesions of brainstem regions such as the periaqueductal gray (PAG) or the rostral ventromedial medulla (RVM) or by functional inactivation of neurons in these regions, suggesting the activation of brainstem-descending antinociceptive systems from the amygdala. However, little is known about the direct interaction of DAMGO with mu receptors in the amygdala. In the present series of experiments, the BLA was pretreated with opioid receptor antagonists and a G protein inhibitor prior to TF testing with application of DAMGO into the same site. Rats pretreated with the non-selective opioid antagonist naltrexone (1.25-3.75 microg/0.25 microl per side) or the G protein inhibitor pertussis toxin (0.25 microg) failed to show inhibition of TF reflexes following infusion of DAMGO (0.168-0.50 microg), indicating that DAMGO works through G-protein-coupled opioid receptors in the BLA. Furthermore, pretreatment with the mu antagonist beta-FNA (1.00-2.00 microg) attenuated antinociception induced by DAMGO injection, suggesting DAMGO's action on mu receptors in the BLA. Accordingly, we confirm a direct interaction of DAMGO with G-protein-coupled mu receptors in the BLA contributing to induction of opioid antinociception in the amygdala.
Collapse
MESH Headings
- Amygdala/cytology
- Amygdala/drug effects
- Amygdala/metabolism
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/metabolism
- Anesthetics, Local/administration & dosage
- Anesthetics, Local/metabolism
- Animals
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/metabolism
- Male
- Microinjections
- Neurons/drug effects
- Neurons/metabolism
- Pain/metabolism
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Rats
- Rats, Long-Evans
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Maeng-Sik Shin
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | | |
Collapse
|
41
|
Bittar RG, Burn SC, Bain PG, Owen SL, Joint C, Shlugman D, Aziz TZ. Deep brain stimulation for movement disorders and pain. J Clin Neurosci 2005; 12:457-63. [PMID: 15925782 DOI: 10.1016/j.jocn.2004.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation (DBS) is an expanding field within neurosurgery. With many neurosurgeons performing relatively small numbers of these procedures, detailed descriptions of the technical aspects and nuances of DBS may be worthwhile. We describe our technique for DBS, based on over 300 procedures. This methodology continues to evolve and is refined according to our own experience, our observations of others, technological innovations, and information derived from the neurosurgical literature. The indications for DBS in our service are outlined, the anatomical targets described, and the anaesthetic and surgical aspects detailed.
Collapse
|
42
|
Bittar RG, Nandi D, Carter H, Aziz TZ. Somatotopic organization of the human periventricular gray matter. J Clin Neurosci 2005; 12:240-1. [PMID: 15851072 DOI: 10.1016/j.jocn.2004.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 05/27/2004] [Indexed: 11/23/2022]
Abstract
The periventricular gray (PVG) matter is an established anatomical target for chronic deep brain stimulation (DBS) in the treatment of certain intractable pain syndromes. Data relating to the representation of pain and other somatosensory modalities within the PVG in humans are negligible. We examined the character and location of somatosensory responses elicited by electrical stimulation along the length of the PVG in a patient who underwent unilateral DBS for intractable nociceptive head pain. Consistent responses were obtained and indicated the presence of a somatotopic representation in this region. The contralateral lower limb was represented cranially, followed by the upper limb and trunk, with the face area located caudally, near the level of the superior colliculi. Bilateral representation was only observed in the forehead and scalp.
Collapse
|
43
|
Wallace BA, Ashkan K, Benabid AL. Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg Clin N Am 2004; 15:343-57, vii. [PMID: 15246342 DOI: 10.1016/j.nec.2004.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Deep brain stimulation (DBS) was first used for the treatment of pain in 1954. Since that time, remarkable advances have been made in the field of DBS, largely because of the resurgence of DBS for the treatment of movement disorders. Although DBS for pain has largely been supplanted by motor cortex and spinal cord stimulation during the last decade, no solid evidence exists that these alternative modalities truly offer improved outcomes. Furthermore, nuclei not yet fully explored are known to play a role in the transmission and modulation of pain. This article outlines the history of DBS for pain, pain classification, patient selection criteria, DBS target selection, surgical techniques, indications for DBS (versus ablative techniques), putative new DBS targets, complications, and the outcomes associated with DBS for pain.
Collapse
Affiliation(s)
- Bradley A Wallace
- Department of Neurosurgery, University of Florida, Gainesville 32610, USA.
| | | | | |
Collapse
|
44
|
Liu Z, Sakakibara R, Nakazawa K, Uchiyama T, Yamamoto T, Ito T, Hattori T. Micturition-related neuronal firing in the periaqueductal gray area in cats. Neuroscience 2004; 126:1075-82. [PMID: 15207340 DOI: 10.1016/j.neuroscience.2004.04.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2004] [Indexed: 11/27/2022]
Abstract
The midbrain periaqueductal gray (PAG) is the area promoting emotional motor responses, reproductive behaviors and analgesia. Recent studies suggest that neurons in the PAG may be crucial for regulating the micturition reflex in both experimental animals and humans. We examined single neuronal activities in the PAG and the adjacent area in response to isovolumetric spontaneous micturition reflexes in 20 supracollicular decerebrated cats. In total, 84 neurons were recorded in the PAG that were related to urinary storage/micturition cycles. Of the neurons recorded, the most common were tonic storage neurons (43%), followed by tonic micturition neurons (29%), phasic storage neurons (15%) and phasic micturition neurons (13%). In addition to the tonic/phasic as well as storage/micturition classification, the neurons showed diverse discharge patterns: augmenting, constant and decrementing, with the constant discharge pattern being most common. Of the 16 neurons located within the PAG that had similar discharge patterns to those just ventral to the PAG, the micturition neurons were distributed in a broader area, whereas the storage neurons seemed to be concentrated in the middle part of the PAG (P0-1, Horsley-Clarke coordinate). High-frequency stimulation (HFS; 0.2-ms duration, 100 Hz) applied in the PAG elicited inhibition of the micturition reflex. Effective amplitude of the electrical stimulation for evoking inhibitory responses was less than 50 microA. In conclusion, the results of the present study showed that HFS of the PAG inhibited the micturition reflex and there were micturition-related neuronal firings in the PAG in cats, suggesting that the PAG is involved in neural control of micturition.
Collapse
Affiliation(s)
- Z Liu
- Department of Neurology, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Deep brain stimulation (DBS) plays an important role in the treatment of chronic pain when other less invasive treatment modalities have been exhausted. DBS is an apparently safe and effective treatment option for a select group of patients. Further research into the mechanisms of pain relief by DBS and careful prospective outcomes studies should help to define better the optimal techniques for DBS and clarify which patient populations may be best helped by this interventional procedure.
Collapse
Affiliation(s)
- Robert M Levy
- Departments of Neurological Surgery and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
46
|
Newsome WT, Stein-Aviles JA. Nonhuman Primate Models of Visually Based Cognition. ILAR J 2001; 39:78-91. [PMID: 11533513 DOI: 10.1093/ilar.40.2.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- William T. Newsome
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
47
|
Kumar K, Toth C, Nath RK. Deep brain stimulation for intractable pain: a 15-year experience. Neurosurgery 1997; 40:736-46; discussion 746-7. [PMID: 9092847 DOI: 10.1097/00006123-199704000-00015] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE During the past 15 years, we prospectively followed 68 patients with chronic pain syndromes who underwent deep brain stimulation (DBS). The objective of our study was to analyze the long-term outcomes to clarify patient selection criteria for DBS. METHODS Patients were referred from a multidisciplinary pain clinic after conservative treatment failed. Electrodes for DBS were implanted within the periventricular gray matter, specific sensory thalamic nuclei, or the internal capsule. Each patient was followed on a 6-monthly follow-up basis and evaluated with a modified visual analog scale. RESULTS Follow-up periods ranged from 6 months to 15 years, with an average follow-up period of 78 months. The mean age of the 54 men and 14 women in the study was 51.3 years. Indications for DBS included 43 patients with failed back syndrome, 6 with peripheral neuropathy or radiculopathy, 5 with thalamic pain, 4 with trigeminal neuropathy, 3 with traumatic spinal cord lesions, 2 with causalgic pain, 1 with phantom limb pain, and 1 with carcinoma pain. After initial screening, 53 of 68 patients (77%) elected internalization of their devices; 42 of the 53 (79%) continue to receive adequate relief of pain. Therefore, effective pain control was achieved in 42 of 68 of our initially referred patients (62%). Patients with failed back syndrome, trigeminal neuropathy, and peripheral neuropathy fared well with DBS, whereas those with thalamic pain, spinal cord injury, and postherpetic neuralgia did poorly. CONCLUSION DBS in selected patients provides long-term effective pain control with few side effects or complications.
Collapse
Affiliation(s)
- K Kumar
- Department of Surgery, University of Saskatchewan, Regina, Canada
| | | | | |
Collapse
|
48
|
Young RF, Bach FW, Van Norman AS, Yaksh TL. Release of beta-endorphin and methionine-enkephalin into cerebrospinal fluid during deep brain stimulation for chronic pain. Effects of stimulation locus and site of sampling. J Neurosurg 1993; 79:816-25. [PMID: 8246048 DOI: 10.3171/jns.1993.79.6.0816] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The authors systematically studied the release of the endogenous opioid peptides beta-endorphin and methionine (met)-enkephalin into the cerebrospinal fluid (CSF) during deep brain stimulation in patients suffering from otherwise intractable chronic pain. Nine patients were included in the study; six had stimulation electrodes placed in both the periventricular gray matter (PVG) and the thalamic nucleus ventralis posterolateralis (VLP) and three in the PVG only. Immunoreactivity of beta-endorphin and met-enkephalin (beta-EPir and MEir, respectively) was measured by radioimmunoassays in ventricular and lumbar CSF samples obtained before, during, and after stimulation. Prestimulation concentrations of beta-EPir and MEir were lower in ventricular than in lumbar CSF (6.6 +/- 0.5 vs. 13.7 +/- 1.0 pmol/liter, p = 0.0001, for beta-EPir; 33.6 +/- 5.1 vs. 48.3 +/- 3.2 pmol/liter, p < 0.05, for MEir). Ventricular CSF concentrations of both beta-EPir and MEir increased significantly during PVG stimulation, whereas VPL stimulation was without effect. No changes were seen in lumbar CSF levels of the peptides during stimulation in either site. A significant inverse relationship was found between the "during:before stimulation" ratios of visual analog scale ratings and beta-EPir levels during PVG stimulation. The beta-EPir and MEir concentration during:before stimulation ratios were positively correlated, whereas no correlation was present in prestimulation samples from ventricular or lumbar CSF. High-performance liquid chromatography of ventricular CSF pools obtained during PVG stimulation revealed that major portions of beta-EPir and MEir eluted as synthetic beta-endorphin and met-enkephalin, respectively, thus documenting the release of beta-endorphin and met-enkephalin into ventricular CSF during PVG stimulation. The finding of a direct relationship between beta-EPir release and pain alleviation may suggest a role for beta-endorphin in the analgesic mechanism of PVG stimulation.
Collapse
Affiliation(s)
- R F Young
- Department of Neurological Surgery, University of California Irvine School of Medicine, Orange
| | | | | | | |
Collapse
|
49
|
Young RF, Tronnier V, Rinaldi PC. Chronic stimulation of the Kölliker-Fuse nucleus region for relief of intractable pain in humans. J Neurosurg 1992; 76:979-85. [PMID: 1588433 DOI: 10.3171/jns.1992.76.6.0979] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic electrical stimulation in the periventricular or periaqueductal gray matter regions and the thalamic somatosensory relay nuclei (ventralis posteromedialis and ventralis posterolateralis) provides long-term pain relief in about 50% of patients with intractable pain refractory to other conservative and/or surgical measures. To enhance the success of electrical stimulation in relief of pain, alternative brain and brain-stem targets have been sought. A series of laboratory studies indicated that the Kölliker-Fuse nucleus and the parabrachial region may provide appropriate alternatives to the "classic" targets. This report describes six patients with intractable chronic pain of nociceptive or central origin, in whom an electrode was stereotactically implanted in the region of the Kölliker-Fuse nucleus. Kölliker-Fuse nucleus stimulation alone or in combination with stimulation in the periaqueductal/periventricular gray matter region or the somatosensory thalamic nuclei provided excellent pain relief in three of the six patients.
Collapse
Affiliation(s)
- R F Young
- Division of Neurological Surgery, University of California, Irvine Medical Center, Orange
| | | | | |
Collapse
|
50
|
Abstract
Deep brain stimulation for pain control in humans was first used almost 30 years ago and has continued to receive considerable attention. Despite the large number of clinical reports describing pain relief, numerous studies have indicated that the results of these procedures vary considerably. In addition, many neurosurgeons find the procedures unpredictable, and considerable disagreement still exists regarding important issues related to the technique itself. This review gives an historical overview of the relevant basic and clinical literature and provides a critical examination of the clinical efficacy, choice of stimulation sites, parameters of stimulation, and effects on experimental pain. Finally, we give suggestions for future research that could more definitively determine the usefulness of deep brain stimulation for pain control.
Collapse
Affiliation(s)
- Gary H Duncan
- Centre de Recherche en Sciences Neurologiques Université de Montréal, Montreal, QuebecCanada Faculté de Médecine Dentaire, Université de Montréal, Montreal, QuebecCanada
| | | | | |
Collapse
|