1
|
Pour ME, Moghadam SG, Shirkhani P, Sahebkar A, Mosaffa F. Therapeutic cell-based vaccines for glioblastoma multiforme. Med Oncol 2023; 40:354. [PMID: 37952224 DOI: 10.1007/s12032-023-02220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Glioblastoma multiforme (GBM), a highly aggressive tumor, poses significant challenges in achieving successful treatment outcomes. Conventional therapeutic modalities including surgery, radiation, and chemotherapy have demonstrated limited efficacy, primarily attributed to the complexities associated with drug delivery to the tumor site and tumor heterogeneity. To address this critical need for innovative therapies, the potential of cancer vaccines utilizing tumor cells and dendritic cells has been explored for GBM treatment. This article provides a comprehensive review of therapeutic vaccinations employing cell-based vaccine strategies for the management of GBM. A meticulous evaluation of 45 clinical trials involving more than 1500 participants revealed that cell-based vaccinations have exhibited favorable safety profiles with minimal toxicity. Moreover, these vaccines have demonstrated modest improvements in overall survival and progression-free survival among patients. However, certain limitations still persist. Notably, there is a need for advancements in the development of potent antigens to evoke immune responses, as well as the optimization of dosage regimens. Consequently, while cell-based vaccinations show promise as a potential therapeutic approach for GBM, further research is imperative to overcome the current limitations. The ultimate objective is to surmount these obstacles and establish cell-based vaccinations as a standard therapeutic modality for GBM.
Collapse
Affiliation(s)
- Mehrshad Ebrahim Pour
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samin Ghorbani Moghadam
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parian Shirkhani
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Puig-Saenz C, Pearson JRD, Thomas JE, McArdle SEB. A Holistic Approach to Hard-to-Treat Cancers: The Future of Immunotherapy for Glioblastoma, Triple Negative Breast Cancer, and Advanced Prostate Cancer. Biomedicines 2023; 11:2100. [PMID: 37626597 PMCID: PMC10452459 DOI: 10.3390/biomedicines11082100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy represents an attractive avenue for cancer therapy due to its tumour specificity and relatively low frequency of adverse effects compared to other treatment modalities. Despite many advances being made in the field of cancer immunotherapy, very few immunotherapeutic treatments have been approved for difficult-to-treat solid tumours such as triple negative breast cancer (TNBC), glioblastoma multiforme (GBM), and advanced prostate cancer (PCa). The anatomical location of some of these cancers may also make them more difficult to treat. Many trials focus solely on immunotherapy and have failed to consider or manipulate, prior to the immunotherapeutic intervention, important factors such as the microbiota, which itself is directly linked to lifestyle factors, diet, stress, social support, exercise, sleep, and oral hygiene. This review summarises the most recent treatments for hard-to-treat cancers whilst factoring in the less conventional interventions which could tilt the balance of treatment in favour of success for these malignancies.
Collapse
Affiliation(s)
- Carles Puig-Saenz
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Joshua R. D. Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Jubini E. Thomas
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Stéphanie E. B. McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| |
Collapse
|
3
|
Mowforth OD, Brannigan J, El Khoury M, Sarathi CIP, Bestwick H, Bhatti F, Mair R. Personalised therapeutic approaches to glioblastoma: A systematic review. Front Med (Lausanne) 2023; 10:1166104. [PMID: 37122327 PMCID: PMC10140534 DOI: 10.3389/fmed.2023.1166104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is the most common and malignant primary brain tumour with median survival of 14.6 months. Personalised medicine aims to improve survival by targeting individualised patient characteristics. However, a major limitation has been application of targeted therapies in a non-personalised manner without biomarker enrichment. This has risked therapies being discounted without fair and rigorous evaluation. The objective was therefore to synthesise the current evidence on survival efficacy of personalised therapies in glioblastoma. Methods Studies reporting a survival outcome in human adults with supratentorial glioblastoma were eligible. PRISMA guidelines were followed. MEDLINE, Embase, Scopus, Web of Science and the Cochrane Library were searched to 5th May 2022. Clinicaltrials.gov was searched to 25th May 2022. Reference lists were hand-searched. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A quantitative synthesis is presented. Results A total of 102 trials were included: 16 were randomised and 41 studied newly diagnosed patients. Of 5,527 included patients, 59.4% were male and mean age was 53.7 years. More than 20 types of personalised therapy were included: targeted molecular therapies were the most studied (33.3%, 34/102), followed by autologous dendritic cell vaccines (32.4%, 33/102) and autologous tumour vaccines (10.8%, 11/102). There was no consistent evidence for survival efficacy of any personalised therapy. Conclusion Personalised glioblastoma therapies remain of unproven survival benefit. Evidence is inconsistent with high risk of bias. Nonetheless, encouraging results in some trials provide reason for optimism. Future focus should address target-enriched trials, combination therapies, longitudinal biomarker monitoring and standardised reporting.
Collapse
Affiliation(s)
- Oliver D. Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
| | - Jamie Brannigan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Marc El Khoury
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | | | - Harry Bestwick
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Faheem Bhatti
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Richard Mair
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- *Correspondence: Richard Mair,
| |
Collapse
|
4
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother 2022; 71:1813-1822. [PMID: 35020009 DOI: 10.1007/s00262-021-03131-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.
Collapse
|
6
|
Hashemzadeh MS, Tapeh BE, Mirhosseini SA. The Role of Bacterial Superantigens in the Immune Response: From Biology to Cancer Treatment. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666200812150402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
Encouraging results have been indicated preclinically and in patients using the
bacterial superantigen. This review article intends to summarize the role of the superantigens that
have been recently used in the treatment of cancer. In addition, the vector systems, including lentiviral
vectors, adeno-associated vector systems and retroviral vectors that are increasingly being
used in basic and applied research, were discussed. Most importantly, the new CRISPR technique
has also been discussed in this literature review.
Discussion:
More successful therapies can be achieved by manipulating bacterial vector systems
through incorporating genes related to the superantigens and cytokines. The products of SAg and
cytokine genes contribute to the strong stimulation of the immune system against tumor cells. They
bind to MHC II molecules as well as the V beta regions of TCR and lead to the production of IL2
and other cytokines, the activation of antigen-presenting cells and T lymphocytes. Additionally, superantigens
can be used to eradicate tumor cells. Better results in cancer treatment can be achieved
by transferring superantigen genes and subsequent strong immune stimulation along with other cancer
immunotherapy agents.
Conclusion:
Superantigens induce the proliferation of T lymphocytes and antigen-presenting cells
by binding to MHCII molecules and V beta regions in T cell receptors. Therefore, the presentation
of tumor cell antigens is increased. Additionally, the production of important cytokines by T cells
and APCs contributes to the stimulation of immune response against tumor cells. The manipulation
of bacterial vector systems through incorporating genesrelated to SAgs and other immune response
factors is a good strategy for the immune system stimulating and eradicating tumor cells along with
other immunotherapy agents.
Collapse
Affiliation(s)
- Mohammad S. Hashemzadeh
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behnam E.G. Tapeh
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed A. Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Cao JX, Gao WJ, You J, Wu LH, Wang ZX. Assessment of the efficacy of passive cellular immunotherapy for glioma patients. Rev Neurosci 2020; 31:427-440. [PMID: 31926107 DOI: 10.1515/revneuro-2019-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022]
Abstract
To evaluate the therapeutic efficacy of passive cellular immunotherapy for glioma, a total of 979 patients were assigned to the meta-analysis. PubMed and the Cochrane Central Register of Controlled Trials were searched initially from February 2018 and updated in April 2019. The overall survival (OS) rates and Karnofsky performance status (KPS) values of patients who underwent passive cellular immunotherapy were compared to those of patients who did not undergo immunotherapy. The proportion of survival rates was also evaluated in one group of clinical trials. Pooled analysis was performed with random- or fixed-effects models. Clinical trials of lymphokine-activated killer cells, cytotoxic T lymphocytes, autologous tumor-specific T lymphocytes, chimeric antigen receptor T cells, cytokine-induced killer cells, cytomegalovirus-specific T cells, and natural killer cell therapies were selected. Results showed that treatment of glioma with passive cellular immunotherapy was associated with a significantly improved 0.5-year OS (p = 0.003) as well as improved 1-, 1.5-, and 3-year OS (p ≤ 0.05). A meta-analysis of 206 patients in one group of clinical trials with 12-month follow-up showed that the overall pooled survival rate was 37.9% (p = 0.003). Analysis of KPS values demonstrated favorable results for the immunotherapy arm (p < 0.001). Thus, the present meta-analysis showed that passive cellular immunotherapy prolongs survival and improves quality of life for glioma patients, suggesting that it has some clinical benefits.
Collapse
Affiliation(s)
- Jun-Xia Cao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Wei-Jian Gao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Li-Hua Wu
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Zheng-Xu Wang
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China, e-mail:
| |
Collapse
|
8
|
Kwok D, Okada H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. J Neurooncol 2020; 147:281-295. [PMID: 32185647 PMCID: PMC7182069 DOI: 10.1007/s11060-020-03450-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma remains as the most common and aggressive primary adult brain tumor to date. Within the last decade, cancer immunotherapy surfaced as a broadly successful therapeutic approach for a variety of cancers. However, due to the neuroanatomical and immunosuppressive nature of malignant gliomas, conventional chemotherapy and radiotherapy treatments garner limited efficacy in patients with these tumors. The intricate structure of the blood brain barrier restricts immune accessibility into the tumor microenvironment, and malignant gliomas can activate various adaptive responses to subvert anticancer immune responses and reinstate an immunosuppressive milieu. Yet, evidence of lymphocyte infiltration within the brain and recent advancements made in cell engineering technologies implicate the vast potential in the future of neuro-oncological immunotherapy. Previous immunotherapy platforms have paved way to improved modalities, which includes but is not limited to personalized vaccines and chimeric antigen receptor T-cell therapy. This review will cover the various neuroanatomical and immunosuppressive features of central nervous system tumors and highlight the innovations made in T-cell based therapies to overcome the challenges presented by the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Darwin Kwok
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA.
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Cancer Immunotherapy Program, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Abstract
High-grade glioma is the most common primary brain tumor, with glioblastoma multiforme (GBM) accounting for 52% of all brain tumors. The current standard of care (SOC) of GBM involves surgery followed by adjuvant fractionated radiotherapy and chemotherapy. However, little progress has been made in extending overall survival, progression-free survival, and quality of life. Attempts to characterize and customize treatment of GBM have led to mitigating the deleterious effects of radiotherapy using hypofractionated radiotherapy, as well as various immunotherapies as a promising strategy for the incurable disease. A combination of radiotherapy and immunotherapy may prove to be even more effective than either alone, and preclinical evidence suggests that hypofractionated radiotherapy can actually prime the immune system to make immunotherapy more effective. This review addresses the complications of the current radiotherapy regimen, various methods of immunotherapy, and preclinical and clinical data from combined radioimmunotherapy trials.
Collapse
|
10
|
Abstract
BACKGROUND Despite advances in surgery, radiation therapy, and chemotherapy, only modest improvement has been achieved in the survival of patients with malignant gliomas. METHODS The authors review the immunologic aspects of gliomas, potential targets for therapy, and issues surrounding current immunotherapeutic strategies directed against malignant gliomas. RESULTS The blood-brain barrier and the purported immunological privilege of the brain are not necessarily insurmountable obstacles to effective immunotherapy for brain tumors. Preclinical studies suggest a number of potential therapeutic avenues. Translational studies offer the prospect of providing substantial new information about immunological trafficking in the nervous system and suggesting the most fruitful approaches to immunotherapy for malignant gliomas. CONCLUSIONS More effective adjuvant treatments for malignant gliomas are needed. The applicability of immunological approaches in the treatment of these tumors warrants continued study.
Collapse
|
11
|
McGranahan T, Li G, Nagpal S. History and current state of immunotherapy in glioma and brain metastasis. Ther Adv Med Oncol 2017; 9:347-368. [PMID: 28529551 PMCID: PMC5424864 DOI: 10.1177/1758834017693750] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/20/2017] [Indexed: 11/29/2022] Open
Abstract
Malignant brain tumors such as glioblastoma (GBM) and brain metastasis have poor prognosis despite conventional therapies. Successful use of vaccines and checkpoint inhibitors in systemic malignancy has increased the hope that immune therapies could improve survival in patients with brain tumors. Manipulating the immune system to fight malignancy has a long history of both modest breakthroughs and pitfalls that should be considered when applying the current immunotherapy approaches to patients with brain tumors. Therapeutic vaccine trials for GBM date back to the mid 1900s and have taken many forms; from irradiated tumor lysate to cell transfer therapies and peptide vaccines. These therapies were generally well tolerated without significant autoimmune toxicity, however also did not demonstrate significant clinical benefit. In contrast, the newer checkpoint inhibitors have demonstrated durable benefit in some metastatic malignancies, accompanied by significant autoimmune toxicity. While this toxicity was not unexpected, it exceeded what was predicted from pre-clinical studies and in many ways was similar to the prior trials of immunostimulants. This review will discuss the history of these studies and demonstrate that the future use of immune therapy for brain tumors will likely need a personalized approach that balances autoimmune toxicity with the opportunity for significant survival benefit.
Collapse
Affiliation(s)
- Tresa McGranahan
- Stanford Hospital and Clinics, Neurology, 300 Pasteur Drive, Stanford, CA 94305-2200, USA
| | - Gordon Li
- Stanford Hospital and Clinics, Neurosurgery, Stanford, CA, USA
| | - Seema Nagpal
- Stanford Hospital and Clinics, Neurology, Stanford, CA, USA
| |
Collapse
|
12
|
Bergstrom RT, Silverman DA, Chambers K, Kim JA. CD40 Monoclonal Antibody Activation of Antigen-Presenting Cells Improves Therapeutic Efficacy of Tumor-Specific T Cells. Otolaryngol Head Neck Surg 2016; 130:94-103. [PMID: 14726917 DOI: 10.1016/j.otohns.2003.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE: The goal of this study was to determine whether CD40 ligation of antigen presenting cells (APCs) enhances the anti-tumor effector function of tumor draining lymph node (TDLN) T lymphocytes in an adoptive immunotherapy model. STUDY DESIGN: MCA 205 TDLNs were culture activated both in the presence and absence of a stimulatory anti-CD40 monoclonal antibody (mAb) and effector cell phenotype, cytokine secretion in vitro and therapeutic efficacy in vivo were compared. RESULTS: Anti-CD40 mAb induced upregulation of APC cell surface activation markers that promoted generation of T cells that demonstrated an increase in tumor-specific IFN-gamma secretion and a statistically significant reduction in the number of pulmonary tumors (p< 0.01) after adoptive transfer. CONCLUSION: CD40 ligation of APCs in vitro results in the generation of T cells with enhanced effector function against established pulmonary tumors in vivo. SIGNIFICANCE: These findings have direct implications in the development of effective T cell-based immunotherapy of malignant conditions in human beings.
Collapse
|
13
|
Lundberg J, Jussing E, Liu Z, Meng Q, Rao M, Samén E, Grankvist R, Damberg P, Dodoo E, Maeurer M, Holmin S. Safety of Intra-Arterial Injection With Tumor-Activated T Cells to the Rabbit Brain Evaluated by MRI and SPECT/CT. Cell Transplant 2016; 26:283-292. [PMID: 27725029 DOI: 10.3727/096368916x693347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most severe form of malignant gliomas. The prognosis is poor with current combinations of pharmaceutical, radiotherapy, and surgical therapy. A continuous search for new treatments has therefore been ongoing for many years. Therapy with tumor-infiltrating lymphocytes (TILs) is a clinically promising strategy to treat various cancers, including GBM. An endovascular intra-arterial injection of TILs as a method of delivery may, instead of intravenous infusion, result in better retention of effector cells within the tumor. Prior to clinical trials of intra-arterial injections with any cells, preclinical safety data with special emphasis on embolic-ischemic events are necessary to obtain. We used native rabbits as a model for intra-arterial injections with routine clinical catheter material and a clinical angiography suite. We selectively infused a total dose of 20 million activated T cells at a cell concentration of 4,000 cells/μl over 8 min of injection time. The rabbits were evaluated for ischemic lesions by 9.4 T magnetic resonance imaging (MRI) (n = 6), and for tracking of injected cells, single-photon emission computed tomography/computed tomography (SPECT/CT) was used (n = 2). In this study, we show that we can selectively infuse activated T cells to a CNS volume of 3.5 cm3 (estimated from the volumetric MRI) without catastrophic embolic-ischemic adverse events. We had one adverse event with a limited basal ganglia infarction, probably due to catheter-induced mechanical occlusion of one of the lateral lenticulostriatal arteries. The cells pass through the native brain without leaving SPECT signals. The cells then, over the first hours, end up in the liver to a large extent and to a lesser degree by the spleen, pancreas, and kidneys. Virtually no uptake could be detected in the lungs. This indicates a difference in biodistribution as opposed to other cell types when infused intravenously.
Collapse
|
14
|
Effect of HSV-IL12 Loaded Tumor Cell-Based Vaccination in a Mouse Model of High-Grade Neuroblastoma. J Immunol Res 2016; 2016:2568125. [PMID: 27610392 PMCID: PMC5005549 DOI: 10.1155/2016/2568125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/18/2022] Open
Abstract
We designed multimodal tumor vaccine that consists of irradiated tumor cells infected with the oncolytic IL-12-expressing HSV-1 virus, M002. This vaccine was tested against the syngeneic neuroblastoma mouse model Neuro 2a injected into the right caudate nucleus of the immunocompetent A/J mice. Mice were vaccinated via intramuscular injection of multimodal vaccine or uninfected irradiated tumor cells at seven and 14 days after tumor establishment. While there was no survival difference between groups vaccinated with cell-based vaccine applied following tumor injection, a premunition prime/boost vaccination strategy produced a significant survival advantage in both groups and sustained immune response to an intracranial rechallenge of the same tumor. The syngeneic but unrelated H6 hepatocellular tumor cell line grew unrestricted in vaccinated mice, indicative of vaccine-mediated specific immunity to Neuro 2a tumors. Longitudinal analyses of tumor-infiltrating lymphocytes revealed a primary adaptive T cell response involving both CD4+ and CD8+ T cell subsets. Spleen cell mononuclear preparations from vaccinated mice were significantly more cytotoxic to Neuro 2a tumor cells than spleen cells from control mice as demonstrated in a four-hour in vitro cytotoxicity assay. These results strongly suggest that an irradiated whole cell tumor vaccine incorporating IL-12-expressing M002 HSV can produce a durable, specific immunization in a murine model of intracranial tumor.
Collapse
|
15
|
Abstract
INTRODUCTION Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. AREAS COVERED Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. EXPERT OPINION While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.
Collapse
Affiliation(s)
- Yi Lin
- a Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| | - Hideho Okada
- a Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
16
|
Hodges TR, Ferguson SD, Heimberger AB. Immunotherapy in glioblastoma: emerging options in precision medicine. CNS Oncol 2016; 5:175-86. [PMID: 27225028 DOI: 10.2217/cns-2016-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy for glioblastoma (GBM) provides a unique opportunity for targeted therapies for each patient, addressing individual variability in genes, tumor biomarkers and clinical profile. As immunotherapy has the potential to specifically target tumor cells with minimal risk to normal tissue, several immunotherapeutic strategies are currently being evaluated in clinical trials in GBM. With the Precision Medicine Initiative being announced in the President's State of the Union Address in 2016, GBM immunotherapy provides a useful platform for changing the landscape in treating patients with difficult disease.
Collapse
Affiliation(s)
- Tiffany R Hodges
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Current and future strategies for treatment of glioma. Neurosurg Rev 2016; 40:1-14. [PMID: 27085859 DOI: 10.1007/s10143-016-0709-8] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 01/12/2023]
Abstract
Gliomas are one of the most common types of primary brain tumors and have remained particularly challenging to treat. This review illustrates a multidisciplinary approach to the treatment of glioma and glioblastoma. We will review current advances in surgical approaches, novel imaging techniques, advanced molecular characterization of tumors and translational efforts for treatment. We will focus on current clinical trials as well as the pursuit of personalized or precision therapy. We will also comment on the importance of both quality of life of our patients and their care givers.
Collapse
|
18
|
Abstract
Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.
Collapse
Affiliation(s)
- Katalin Eder
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary.
| | - Bernadette Kalman
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary
- University of Pecs, Pecs, Hungary
| |
Collapse
|
19
|
Immunobiology and immunotherapeutic targeting of glioma stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:139-66. [PMID: 25895711 DOI: 10.1007/978-3-319-16537-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For decades human brain tumors have confounded our efforts to effectively manage and treat patients. In adults, glioblastoma multiforme is the most common malignant brain tumor with a patient survival of just over 14 months. In children, brain tumors are the leading cause of solid tumor cancer death and gliomas account for one-fifth of all childhood cancers. Despite advances in conventional treatments such as surgical resection, radiotherapy, and systemic chemotherapy, the incidence and mortality rates for gliomas have essentially stayed the same. Furthermore, research efforts into novel therapeutics that initially appeared promising have yet to show a marked benefit. A shocking and somewhat disturbing view is that investigators and clinicians may have been targeting the wrong cells, resulting in the appearance of the removal or eradication of patient gliomas only to have brain cancer recurrence. Here we review research progress in immunotherapy as it pertains to glioma treatment and how it can and is being adapted to target glioma stem cells (GSCs) as a means of dealing with this potential paradigm.
Collapse
|
20
|
Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, Fritsch EF, Curry WT, Sampson JH, Dranoff G. Immunotherapy advances for glioblastoma. Neuro Oncol 2014; 16:1441-58. [PMID: 25190673 DOI: 10.1093/neuonc/nou212] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for patients with glioblastoma, the most common high-grade primary CNS tumor, remains poor despite multiple therapeutic interventions including intensifying cytotoxic therapy, targeting dysregulated cell signaling pathways, and blocking angiogenesis. Exciting, durable clinical benefits have recently been demonstrated for a number of other challenging cancers using a variety of immunotherapeutic approaches. Much modern research confirms that the CNS is immunoactive rather than immunoprivileged. Preliminary results of clinical studies demonstrate that varied vaccine strategies have achieved encouraging evidence of clinical benefit for glioblastoma patients, although multiple variables will likely require systematic investigation before optimal outcomes are realized. Initial preclinical studies have also revealed promising results with other immunotherapies including cell-based approaches and immune checkpoint blockade. Clinical studies to evaluate a wide array of immune therapies for malignant glioma patients are being rapidly developed. Important considerations going forward include optimizing response assessment and identifiying correlative biomarkers for predict therapeutic benefit. Finally, the potential of complementary combinatorial immunotherapeutic regimens is highly exciting and warrants expedited investigation.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Gordon Freeman
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Catherine Wu
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - E Antonio Chiocca
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Kai W Wucherpfennig
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Edward F Fritsch
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - William T Curry
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - John H Sampson
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Glenn Dranoff
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| |
Collapse
|
21
|
A new hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J Immunol Res 2014; 2014:326545. [PMID: 25009822 PMCID: PMC4070364 DOI: 10.1155/2014/326545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy emerged as a promising therapeutic approach to highly incurable malignant gliomas due to tumor-specific cytotoxicity, minimal side effect, and a durable antitumor effect by memory T cells. But, antitumor activities of endogenously activated T cells induced by immunotherapy such as vaccination are not sufficient to control tumors because tumor-specific antigens may be self-antigens and tumors have immune evasion mechanisms to avoid immune surveillance system of host. Although recent clinical results from vaccine strategy for malignant gliomas are encouraging, these trials have some limitations, particularly their failure to expand tumor antigen-specific T cells reproducibly and effectively. An alternative strategy to overcome these limitations is adoptive T cell transfer therapy, in which tumor-specific T cells are expanded ex vivo rapidly and then transferred to patients. Moreover, enhanced biologic functions of T cells generated by genetic engineering and modified immunosuppressive microenvironment of host by homeostatic T cell expansion and/or elimination of immunosuppressive cells and molecules can induce more potent antitumor T cell responses and make this strategy hold promise in promoting a patient response for malignant glioma treatment. Here we will review the past and current progresses and discuss a new hope in adoptive T cell therapy for malignant gliomas.
Collapse
|
22
|
Lowenstein PR, Castro MG. The value of EGFRvIII as the target for glioma vaccines. Am Soc Clin Oncol Educ Book 2014:42-50. [PMID: 24857059 DOI: 10.14694/edbook_am.2014.34.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant brain tumors continue to be rapidly progressive and resistant to most treatments. Even with state-of-the-art standard of care (surgery, chemotherapy, and radiotherapy) long-term survival in the last 80 years improved from 6 to 15 months. Improved imaging has also likely contributed to prolonged survival. Immunotherapy for cancer dates back to publications from 1742. The central idea is that the immune system can detect and eliminate foreign antigens, either from infectious agents or tumors, and thus could be therapeutic in brain tumors. Recent introduction of immune modulators of cytotoxic T-lymphocyte antigen (CTLA)-4 and programmed cell death 1/programmed cell death 1 ligand (PD-1/PDL1) add much excitement to this field. For brain tumors, there are several ongoing phase I and III trials to determine whether any of the current immunotherapy approaches can demonstrate activity in randomized, controlled double-blinded trials-with ongoing and historical trials presented in tables within the manuscript. Immunotherapy has explored the use of various types of antigens (obtained either from homogenates of patients' tumors or synthetically produced), and various immunization procedures and adjuvants. Glioma antigens have also been isolated from the patients' own tumor, then produced in vitro (for example the glioma antigen EGFRvIII), and used to immunize patients directly, or with carriers such as dendritic cells with or without additional adjuvants. Several of these practical approaches are currently in phase III trials. Remaining challenges are how to increase the percentage of complete responses and response duration, and the enigmatic absence of an almost total lack of adverse brain inflammation following immunization of brain tumor patients, as has been observed following immunization against brain antigens in other diseases, such as Alzheimer's Disease.
Collapse
Affiliation(s)
- Pedro R Lowenstein
- From the Department of Neurosurgery and Cell and Developmental Biology, Graduate Program in Immunology, and Graduate Program in Cancer Biology, The University of Michigan Comprehensive Cancer Center, The University of Michigan School of Medicine, Ann Arbor, MI
| | - Maria G Castro
- From the Department of Neurosurgery and Cell and Developmental Biology, Graduate Program in Immunology, and Graduate Program in Cancer Biology, The University of Michigan Comprehensive Cancer Center, The University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
23
|
Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int 2014; 5:64. [PMID: 24991467 PMCID: PMC4078454 DOI: 10.4103/2152-7806.132138] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system (CNS). Despite the proven benefit of surgical resection and aggressive treatment with chemo- and radiotherapy, the prognosis remains very poor. Recent advances of our understanding of the biology and pathophysiology of GBM have allowed the development of a wide array of novel therapeutic approaches, which have been developed. These novel approaches include molecularly targeted therapies, immunotherapies, and gene therapy. METHODS We offer a brief review of the current standard of care, and a survey of novel therapeutic approaches for treatment of GBM. RESULTS Despite promising results in preclinical trials, many of these therapies have demonstrated limited therapeutic efficacy in human clinical trials. Thus, although survival of patients with GBM continues to slowly improve, treatment of GBM remains extremely challenging. CONCLUSION Continued research and development of targeted therapies, based on a detailed understanding of molecular pathogenesis can reasonably be expected to yield improved outcomes for patients with GBM.
Collapse
Affiliation(s)
- Taylor A Wilson
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Division of Oncology, New York University School of Medicine, NY, USA
| | - David H Harter
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| |
Collapse
|
24
|
Reardon DA, Wucherpfennig KW, Freeman G, Wu CJ, Chiocca EA, Wen PY, Curry WT, Mitchell DA, Fecci PE, Sampson JH, Dranoff G. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013; 12:597-615. [PMID: 23750791 DOI: 10.1586/erv.13.41] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Outcome for glioblastoma (GBM), the most common primary CNS malignancy, remains poor. The overall survival benefit recently achieved with immunotherapeutics for melanoma and prostate cancer support evaluation of immunotherapies for other challenging cancers, including GBM. Much historical dogma depicting the CNS as immunoprivileged has been replaced by data demonstrating CNS immunocompetence and active interaction with the peripheral immune system. Several glioma antigens have been identified for potential immunotherapeutic exploitation. Active immunotherapy studies for GBM, supported by preclinical data, have focused on tumor lysate and synthetic antigen vaccination strategies. Results to date confirm consistent safety, including a lack of autoimmune reactivity; however, modest efficacy and variable immunogenicity have been observed. These findings underscore the need to optimize vaccination variables and to address challenges posed by systemic and local immunosuppression inherent to GBM tumors. Additional immunotherapy strategies are also in development for GBM. Future studies may consider combinatorial immunotherapy strategies with complimentary actions.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bielamowicz K, Khawja S, Ahmed N. Adoptive cell therapies for glioblastoma. Front Oncol 2013; 3:275. [PMID: 24273748 PMCID: PMC3823029 DOI: 10.3389/fonc.2013.00275] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/25/2013] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts.
Collapse
Affiliation(s)
- Kevin Bielamowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA ; Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|
26
|
Badhiwala J, Decker WK, Berens ME, Bhardwaj RD. Clinical trials in cellular immunotherapy for brain/CNS tumors. Expert Rev Neurother 2013; 13:405-24. [PMID: 23545055 DOI: 10.1586/ern.13.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade gliomas are the most common type of primary malignant brain/CNS tumor. There have been only modest advances in surgical techniques, radiotherapy and chemotherapy for high-grade gliomas over the past several decades. None of these have provided a major improvement in survival for patients. Recently, immunotherapy has been explored for the treatment of high-grade gliomas. Immunotherapy capitalizes on the specificity of the host immune system to selectively target tumor cells for destruction, while sparing normal brain parenchyma, thus making it a particularly attractive option. This article provides a comprehensive review of published clinical trials evaluating cellular immunotherapy in primary brain/CNS tumors.
Collapse
Affiliation(s)
- Jetan Badhiwala
- Michael G DeGroote School of Medicine, McMaster University, 1280 Main Street W, Hamilton, ON, L8S 4K1, Canada
| | | | | | | |
Collapse
|
27
|
Jackson C, Ruzevick J, Brem H, Lim M. Vaccine strategies for glioblastoma: progress and future directions. Immunotherapy 2013; 5:155-67. [PMID: 23413907 DOI: 10.2217/imt.12.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent advances in glioblastoma therapy have led to optimism that more effective therapies will improve outcomes. Immunotherapy is a promising approach that has demonstrated the potential to eradicate cancer cells with cellular-level accuracy while minimizing damage to surrounding healthy tissue. Several vaccination strategies have been evaluated for activity against glioblastoma in clinical trials. These include peptide vaccines, polyvalent dendritic cell vaccines, heat shock protein vaccines and adoptive immunotherapy. In this review, we highlight clinical trials representative of each of these approaches and discuss strategies for integrating these therapies into routine patient care.
Collapse
Affiliation(s)
- Christopher Jackson
- The Johns Hopkins Hospital, Department of Neurosurgery, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
28
|
Glioma stem cells and immunotherapy for the treatment of malignant gliomas. ISRN ONCOLOGY 2013; 2013:673793. [PMID: 23762610 PMCID: PMC3671309 DOI: 10.1155/2013/673793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/27/2013] [Indexed: 02/06/2023]
Abstract
Stem cell research has led to the discovery of glioma stem cells (GSCs), and because these cells are resistant to chemotherapy and radiotherapy, analysis of their properties has been rapidly pursued for targeted treatment of malignant glioma. Recent studies have also revealed complex crosstalk between GSCs and their specialized environment (niche). Therefore, targeting not only GSCs but also their niche may be a principle for novel therapies of malignant glioma. One possible novel strategy for targeting GSCs and their niches is immunotherapy with different antitumor mechanism(s) from those of conventional therapy. Recent clinical studies of immunotherapy using peptide vaccines and antibodies have shown promising results. This review describes the recent findings related to GSCs and their niches, as well as immunotherapies for glioma, followed by discussion of immunotherapies that target GSCs for the treatment of malignant glioma.
Collapse
|
29
|
Engineered drug resistant γδ T cells kill glioblastoma cell lines during a chemotherapy challenge: a strategy for combining chemo- and immunotherapy. PLoS One 2013; 8:e51805. [PMID: 23326319 PMCID: PMC3543433 DOI: 10.1371/journal.pone.0051805] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Classical approaches to immunotherapy that show promise in some malignancies have generally been disappointing when applied to high-grade brain tumors such as glioblastoma multiforme (GBM). We recently showed that ex vivo expanded/activated γδ T cells recognize NKG2D ligands expressed on malignant glioma and are cytotoxic to glioma cell lines and primary GBM explants. In addition, γδ T cells extend survival and slow tumor progression when administered to immunodeficient mice with intracranial human glioma xenografts. We now show that temozolomide (TMZ), a principal chemotherapeutic agent used to treat GBM, increases the expression of stress-associated NKG2D ligands on TMZ-resistant glioma cells, potentially rendering them vulnerable to γδ T cell recognition and lysis. TMZ is also highly toxic to γδ T cells, however, and to overcome this cytotoxic effect γδ T cells were genetically modified using a lentiviral vector encoding the DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase (AGT) from the O(6)-methylguanine methyltransferase (MGMT) cDNA, which confers resistance to TMZ. Genetic modification of γδ T cells did not alter their phenotype or their cytotoxicity against GBM target cells. Importantly, gene modified γδ T cells showed greater cytotoxicity to two TMZ resistant GBM cell lines, U373(TMZ-R) and SNB-19(TMZ-R) cells, in the presence of TMZ than unmodified cells, suggesting that TMZ exposed more receptors for γδ T cell-targeted lysis. Therefore, TMZ resistant γδ T cells can be generated without impairing their anti-tumor functions in the presence of high concentrations of TMZ. These results provide a mechanistic basis for combining chemotherapy and γδ T cell-based drug resistant cellular immunotherapy to treat GBM.
Collapse
|
30
|
Nagasawa DT, Fong C, Yew A, Spasic M, Garcia HM, Kruse CA, Yang I. Passive immunotherapeutic strategies for the treatment of malignant gliomas. Neurosurg Clin N Am 2012; 23:481-95. [PMID: 22748660 DOI: 10.1016/j.nec.2012.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This review provides historical and recent perspectives related to passive immunotherapy for high-grade gliomas. The authors discuss approaches that use lymphokine-activated killer cells, cytotoxic T lymphocytes, and monoclonal antibodies.
Collapse
Affiliation(s)
- Daniel T Nagasawa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
The outcome for patients with the most common primary brain tumor, glioblastoma multiforme (GBM), remains poor. Several immunotherapeutic approaches are actively being pursued including antibodies and cell-based therapies. While the blood-brain barrier protects brain tumor cells from therapeutic antibodies, immune cells have the ability to traverse the blood-brain barrier and migrate into GBM tumors to exert their therapeutic function. Results of Phase I clinical studies with vaccines to induce GBM-specific T cells are encouraging and Phase II clinical trials are in progress. Nonvaccine-based cell therapy for GBM has been actively explored over the last four decades. Here we will review past clinical experience with adoptive cell therapies for GBM and summarize current strategies on how to improve these approaches.
Collapse
Affiliation(s)
- K H Chow
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
33
|
Cellular-based immunotherapies for patients with glioblastoma multiforme. Clin Dev Immunol 2012; 2012:764213. [PMID: 22474481 PMCID: PMC3299309 DOI: 10.1155/2012/764213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022]
Abstract
Treatment of patients with glioblastoma multiforme (GBM) remains to be a challenge with a median survival of 14.6 months following diagnosis. Standard treatment options include surgery, radiation therapy, and systemic chemotherapy with temozolomide. Despite the fact that the brain constitutes an immunoprivileged site, recent observations after immunotherapies with lysate from autologous tumor cells pulsed on dendritic cells (DCs), peptides, protein, messenger RNA, and cytokines suggest an immunological and even clinical response from immunotherapies. Given this plethora of immunomodulatory therapies, this paper gives a structure overview of the state-of-the art in the field. Particular emphasis was also put on immunogenic antigens as potential targets for a more specific stimulation of the immune system against GBM.
Collapse
|
34
|
Ikeda H, Shiku H. Antigen-receptor gene-modified T cells for treatment of glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:202-15. [PMID: 22639170 DOI: 10.1007/978-1-4614-3146-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunological effector cells and molecules have been shown to access intracranial tumor sites despite the existence of blood brain barrier (BBB) or immunosuppressive mechanisms associated with brain tumors. Recent progress in T-cell biology and tumor immunology made possible to develop strategies of tumor-associated antigen-specific immunotherapeutic approaches such as vaccination with defined antigens and adoptive T-cell therapy with antigen-specific T cells including gene-modified T cells for the treatment of patients with brain tumors. An array of recent reports on the trials of active and passive immunotherapy for patients with brain tumors have documented safety and some preliminary clinical efficacy, although the ultimate judgment for clinical benefits awaits rigorous evaluation in trials of later phases. Nevertheless, treatment with lymphocytes that are engineered to express tumor-specific receptor genes is a promising immunotherapy against glioma, based on the significant efficacy reported in the trials for patients with other types of malignancy. Overcoming the relative difficulty to apply immunotherapeutic approach to intracranial region, current advances in the understanding of human tumor immunology and the gene-therapy methodology will address the development of effective immunotherapy of brain tumors.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.
| | | |
Collapse
|
35
|
Abstract
Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma.
Collapse
Affiliation(s)
- Alissa A. Thomas
- Department of Neurology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Marc S. Ernstoff
- Department of Medicine, Section of Hematology/Oncology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Medical Oncology Immunotherapy Program, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Camilo E. Fadul
- Department of Medicine, Section of Hematology/Oncology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Department of Neurology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Medical Oncology Immunotherapy Program, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Neuro-oncology Program, Norris Cotton Cancer Center, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| |
Collapse
|
36
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
37
|
Kawai K, Hayashi H, Ozaki Y, Saijo K, Liu SQ, Akaza H, Ohno T. Assessment of the number of local cytotoxic T lymphocytes required for degradation of micrometer-size tumor spheroids. Cytotechnology 2011; 37:31-40. [PMID: 19002912 DOI: 10.1023/a:1016139010531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adoptive immunotherapy with human cytotoxic T lymphocytes (CTL) is a promising cancer treatment. Previously we showed that human CTLs against various types of tumors can be efficiently produced by coculturing peripheral blood cells with target cells. The aims of this study were to simulate the interaction of CTLs and micrometer-size tumor tissues in vitro and to assess the required number of CTLs at local tumor sites for degradation of a tumor. Allogeneic CTLs against a human transitional cell carcinoma cell line and autologous CTLs against a renal cell carcinoma cell derived from a surgical specimen were generated. The cytotoxic activities of CTLs against tumor cells in monolayer culture and tumor spheroids formed in U-bottom 96-well culture plates were assessed. Both allogeneic and autologous CTLs showed greater destructive activity than lymphokine activated killer (LAK) cells against target tumor spheroids. CTLs inoculated at E/T ratios of 0.1 to 1 coexisted with the tumor spheroid for 5 to 6 days and then increased in number with apparently lethal activity against the tumor spheroid. In contrast to CTLs, the increase in LAK cell numbers was scarcely observed, and the proliferated LAK cells did not show cytotoxicity against the tumor spheroid. These observations suggest that, when a small number of CTLs reach a local tumor site, they can destroy micrometer-size tumors after considerable local proliferation.
Collapse
Affiliation(s)
- K Kawai
- The Institute of Physical and Chemical Research (RIKEN), Koyadai, RIKEN Cell Bank, Tsukuba Science City, Ibaraki, 305, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Cimini E, Piacentini P, Sacchi A, Gioia C, Leone S, Lauro GM, Martini F, Agrati C. Zoledronic acid enhances Vδ2 T-lymphocyte antitumor response to human glioma cell lines. Int J Immunopathol Pharmacol 2011; 24:139-48. [PMID: 21496396 DOI: 10.1177/039463201102400116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain tumor in humans, responds modestly to treatment: most patients survive less than one year after diagnosis, despite both classical and innovative treatment approaches. A recent paper focused on γδ T-cell response in GBM patients, suggesting the application of an immunomodulating strategy based on γδ T-cells which is already in clinical trials for other tumors. Human Vγ2 T-cells recognize changes in the mevalonate metabolic pathway of transformed cells by activating cytotoxic response, and by cytokine and chemokine release. Interestingly, this activation may also be induced in vivo by drugs, such as zoledronic acid, that induce the accumulation of Vγ2 T-cell ligand Isopentenyl-pyrophosphate by blocking the farnesyl pyrophosphate synthase enzyme. The aim of our work is to confirm whether bisphosphonate treatment would make glioma cell lines more susceptible to lysis by in vitro expanded γδ T-cells, improving their antitumor activity. We expanded in vitro human Vγ2 T-cells by phosphoantigen stimulation and tested their activity against glioma cell lines. Co-culture with glioma cells induced Vγ2 T-cell differentiation in effector/memory cells, killing glioma cells by the release of perforin. Interestingly, glioma cells were directly affected by zoledronic acid; moreover, treatment increased their activating ability on Vγ2 T-cells, inducing an effective antitumor cytotoxic response. Taken together, our results show that aminobisphosphonate drugs may play a dual role against GBM, by directly affecting tumor cells, and by enhancing the antitumor response of Vγ2 T-cells. Our results confirm the practicability of this approach as a new immunotherapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- E Cimini
- National Institute for Infectious Diseases- Lazzaro Spallanzani, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bryant NL, Gillespie GY, Lopez RD, Markert JM, Cloud GA, Langford CP, Arnouk H, Su Y, Haines HL, Suarez-Cuervo C, Lamb LS. Preclinical evaluation of ex vivo expanded/activated γδ T cells for immunotherapy of glioblastoma multiforme. J Neurooncol 2011; 101:179-88. [PMID: 20532954 DOI: 10.1007/s11060-010-0245-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/16/2010] [Indexed: 12/15/2022]
Abstract
We have previously shown that expanded/activated γδ T cells from healthy donors are cytotoxic to GBM cell lines and primary GBM explants. In this report, we examined the therapeutic effect of intracranial infusion of expanded/activated γδ T cells on human minimal and established U251 tumor xenografts in athymic nude mice. Immunohistochemistry was used to determine the presence of NKG2D ligands on cell lines and tumors, and blocking studies were used to determine the effect of these ligands on γδ T cell recognition. Expanded/activated γδ T cells were prepared by 18-day culture in RPMI, human serum (HS), anti-CD2, IL-12, IFN-γ, and OKT-3. Anti-GBM activity of the cell product was assessed using in vitro cytotoxicity assays against the GBM cell line U251MG in suspension and in adherent culture. Ex vivo expanded/activated γδ T cells were of the effector/memory phenotype, expressed Th1 cytokines, and effectively killed U251 cells in vitro. Xenografts were prepared using a U251 cell line following transfection with a firefly luciferase gene to monitor tumor progression. Mice treated with γδ T cells showed slower progression of both new and established GBM xenografts versus mice that received vehicle only as determined by photon emission over time. Median survival was improved in all γδ T cell treated groups between 32 and 50 days by Kaplan-Meier analysis. U251 cells expressed ULBP-2 and ULBP-3, although blocking of these reduced in vitro cytotoxicity of γδ T cells to U251MG by only 33 and 25%, respectively. These studies show that expanded/activated γδ T cells can mediate killing of new or established GBM xenografts, reduce tumor progression, and constitute a potentially effective novel immunotherapeutic strategy against GBM.
Collapse
Affiliation(s)
- Nichole L Bryant
- Departments of Pediatrics, School of Medicine, University of Alabama at Birmingham, Suite 541 Tinsley Harrison Tower, 1530 Third Avenue South, 1900 University Blvd, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hickey MJ, Malone CC, Erickson KL, Jadus MR, Prins RM, Liau LM, Kruse CA. Cellular and vaccine therapeutic approaches for gliomas. J Transl Med 2010; 8:100. [PMID: 20946667 PMCID: PMC2964608 DOI: 10.1186/1479-5876-8-100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022] Open
Abstract
Despite new additions to the standard of care therapy for high grade primary malignant brain tumors, the prognosis for patients with this disease is still poor. A small contingent of clinical researchers are focusing their efforts on testing the safety, feasibility and efficacy of experimental active and passive immunotherapy approaches for gliomas and are primarily conducting Phase I and II clinical trials. Few trials have advanced to the Phase III arena. Here we provide an overview of the cellular therapies and vaccine trials currently open for patient accrual obtained from a search of http://www.clinicaltrials.gov. The search was refined with terms that would identify the Phase I, II and III immunotherapy trials open for adult glioma patient accrual in the United States. From the list, those that are currently open for patient accrual are discussed in this review. A variety of adoptive immunotherapy trials using ex vivo activated effector cell preparations, cell-based and non-cell-based vaccines, and several combination passive and active immunotherapy approaches are discussed.
Collapse
Affiliation(s)
- Michelle J Hickey
- The Joan S, Holmes Memorial Biotherapeutics Research Laboratory, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010; 2010. [PMID: 20953324 PMCID: PMC2952949 DOI: 10.1155/2010/689171] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/13/2010] [Accepted: 08/27/2010] [Indexed: 12/22/2022]
Abstract
High grade gliomas (HGG) including glioblastomas (GBM) are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients.
Collapse
|
42
|
Autologous tumor cell vaccination plus infusion of GM-CSF by a programmable pump in the treatment of recurrent malignant gliomas. J Clin Neurosci 2010; 17:842-8. [DOI: 10.1016/j.jocn.2009.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 11/20/2022]
|
43
|
Abstract
Almost all individuals diagnosed with glioblastoma multiforme (GBM) will die of their disease as no effective therapies exist. Clearly, novel approaches to this problem are needed. Unlike the adaptive alphabeta T cell-mediated immune response, which requires antigen processing and MHC-restricted peptide display by antigen-presenting cells, gammadelta T cells can broadly recognize and immediately respond to a variety of MHC-like stress-induced self antigens, many of which are expressed on human GBM cells. Until now, there has been little progress toward clinical application, although several investigators have recently published clinically approvable methods for large-scale ex vivo expansion of functional gammadelta T cells for therapeutic purposes. This review discusses the biology of gammadelta T cells with respect to innate immunotherapy of cancer with a focus on GBM, and explores graft engineering techniques in development for the therapeutic use of gammadelta T cells.
Collapse
|
44
|
Orive G, Ali OA, Anitua E, Pedraz JL, Emerich DF. Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochim Biophys Acta Rev Cancer 2010; 1806:96-107. [PMID: 20406668 DOI: 10.1016/j.bbcan.2010.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/07/2010] [Accepted: 04/11/2010] [Indexed: 01/01/2023]
Abstract
Treating malignant brain tumors represents one of the most formidable challenges in oncology. Contemporary treatment of brain tumors has been hampered by limited drug delivery across the blood-brain barrier (BBB) to the tumor bed. Biomaterials are playing an increasingly important role in developing more effective brain tumor treatments. In particular, polymer (nano)particles can provide prolonged drug delivery directly to the tumor following direct intracerebral injection, by making them physiochemically able to cross the BBB to the tumor, or by functionalizing the material surface with peptides and ligands allowing the drug-loaded material to be systemically administered but still specifically target the tumor endothelium or tumor cells themselves. Biomaterials can also serve as targeted delivery devices for novel therapies including gene therapy, photodynamic therapy, anti-angiogenic and thermotherapy. Nanoparticles also have the potential to play key roles in the diagnosis and imaging of brain tumors by revolutionizing both preoperative and intraoperative brain tumor detection, allowing early detection of pre-cancerous cells, and providing real-time, longitudinal, non-invasive monitoring/imaging of the effects of treatment. Additional efforts are focused on developing biomaterial systems that are uniquely capable of delivering tumor-associated antigens, immunotherapeutic agents or programming immune cells in situ to identify and facilitate immune-mediated tumor cell killing. The continued translation of current research into clinical practice will rely on solving challenges relating to the pharmacology of nanoparticles but it is envisioned that novel biomaterials will ultimately allow clinicians to target tumors and introduce multiple, pharmaceutically relevant entities for simultaneous targeting, imaging, and therapy in a unique and unprecedented manner.
Collapse
Affiliation(s)
- G Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
| | | | | | | | | |
Collapse
|
45
|
Moviglia GA, Carrizo AG, Varela G, Gaeta CA, Paes de Lima A, Farina P, Molina H. Preliminary report on tumor stem cell/B cell hybridoma vaccine for recurrent glioblastoma multiforme. Hematol Oncol Stem Cell Ther 2010; 1:3-13. [PMID: 20063522 DOI: 10.1016/s1658-3876(08)50054-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM), the most aggressive glioma, presents with a rapid evolution and relapse within the first year, which is attributed to the persistence of tumor stem cells (TSC) and the escape of immune surveillance. Mixed leukocyte culture (MLC) cytoimplant has been shown to function as a powerful intratumor pro-inflammatory cytokine pump. Tumor B-cell hybridoma (TBH) vaccines have been shown to function as antigen-presenting cells. We evaluated the toxicity and efficiency of each treatment alone and in combination. PATIENTS AND METHODS In an open study, 12 consecutive patients were evenly divided into 3 groups, each group receiving 3 different treatments. Patients in Group 1 were treated, after diagnosis, with debulking surgery (DS)+radiotherapy (Rx), and after the first relapse underwent DS+MLC treatment. Patients in Group 2 were similarly treated but after the first relapse underwent DS+MLC+TBH. Finally, patients in Group 3 were similarly treated but after the first relapse underwent DS+TBH. Nestin PAP stain assessed TSC participation in TBH. RESULTS Treatment with MLC had strong and rapid therapeutic effects, but was limited in duration and induced various degrees of brain inflammation. Treatment with MLC+TBH acted synergistically, provoking a rapid, strong and lasting therapeutic response but also generating different degrees of brain inflammation. A lasting therapeutic effect without generating high degrees of brain inflammation occurred in patients treated with TBH vaccine alone. CONCLUSION TSC vaccine consisting of TBH alone seems to have potent adjuvant reactions overcoming both persistence of tumor stem cells and immune escape of GBM without provoking an encephalitic reaction.
Collapse
|
46
|
Han SJ, Kaur G, Yang I, Lim M. Biologic Principles of Immunotherapy for Malignant Gliomas. Neurosurg Clin N Am 2010; 21:1-16. [DOI: 10.1016/j.nec.2009.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Ali OA, Mooney DJ. Immunologically Active Biomaterials for Cancer Therapy. Curr Top Microbiol Immunol 2010; 344:279-97. [DOI: 10.1007/82_2010_69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Donson AM, Birks DK, Barton VN, Wei Q, Kleinschmidt-DeMasters BK, Handler MH, Waziri AE, Wang M, Foreman NK. Immune Gene and Cell Enrichment Is Associated with a Good Prognosis in Ependymoma. THE JOURNAL OF IMMUNOLOGY 2009; 183:7428-40. [DOI: 10.4049/jimmunol.0902811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Thomas DL, Kim M, Bowerman NA, Narayanan S, Kranz DM, Schreiber H, Roy EJ. Recurrence of Intracranial Tumors following Adoptive T Cell Therapy Can Be Prevented by Direct and Indirect Killing Aided by High Levels of Tumor Antigen Cross-Presented on Stromal Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:1828-37. [PMID: 19592642 DOI: 10.4049/jimmunol.0802322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Elimination of peripheral tumors by adoptively transferred tumor-specific T cells may require killing of cancer cells and tumor stromal cells. Tumor Ags are cross-presented on stromal cells, resulting in direct cytotoxic T cell (CTL) killing of both Ag-expressing cancer cells and stromal cells. Indirect killing of Ag loss variant cells also occurs. We show here that similar processes occur in a brain tumor stromal environment. We used murine cancer cell lines that express high or low levels of a peptide Ag, SIYRYYGL (SIY), recognized by transgenic 2C CD8(+) T cells. The two cell lines are killed with equivalent efficiency by 2C T cells in vitro. Following adoptive transfer of 2C T cells into mice with established SIY-Hi or SIY-Lo brain tumors, tumors of both types regressed, but low-Ag-expressing tumors recurred. High-Ag-expressing tumors contained CD11b(+) cells cross-presenting SIY peptide and were completely eliminated by 2C T cells. To further test the role of cross-presentation, RAG1(-/-) H-2(b) mice were infused with H-2(k) tumor cells expressing high levels of SIY peptide. Adoptively transferred 2C T cells are able to kill cross-presenting H-2(b) stromal cells but not H-2(k) tumor cells. In peripheral models, this paradigm led to a small static tumor. In the brain, activated 2C T cells were able to kill cross-presenting CD11b(+) cells and completely eliminate the H-2(k) tumors in most mice. Targeting brain tumor stroma or increasing Ag shedding from tumor cells to enhance cross-presentation may improve the clinical success of T cell adoptive therapies.
Collapse
Affiliation(s)
- Diana L Thomas
- University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pan D, Wei X, Liu M, Feng S, Tian X, Feng X, Zhang X. Adenovirus mediated transfer of p53, GM-CSF and B7-1 suppresses growth and enhances immunogenicity of glioma cells. Neurol Res 2009; 32:502-9. [PMID: 19589203 DOI: 10.1179/174313209x455736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Malignant gliomas are good targets for gene therapy because they have been proven incurable with conventional treatments. However, malignant gliomas are genetically and physiologically highly heterogeneous, and current gene therapy interventions have been designed to target only a few variations of this kind of disease. Hence, we developed a combined gene therapy approach using a recombinant adenovirus carrying human wild-type p53 (WT-p53), granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7-1 genes (designated BB-102) to combat the disease. METHODS Human malignant glioma cells U251 and U87 were transduced with BB-102. Expression of WT-p53, GM-CSF and B7-1 genes were determined by Western blot, enzyme linked immunosorbent assay and flow cytometric analysis, respectively. Growth rates were determined by serial cell counts. Apoptosis was detected by flow cytometric analysis. Proliferation of autologous peripheral blood lymphocytes (PBLs) and cytotoxicity against primary glioma cells were assessed by cell proliferation and cytotoxicity assay kits, respectively. RESULTS By the transduction of BB-102, high expression levels of the three exogenesis genes were detected in glioma cells. Cell growth was inhibited and apoptosis was induced. Significant proliferation of autologous PBLs and specific cytotoxicity against primary glioma cells were also induced by the infection of BB-102 in vitro, with the effect being more evident than that of Ad-p53. CONCLUSION These results suggest that glioma cell vaccination co-transferred with p53, GM-CSF and B7-1 genes may be a feasible and effective immunotherapeutic approach in glioma treatments.
Collapse
Affiliation(s)
- Dongsheng Pan
- Institute of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|