1
|
Zvolanek KM, Moore JE, Jarvis K, Moum SJ, Bright MG. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590312. [PMID: 38746187 PMCID: PMC11092525 DOI: 10.1101/2024.04.26.590312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n=12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.
Collapse
Affiliation(s)
- Kristina M. Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Jackson E. Moore
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly Jarvis
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah J. Moum
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Koizumi S, Kin T, Sekine T, Kiyofuji S, Umekawa M, Saito N. Intracranial aneurysm stiffness assessment using 4D Flow MRI. J Neuroradiol 2024; 51:101221. [PMID: 39306272 DOI: 10.1016/j.neurad.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Although arterial stiffness is known as a biomarker for cardiovascular events and stroke, there is limited information in the literature regarding the stiffness of intracranial aneurysms. In this study, we aim to assess the stiffness of intracranial aneurysms using 4D Flow MRI. METHODS A total of 27 aneurysms in 25 patients with internal carotid artery aneurysms were included in this study. Using 4D Flow MRI, we measured the arterial pulse wave form during a cardiac cycle at planes proximal and distal to the target aneurysm. The damping of these waveforms through the aneurysm was defined as the aneurysm damping index (ADI) and compared to the contralateral side. We also investigated the clinical factors related to the ADI. RESULTS ADI assessment was successful in all cases. The average ADI was 1.18±0.28, which was significantly larger than 1.0 (P = 0.0027 [t-test]). The ADI on the aneurysm side was larger than on the contralateral side (1.19±0.30 vs 1.05±0.17, P = 0.029 [t-test]). On multivariate analysis, the use of beta-blockers (β=0.46, P = 0.015) and smoking history (β=-0.22, P = 0.024) showed a significant correlation with ADI. CONCLUSION We have proposed a novel method to observe arterial pulse wave dumping through intracranial aneurysm using 4D Flow MRI. The damping can be quantitatively observed, and the ADI has correlations with clinical factors such as antihypertensive drugs and smoking. Further studies should focus more on evaluating aneurysm stiffness and its clinical applications.
Collapse
Affiliation(s)
- Satoshi Koizumi
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan.
| | - Taichi Kin
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan; Department of Medical Information Engineering, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, Japan
| | - Satoshi Kiyofuji
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Motoyuki Umekawa
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Guo F, Zhao C, Shou Q, Jin N, Jann K, Shao X, Wang DJJ. Assessing Cerebral Microvascular Volumetric Pulsatility with High-Resolution 4D CBV MRI at 7T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313077. [PMID: 39281763 PMCID: PMC11398588 DOI: 10.1101/2024.09.04.24313077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Arterial pulsation is crucial for promoting fluid circulation and for influencing neuronal activity. Previous studies assessed the pulsatility index based on blood flow velocity pulsatility in relatively large cerebral arteries of human. Here, we introduce a novel method to quantify the volumetric pulsatility of cerebral microvasculature across cortical layers and in white matter (WM), using high-resolution 4D vascular space occupancy (VASO) MRI with simultaneous recording of pulse signals at 7T. Microvascular volumetric pulsatility index (mvPI) and cerebral blood volume (CBV) changes across cardiac cycles are assessed through retrospective sorting of VASO signals into cardiac phases and estimating mean CBV in resting state (CBV0) by arterial spin labeling (ASL) MRI at 7T. Using data from 11 young (28.4±5.8 years) and 7 older (61.3±6.2 years) healthy participants, we investigated the aging effect on mvPI and compared microvascular pulsatility with large arterial pulsatility assessed by 4D-flow MRI. We observed the highest mvPI in the cerebrospinal fluid (CSF) on the cortical surface (0.19±0.06), which decreased towards the cortical layers as well as in larger arteries. In the deep WM, a significantly increased mvPI (p = 0.029) was observed in the older participants compared to younger ones. Additionally, mvPI in deep WM is significantly associated with the velocity pulsatility index (vePI) of large arteries (r = 0.5997, p = 0.0181). We further performed test-retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of our method. To the best of our knowledge, our method offers the first in vivo measurement of microvascular volumetric pulsatility in human brain which has implications for cerebral microvascular health and its relationship research with glymphatic system, aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fanhua Guo
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | | | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
4
|
Yang H, Kim JJ, Kim YB, Cho KC, Oh JH. Investigation of paraclinoid aneurysm formation by comparing the combined influence of hemodynamic parameters between aneurysmal and non-aneurysmal arteries. J Cereb Blood Flow Metab 2024; 44:1393-1403. [PMID: 38051823 PMCID: PMC11342732 DOI: 10.1177/0271678x231218589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
Numerous studies have evaluated the effects of hemodynamic parameters on aneurysm formation. However, the reasons why aneurysms do not initiate in intracranial arteries are still unclear. This study aimed to investigate the influence of hemodynamic parameters, wall shear stress (WSS) and strain, on aneurysm formation by comparing between aneurysmal and non-aneurysmal arteries. Fifty-eight patients with paraclinoid aneurysms on one side were enrolled. Based on magnetic resonance angiography, each patient's left and right internal carotid arteries (ICAs) were reconstructed. For a patient having an aneurysm on one side, the ICA with the paraclinoid aneurysm was defined as the aneurysmal artery after eliminating the aneurysm, whereas the opposite ICA without aneurysm was defined as the non-aneurysmal artery. Computational fluid dynamics and fluid-structure interaction analyses were then performed for both aneurysmal and non-aneurysmal arteries. Finally, the relationship between high hemodynamic parameters and aneurysm location was investigated. For aneurysmal arteries, high WSS and strain locations were well-matched with the aneurysm formation site. Also, considerable correlations between high WSS and strain locations were observed. However, there was no significant relationship between high hemodynamic parameters and aneurysm formation for non-aneurysmal arteries. The findings are helpful for understanding aneurysm formation mechanism and encouraging further relevant research.
Collapse
Affiliation(s)
- Hyeondong Yang
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Korea
| | - Jung-Jae Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Bae Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Chun Cho
- Department of Neurosurgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Je Hoon Oh
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Korea
| |
Collapse
|
5
|
Vikström A, Holmlund P, Holmgren M, Wåhlin A, Zarrinkoob L, Malm J, Eklund A. Establishing the distribution of cerebrovascular resistance using computational fluid dynamics and 4D flow MRI. Sci Rep 2024; 14:14585. [PMID: 38918589 PMCID: PMC11199643 DOI: 10.1038/s41598-024-65431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Cerebrovascular resistance (CVR) regulates blood flow in the brain, but little is known about the vascular resistances of the individual cerebral territories. We present a method to calculate these resistances and investigate how CVR varies in the hemodynamically disturbed brain. We included 48 patients with stroke/TIA (29 with symptomatic carotid stenosis). By combining flow rate (4D flow MRI) and structural computed tomography angiography (CTA) data with computational fluid dynamics (CFD) we computed the perfusion pressures out from the circle of Willis, with which CVR of the MCA, ACA, and PCA territories was estimated. 56 controls were included for comparison of total CVR (tCVR). CVR were 33.8 ± 10.5, 59.0 ± 30.6, and 77.8 ± 21.3 mmHg s/ml for the MCA, ACA, and PCA territories. We found no differences in tCVR between patients, 9.3 ± 1.9 mmHg s/ml, and controls, 9.3 ± 2.0 mmHg s/ml (p = 0.88), nor in territorial CVR in the carotid stenosis patients between ipsilateral and contralateral hemispheres. Territorial resistance associated inversely to territorial brain volume (p < 0.001). These resistances may work as reference values when modelling blood flow in the circle of Willis, and the method can be used when there is need for subject-specific analysis.
Collapse
Affiliation(s)
- Axel Vikström
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden.
| | - Petter Holmlund
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Madelene Holmgren
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Laleh Zarrinkoob
- Department of Diagnostics and Intervention, Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Dempsey S, Safaei S, Holdsworth SJ, Maso Talou GD. Measuring global cerebrovascular pulsatility transmission using 4D flow MRI. Sci Rep 2024; 14:12604. [PMID: 38824230 PMCID: PMC11144255 DOI: 10.1038/s41598-024-63312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
Pulse wave encephalopathy (PWE) is hypothesised to initiate many forms of dementia, motivating its identification and risk assessment. As candidate pulsatility based biomarkers for PWE, pulsatility index and pulsatility damping have been studied and, currently, do not adequately stratify risk due to variability in pulsatility and spatial bias. Here, we propose a locus-independent pulsatility transmission coefficient computed by spatially tracking pulsatility along vessels to characterise the brain pulse dynamics at a whole-organ level. Our preliminary analyses in a cohort of 20 subjects indicate that this measurement agrees with clinical observations relating blood pulsatility with age, heart rate, and sex, making it a suitable candidate to study the risk of PWE. We identified transmission differences between vascular regions perfused by the basilar and internal carotid arteries attributed to the identified dependence on cerebral blood flow, and some participants presented differences between the internal carotid perfused regions that were not related to flow or pulsatility burden, suggesting underlying mechanical differences. Large populational studies would benefit from retrospective pulsatility transmission analyses, providing a new comprehensive arterial description of the hemodynamic state in the brain. We provide a publicly available implementation of our tools to derive this coefficient, built into pre-existing open-source software.
Collapse
Affiliation(s)
- Sergio Dempsey
- Auckland Bioengineering Institute, University of Auckland, Level 6, 70 Symonds Street, Auckland, 1010, New Zealand.
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Level 6, 70 Symonds Street, Auckland, 1010, New Zealand
| | - Samantha J Holdsworth
- Mātai Medical Research Institute, Tairāwhiti Gisborne, New Zealand
- Department of Anatomy and Medical Imaging - Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Gonzalo D Maso Talou
- Auckland Bioengineering Institute, University of Auckland, Level 6, 70 Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
7
|
Yang H, Cho KC, Hong I, Kim Y, Kim YB, Kim JJ, Oh JH. Influence of circle of Willis modeling on hemodynamic parameters in anterior communicating artery aneurysms and recommendations for model selection. Sci Rep 2024; 14:8476. [PMID: 38605063 PMCID: PMC11009257 DOI: 10.1038/s41598-024-59042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Computational fluid dynamics (CFD) has been utilized to calculate hemodynamic parameters in anterior communicating artery aneurysm (AComA), which is located at a junction between left and right A1 and A2 segments. However, complete or half circle of Willis (CoW) models are used indiscriminately. This study aims to suggest recommendations for determining suitable CoW model. Five patient-specific CoW models with AComA were used, and each model was divided into complete, left-half, and right-half models. After validating the CFD using a flow experiment, the hemodynamic parameters and flow patterns in five AComAs were compared. In four out of five cases, inflow from one A1 side had a dominant influence on the AComA, while both left and right A1 sides affected the AComA in the remaining case. Also, the average difference in time-averaged wall shear stress between the complete and half models for four cases was 4.6%, but it was 62% in the other case. The differences in the vascular resistances of left and right A1 and A2 segments greatly influenced the flow patterns in the AComA. These results may help to enhance clinicians' understanding of blood flow in the brain, leading to improvements in diagnosis and treatment of cerebral aneurysms.
Collapse
Affiliation(s)
- Hyeondong Yang
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan, 15588, Gyeonggi-Do, Korea
| | - Kwang-Chun Cho
- Department of Neurosurgery, College of Medicine, Yonsei University, Yongin Severance Hospital, Yongin, Gyeonggi-Do, Korea
| | - Ineui Hong
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan, 15588, Gyeonggi-Do, Korea
| | - Yeonwoo Kim
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan, 15588, Gyeonggi-Do, Korea
| | - Yong Bae Kim
- Department of Neurosurgery, College of Medicine, Yonsei University, Severance Hospital, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jung-Jae Kim
- Department of Neurosurgery, College of Medicine, Yonsei University, Severance Hospital, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Department of Anatomy, Graduate School of Medicine, Korea University, 13 Jongam-Ro, Seongbuk-Gu, Seoul, 02841, Korea.
| | - Je Hoon Oh
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan, 15588, Gyeonggi-Do, Korea.
| |
Collapse
|
8
|
Holmgren M, Henze A, Wåhlin A, Eklund A, Fox AJ, Johansson E. Phase-contrast magnetic resonance imaging of intracranial and extracranial blood flow in carotid near-occlusion. Neuroradiology 2024; 66:589-599. [PMID: 38400954 PMCID: PMC10937755 DOI: 10.1007/s00234-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Compare extracranial internal carotid artery flow rates and intracranial collateral use between conventional ≥ 50% carotid stenosis and carotid near-occlusion, and between symptomatic and asymptomatic carotid near-occlusion. METHODS We included patients with ≥ 50% carotid stenosis. Degree of stenosis was diagnosed on CTA. Mean blood flow rates were assessed with four-dimensional phase-contrast MRI. RESULTS We included 110 patients of which 83% were symptomatic, and 38% had near-occlusion. Near-occlusions had lower mean internal carotid artery flow (70 ml/min) than conventional ≥ 50% stenoses (203 ml/min, P < .001). Definite use of ≥ 1 collateral was found in 83% (35/42) of near-occlusions and 10% (7/68) of conventional stenoses (P < .001). However, there were no differences in total cerebral blood flow (514 ml/min vs. 519 ml/min, P = .78) or ipsilateral hemispheric blood flow (234 vs. 227 ml/min, P = .52), between near-occlusions and conventional ≥ 50% stenoses, based on phase-contrast MRI flow rates. There were no differences in total cerebral or hemispheric blood flow, or collateral use, between symptomatic and asymptomatic near-occlusions. CONCLUSION Near-occlusions have lower internal carotid artery flow rates and more collateral use, but similar total cerebral blood flow and hemispheric blood flow, compared to conventional ≥ 50% carotid stenosis.
Collapse
Affiliation(s)
- Madelene Holmgren
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Alexander Henze
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Allan J Fox
- Sunnybrook Health Science Center, University of Toronto, Toronto, Canada
| | - Elias Johansson
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.
- Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden.
- Neuroscience and Physiology, Gothenburg University, Göteborg, Sweden.
| |
Collapse
|
9
|
Xie L, Zhang Y, Hong H, Xu S, Cui L, Wang S, Li J, Liu L, Lin M, Luo X, Li K, Zeng Q, Zhang M, Zhang R, Huang P. Higher intracranial arterial pulsatility is associated with presumed imaging markers of the glymphatic system: An explorative study. Neuroimage 2024; 288:120524. [PMID: 38278428 DOI: 10.1016/j.neuroimage.2024.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Arterial pulsation has been suggested as a key driver of paravascular cerebrospinal fluid flow, which is the foundation of glymphatic clearance. However, whether intracranial arterial pulsatility is associated with glymphatic markers in humans has not yet been studied. METHODS Seventy-three community participants were enrolled in the study. 4D phase-contrast magnetic resonance imaging (MRI) was used to quantify the hemodynamic parameters including flow pulsatility index (PIflow) and area pulsatility index (PIarea) from 13 major intracerebral arterial segments. Three presumed neuroimaging markers of the glymphatic system were measured: including dilation of perivascular space (PVS), diffusivity along the perivascular space (ALPS), and volume fraction of free water (FW) in white matter. We explored the relationships between PIarea, PIflow, and the presumed glymphatic markers, controlling for related covariates. RESULTS PIflow in the internal carotid artery (ICA) C2 segment (OR, 1.05; 95 % CI, 1.01-1.10, per 0.01 increase in PI) and C4 segment (OR, 1.05; 95 % CI, 1.01-1.09) was positively associated with the dilation of basal ganglia PVS, and PIflow in the ICA C4 segment (OR, 1.06, 95 % CI, 1.02-1.10) was correlated with the dilation of PVS in the white matter. ALPS was associated with PIflow in the basilar artery (β, -0.273, p, 0.046) and PIarea in the ICA C2 (β, -0.239, p, 0.041) and C7 segments (β, -0.238, p, 0.037). CONCLUSIONS Intracranial arterial pulsatility was associated with presumed neuroimaging markers of the glymphatic system, but the results were not consistent across different markers. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Linyun Xie
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Yao Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Hui Hong
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shan Xu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lei Cui
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Jixuan Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lingyun Liu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Miao Lin
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xiao Luo
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Kaicheng Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Qingze Zeng
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Ruiting Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China.
| |
Collapse
|
10
|
Korte J, Klopp ES, Berg P. Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review. Bioengineering (Basel) 2024; 11:72. [PMID: 38247949 PMCID: PMC10813503 DOI: 10.3390/bioengineering11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
The Circle of Willis (CoW) describes the arterial system in the human brain enabling the neurovascular blood supply. Neurovascular diseases like intracranial aneurysms (IAs) can occur within the CoW and carry the risk of rupture, which can lead to subarachnoid hemorrhage. The assessment of hemodynamic information in these pathologies is crucial for their understanding regarding detection, diagnosis and treatment. Multi-dimensional in silico approaches exist to evaluate these hemodynamics based on patient-specific input data. The approaches comprise low-scale (zero-dimensional, one-dimensional) and high-scale (three-dimensional) models as well as multi-scale coupled models. The input data can be derived from medical imaging, numerical models, literature-based assumptions or from measurements within healthy subjects. Thus, the most realistic description of neurovascular hemodynamics is still controversial. Within this systematic review, first, the models of the three scales (0D, 1D, 3D) and second, the multi-scale models, which are coupled versions of the three scales, were discussed. Current best practices in describing neurovascular hemodynamics most realistically and their clinical applicablility were elucidated. The performance of 3D simulation entails high computational expenses, which could be reduced by analyzing solely the region of interest in detail. Medical imaging to establish patient-specific boundary conditions is usually rare, and thus, lower dimensional models provide a realistic mimicking of the surrounding hemodynamics. Multi-scale coupling, however, is computationally expensive as well, especially when taking all dimensions into account. In conclusion, the 0D-1D-3D multi-scale approach provides the most realistic outcome; nevertheless, it is least applicable. A 1D-3D multi-scale model can be considered regarding a beneficial trade-off between realistic results and applicable performance.
Collapse
Affiliation(s)
- Jana Korte
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, 39106 Magdeburg, Germany
| | - Ehlar Sophie Klopp
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Zarrinkoob L, Myrnäs S, Wåhlin A, Eklund A, Malm J. Cerebral Blood Flow Patterns in Patients With Low-Flow Carotid Artery Stenosis, a 4D-PCMRI Assessment. J Magn Reson Imaging 2024. [PMID: 38168876 DOI: 10.1002/jmri.29216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Compromised cerebral blood flow can contribute to future ischemic events in patients with symptomatic carotid artery disease. However, there is limited knowledge of the effects on cerebral hemodynamics resulting from a reduced internal carotid artery (ICA) blood flow rate (BFR). PURPOSE Investigate how reduced ICA-BFR, relates to BFR in the cerebral arteries. STUDY TYPE Prospective. SUBJECTS Thirty-eight patients, age 72 ± 6 years (11 female). FIELD STRENGTH/SEQUENCE 3-Tesla, four-dimensional phase-contrast magnetic resonance imaging (4D-PCMRI). ASSESSMENT Patients with ischemic stroke or transient ischemic attack were evaluated regarding the degree of stenosis. 4D-PCMRI was used to measure cerebral BFR in 38 patients with symptomatic carotid stenosis (≥50%). BFR in the cerebral arteries was assessed in two subgroups based on symptomatic ICA-BFR: reduced ICA-flow (<160 mL/minutes) and preserved ICA-flow (≥160 mL/minutes). BFR laterality was defined as a difference in the paired ipsilateral-contralateral arteries. STATISTICAL TESTS Patients were grouped based on ICA-BFR (reduced vs. preserved). Statistical tests (independent sample t-test/paired t-test) were used to compare groups and hemispheres. Significance was determined at P < 0.05. RESULTS The degree of stenosis was not significantly different, 80% (95% confidence interval [CI] = 73%-87%) in the reduced ICA-flow vs. 72% (CI = 66%-76%) in the preserved ICA-flow; P = 0.09. In the reduced ICA-flow group, a significantly reduced BFR was found in the ipsilateral middle cerebral artery and anterior cerebral artery (A1), while significantly increased in the contralateral A1. Retrograde BFR was found in the posterior communicating artery and ophthalmic artery. Significant BFR laterality was present in all paired arteries in the reduced ICA-flow group, contrasting the preserved ICA-flow group (P = 0.14-0.93). DATA CONCLUSIONS 4D-PCMRI revealed compromised cerebral BFR due to carotid stenosis, not possible to detect by solely analyzing the degree of stenosis. In patients with reduced ICA-flow, collaterals were not sufficient to maintain symmetrical BFR distribution to the two hemispheres. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Laleh Zarrinkoob
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| | - Sanne Myrnäs
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
- Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Rothenberger SM, Patel NM, Zhang J, Schnell S, Craig BA, Ansari SA, Markl M, Vlachos PP, Rayz VL. Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2360-2373. [PMID: 37028010 PMCID: PMC10474251 DOI: 10.1109/tmi.2023.3251734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a method to automatically segment 4D flow magnetic resonance imaging (MRI) by identifying net flow effects using the standardized difference of means (SDM) velocity. The SDM velocity quantifies the ratio between the net flow and observed flow pulsatility in each voxel. Vessel segmentation is performed using an F-test, identifying voxels with significantly higher SDM velocity values than background voxels. We compare the SDM segmentation algorithm against pseudo-complex difference (PCD) intensity segmentation of 4D flow measurements in in vitro cerebral aneurysm models and 10 in vitro Circle of Willis (CoW) datasets. We also compared the SDM algorithm to convolutional neural network (CNN) segmentation in 5 thoracic vasculature datasets. The in vitro flow phantom geometry is known, while the ground truth geometries for the CoW and thoracic aortas are derived from high-resolution time-of-flight (TOF) magnetic resonance angiography and manual segmentation, respectively. The SDM algorithm demonstrates greater robustness than PCD and CNN approaches and can be applied to 4D flow data from other vascular territories. The SDM to PCD comparison demonstrated an approximate 48% increase in sensitivity in vitro and 70% increase in the CoW, respectively; the SDM and CNN sensitivities were similar. The vessel surface derived from the SDM method was 46% closer to the in vitro surfaces and 72% closer to the in vitro TOF surfaces than the PCD approach. The SDM and CNN approaches both accurately identify vessel surfaces. The SDM algorithm is a repeatable segmentation method, enabling reliable computation of hemodynamic metrics associated with cardiovascular disease.
Collapse
|
13
|
Srinivas S, Masutani E, Norbash A, Hsiao A. Deep learning phase error correction for cerebrovascular 4D flow MRI. Sci Rep 2023; 13:9095. [PMID: 37277401 DOI: 10.1038/s41598-023-36061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/07/2023] Open
Abstract
Background phase errors in 4D Flow MRI may negatively impact blood flow quantification. In this study, we assessed their impact on cerebrovascular flow volume measurements, evaluated the benefit of manual image-based correction, and assessed the potential of a convolutional neural network (CNN), a form of deep learning, to directly infer the correction vector field. With IRB waiver of informed consent, we retrospectively identified 96 MRI exams from 48 patients who underwent cerebrovascular 4D Flow MRI from October 2015 to 2020. Flow measurements of the anterior, posterior, and venous circulation were performed to assess inflow-outflow error and the benefit of manual image-based phase error correction. A CNN was then trained to directly infer the phase-error correction field, without segmentation, from 4D Flow volumes to automate correction, reserving from 23 exams for testing. Statistical analyses included Spearman correlation, Bland-Altman, Wilcoxon-signed rank (WSR) and F-tests. Prior to correction, there was strong correlation between inflow and outflow (ρ = 0.833-0.947) measurements with the largest discrepancy in the venous circulation. Manual phase error correction improved inflow-outflow correlation (ρ = 0.945-0.981) and decreased variance (p < 0.001, F-test). Fully automated CNN correction was non-inferior to manual correction with no significant differences in correlation (ρ = 0.971 vs ρ = 0.982) or bias (p = 0.82, Wilcoxon-Signed Rank test) of inflow and outflow measurements. Residual background phase error can impair inflow-outflow consistency of cerebrovascular flow volume measurements. A CNN can be used to directly infer the phase-error vector field to fully automate phase error correction.
Collapse
Affiliation(s)
- Shanmukha Srinivas
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, San Diego, CA, 92103, USA
- Department of Radiology, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Evan Masutani
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, San Diego, CA, 92103, USA
| | - Alexander Norbash
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, San Diego, CA, 92103, USA
| | - Albert Hsiao
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, San Diego, CA, 92103, USA.
| |
Collapse
|
14
|
Roberts GS, Hoffman CA, Rivera-Rivera LA, Berman SE, Eisenmenger LB, Wieben O. Automated hemodynamic assessment for cranial 4D flow MRI. Magn Reson Imaging 2023; 97:46-55. [PMID: 36581214 PMCID: PMC9892280 DOI: 10.1016/j.mri.2022.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Cranial 4D flow MRI post-processing typically involves manual user interaction which is time-consuming and associated with poor repeatability. The primary goal of this study is to develop a robust quantitative velocity tool (QVT) that utilizes threshold-based segmentation techniques to improve segmentation quality over prior approaches based on centerline processing schemes (CPS) that utilize k-means clustering segmentation. This tool also includes an interactive 3D display designed for simplified vessel selection and automated hemodynamic visualization and quantification. The performances of QVT and CPS were compared in vitro in a flow phantom and in vivo in 10 healthy participants. Vessel segmentations were compared with ground-truth computed tomography in vitro (29 locations) and manual segmentation in vivo (13 locations) using linear regression. Additionally, QVT and CPS MRI flow rates were compared to perivascular ultrasound flow in vitro using linear regression. To assess internal consistency of flow measures in vivo, conservation of flow was assessed at vessel junctions using linear regression and consistency of flow along vessel segments was analyzed by fitting a Gaussian distribution to a histogram of normalized flow values. Post-processing times were compared between the QVT and CPS using paired t-tests. Vessel areas segmented in vitro (CPS: slope = 0.71, r = 0.95 and QVT: slope = 1.03, r = 0.95) and in vivo (CPS: slope = 0.61, r = 0.96 and QVT: slope = 0.93, r = 0.96) were strongly correlated with ground-truth area measurements. However, CPS (using k-means segmentation) consistently underestimated vessel areas. Strong correlations were observed between QVT and ultrasound flow (slope = 0.98, r = 0.96) as well as flow at junctions (slope = 1.05, r = 0.98). Mean and standard deviation of flow along vessel segments was 9.33e-16 ± 3.05%. Additionally, the QVT demonstrated excellent interobserver agreement and significantly reduced post-processing by nearly 10 min (p < 0.001). By completely automating post-processing and providing an easy-to-use 3D visualization interface for interactive vessel selection and hemodynamic quantification, the QVT offers an efficient, robust, and repeatable means to analyze cranial 4D flow MRI. This software is freely available at: https://github.com/uwmri/QVT.
Collapse
Affiliation(s)
- Grant S Roberts
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue #1005, Madison, WI 53705, USA.
| | - Carson A Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue #1005, Madison, WI 53705, USA
| | - Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue #1005, Madison, WI 53705, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, USA.
| | - Sara E Berman
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, USA.
| | - Laura B Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, E3/366 Clinical Science Center, Madison, WI 53792, USA.
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue #1005, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, E3/366 Clinical Science Center, Madison, WI 53792, USA.
| |
Collapse
|
15
|
Liu P, Fall S, Ahiatsi M, Balédent O. Real-time phase contrast MRI versus conventional phase contrast MRI at different spatial resolutions and velocity encodings. Clin Imaging 2023; 94:93-102. [PMID: 36502617 DOI: 10.1016/j.clinimag.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
PURPOSES To compare the accuracy of real-time phase-contrast echo-planar MRI (EPI-PC) and conventional cine phase-contrast MRI (Conv-PC) and to assess the influence of spatial resolutions (pixel size) and velocity encoding on flow measurements obtained with the two sequences. METHODS Flow quantification was assessed using a pulsatile flow phantom (diameter: 9.5 mm; mean flow rate: 1150 mm3/s; mean flow velocity: 1.6 cm/s). Firstly, the accuracy of the EPI-PC was checked by comparing it with the flow rate in the calibrated phantom and the pulsation index from Conv-PC. Secondly, flow data from the two sequences were compared quantitatively as a function of the pixel size and the velocity encoding. RESULTS The mean percentage difference between the EPI-PC flow rate and calibrated phantom flow rate was -2.9 ± 2.1% (Mean ± SD). The pulsatility indices for EPI-PC and Conv-PC were respectively 0.64 and 0.59. In order to keep the flow rate measurement error within 10%, the ROI in Conv-PC had to contain at least 13 pixels, while the ROI in EPI-PC had to contain at least 9 pixels. Furthermore, Conv-PC had a higher velocity-to-noise ratio and could use a higher velocity encoding than EPI-PC (20 cm/s and 15 cm/s, respectively). CONCLUSIONS The result of this in vitro study confirmed the accuracy of EPI-PC, and found that EPI-PC can adapt to lower spatial resolutions, but is more sensitive to velocity encoding than Conv-PC.
Collapse
Affiliation(s)
- Pan Liu
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France; Medical Image Processing Department, Amiens Picardy University Hospital, Amiens, France.
| | - Sidy Fall
- MRI Department, Jules Verne University of Picardy, Amiens, France
| | - Maureen Ahiatsi
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France
| | - Olivier Balédent
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France; Medical Image Processing Department, Amiens Picardy University Hospital, Amiens, France; MRI Department, Jules Verne University of Picardy, Amiens, France.
| |
Collapse
|
16
|
Influence of blood viscosity models and boundary conditions on the computation of hemodynamic parameters in cerebral aneurysms using computational fluid dynamics. Acta Neurochir (Wien) 2023; 165:471-482. [PMID: 36624234 DOI: 10.1007/s00701-022-05467-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Computational fluid dynamics (CFD) is widely used to calculate hemodynamic parameters that are known to influence cerebral aneurysms. However, the boundary conditions for CFD are chosen without any specific criteria. Our objective is to establish the recommendations for setting the analysis conditions for CFD analysis of the cerebral aneurysm. METHOD The plug and the Womersley flow were the inlet boundary conditions, and zero and pulsatile pressures were the outlet boundary conditions. In addition, the difference in the assumption of viscosity was analyzed with respect to the flow rate. The CFD process used in our research was validated using particle image velocimetry experiment data from Tupin et al.'s work to ensure the accuracy of the simulations. RESULTS It was confirmed that if the entrance length was sufficiently secured, the inlet and outlet boundary conditions did not affect the CFD results. In addition, it was observed that the difference in the hemodynamic parameter between Newtonian and non-Newtonian fluid decreased as the flow rate increased. Furthermore, it was confirmed that similar tendencies were evaluated when these recommendations were utilized in the patient-specific cerebral aneurysm models. CONCLUSIONS These results may help conduct standardized CFD analyses regardless of the research group.
Collapse
|
17
|
Horn JD, Starosolski Z, Johnson MJ, Meoded A, Hossain SS. A Novel Method for Improving the Accuracy of MR-derived Patient-specific Vascular Models using X-ray Angiography. ENGINEERING WITH COMPUTERS 2022; 38:3879-3891. [PMID: 39155891 PMCID: PMC11329233 DOI: 10.1007/s00366-022-01685-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/27/2022] [Indexed: 08/20/2024]
Abstract
MR imaging, a noninvasive radiation-free imaging modality commonly used during clinical follow up, has been widely utilized to reconstruct realistic 3D vascular models for patient-specific analysis. In recent work, we used patient-specific hemodynamic analysis of the circle of Willis to noninvasively assess stroke risk in pediatric Moyamoya disease (MMD)-a progressive steno-occlusive cerebrovascular disorder that leads to recurrent stroke. The objective was to identify vascular regions with critically high wall shear rate (WSR) that signifies elevated stroke risk. However, sources of error such as insufficient resolution of MR images can negatively impact vascular model accuracy, especially in areas of severe pathological narrowing, and thus diminish clinical relevance of simulation results, as local hemodynamics are sensitive to vessel geometry. To improve the accuracy of MR-derived vascular models, we have developed a novel method for adjusting model vessel geometry utilizing 2D X-ray angiography (XA), which is considered the gold standard for clinically assessing vessel caliber. In this workflow, "virtual angiographies" (VAs) of 3D MR-derived vascular models are conducted, producing 2D projections that are compared with corresponding XA images to guide the local adjustment of modeled vessels. This VA-comparison-adjustment loop is iterated until the two agree, as confirmed by an expert neuroradiologist. Using this method, we generated models of the circle of Willis of two patients with a history of unilateral stroke. Blood flow simulations were performed using a Navier-Stokes solver within an isogeometric analysis framework, and WSR distributions were quantified. Results for one patient show as much as 45% underestimation of local WSR in the stenotic left anterior cerebral artery (LACA), and up to a 56% underestimation in the right anterior cerebral artery when using the initial MR-derived model compared to the XA-adjusted model. To evaluate whether XA-based adjustment improves model accuracy, vessel cross-sectional areas of the pre- and post-adjustment models were compared to those seen in 3D CTA images of the same patient. CTA has superior resolution and signal-to-noise ratio compared to MR imaging but is not commonly used in the clinic due to radiation exposure concerns, especially in pediatric patients. While the vessels in the initial model had normalized root mean squared deviations (NRMSDs) ranging from 26% to 182% and 31% to 69% in two patients with respect to CTA, the adjusted vessel NRMSDs were comparatively smaller (32% to 53% and 11% to 42%). In the mildly stenotic LACA of patient 1, the NRMSDs for the pre- and post-adjusted models were 49% and 32%, respectively. These findings suggest that our XA-based adjustment method can considerably improve the accuracy of vascular models, and thus, stroke-risk prediction. An accurate, individualized assessment of stroke risk would be of substantial help in guiding the timing of preventive surgical interventions in pediatric MMD patients.
Collapse
Affiliation(s)
- John D. Horn
- Molecular Cardiology Research Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Zbigniew Starosolski
- Department of Radiology, Texas Children’s Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael J. Johnson
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| | - Avner Meoded
- Department of Radiology, Texas Children’s Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Shaolie S. Hossain
- Molecular Cardiology Research Laboratory, Texas Heart Institute, Houston, TX, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Neidlin M, Yousefian E, Luisi C, Sichtermann T, Minkenberg J, Hasan D, Ridwan H, Steinseifer U, Wiesmann M, Nikoubashman O. Flow control in the middle cerebral artery during thrombectomy: the effect of anatomy, catheter size and tip location. J Neurointerv Surg 2022; 15:502-506. [PMID: 35414603 DOI: 10.1136/neurintsurg-2021-018621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Catheter size, location and circle of Willis anatomy impact the flow conditions during interventional stroke therapy. The aim of the study was to systematically investigate the influence of these factors on flow control in the middle cerebral artery by means of a computational model based on 100 patients with stroke who received endovascular treatment. METHODS The dimensions of the cervical and intracranial cerebral arteries of 100 patients who received endovascular mechanical thrombectomy for acute ischemic stroke were measured and a three-dimensional model of the circle of Willis was created based on these data. Flow control in the middle cerebral artery with variations in catheter size, catheter location and configurations of collateral vessels was determined using a computational model. A total of 48 scenarios were analyzed. RESULTS Flow reversal with a distal aspiration catheter alone was not possible in the internal carotid artery and only sometimes possible in the middle cerebral artery (14 of 48 cases). The Catalyst 7 catheter was more often successful in achieving flow reversal than Catalyst 5 or 6 catheters (p<0.001). In a full circle of Willis anatomy, flow reversal was almost never possible. The absence of one or more communicating arteries significantly influenced flow direction compared with the full anatomy with all communicating arteries present (p=0.028). CONCLUSION Choosing the biggest possible aspiration catheter and locating it in the middle cerebral artery significantly increases the chances of successful flow control. Flow through the collaterals may impair the flow, and circle of Willis anatomy should be considered during aspiration thrombectomy.
Collapse
Affiliation(s)
- Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Ehsan Yousefian
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Claudio Luisi
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Thorsten Sichtermann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Jan Minkenberg
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Dimah Hasan
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Hani Ridwan
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Omid Nikoubashman
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Aachen, Aachen, Nordrhein-Westfalen, Germany
| |
Collapse
|
19
|
Horn JD, Johnson MJ, Starosolski Z, Meoded A, Milewicz DM, Annapragada A, Hossain SS. Patient-Specific Modeling Could Predict Occurrence of Pediatric Stroke. Front Physiol 2022; 13:846404. [PMID: 35295566 PMCID: PMC8920501 DOI: 10.3389/fphys.2022.846404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disease leading to recurrent stroke. There is a lack of reliable biomarkers to identify unilateral stroke MMD patients who are likely to progress to bilateral disease and experience subsequent contralateral stroke(s). We hypothesized that local hemodynamics are predictive of future stroke and set out to noninvasively assess this stroke risk in pediatric MMD patients. MR and X-ray angiography imaging were utilized to reconstruct patient-specific models of the circle of Willis of six pediatric MMD patients who had previous strokes, along with a control subject. Blood flow simulations were performed by using a Navier-Stokes solver within an isogeometric analysis framework. Vascular regions with a wall shear rate (WSR) above the coagulation limit (>5,000 s-1) were identified to have a higher probability of thrombus formation, potentially leading to ischemic stroke(s). Two metrics, namely, "critical WSR coverage" and "WSR score," were derived to assess contralateral stroke risk and compared with clinical follow-up data. In two patients that suffered a contralateral stroke within 2 months of the primary stroke, critical WSR coverages exceeding 50% of vessel surface and WSR scores greater than 6× the control were present in multiple contralateral vessels. These metrics were not as clearly indicative of stroke in two additional patients with 3-5 year gaps between primary and contralateral strokes. However, a longitudinal study of one of these two cases, where a subsequent timepoint was analyzed, suggested disease stabilization on the primary stroke side and an elevated contralateral stroke risk, which was confirmed by patient outcome data. This indicates that post-stroke follow-up at regular intervals might be warranted for secondary stroke prevention. The findings of this study suggest that WSR-based metrics could be predictive of future stroke risk after an initial stroke in pediatric MMD patients. In addition, better predictions may be possible by performing patient-specific hemodynamic analysis at multiple timepoints during patient follow-up to monitor changes in the WSR-based metrics.
Collapse
Affiliation(s)
- John D. Horn
- Molecular Cardiology Research Laboratory, Texas Heart Institute, Houston, TX, United States
| | - Michael J. Johnson
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States
| | - Zbigniew Starosolski
- Translational Imaging Group, Texas Children’s Hospital, Houston, TX, United States
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Avner Meoded
- Translational Imaging Group, Texas Children’s Hospital, Houston, TX, United States
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Ananth Annapragada
- Translational Imaging Group, Texas Children’s Hospital, Houston, TX, United States
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Shaolie S. Hossain
- Molecular Cardiology Research Laboratory, Texas Heart Institute, Houston, TX, United States
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
20
|
Abstract
Alterations in cerebral blood flow are common in several neurological diseases among the elderly including stroke, cerebral small vessel disease, vascular dementia, and Alzheimer's disease. 4D flow magnetic resonance imaging (MRI) is a relatively new technique to investigate cerebrovascular disease, and makes it possible to obtain time-resolved blood flow measurements of the entire cerebral arterial venous vasculature and can be used to derive a repertoire of hemodynamic biomarkers indicative of cerebrovascular health. The information that can be obtained from one single 4D flow MRI scan allows both the investigation of aberrant flow patterns at a focal location in the vasculature as well as estimations of brain-wide disturbances in blood flow. Such focal and global hemodynamic biomarkers show the potential of being sensitive to impending cerebrovascular disease and disease progression and can also become useful during planning and follow-up of interventions aiming to restore a normal cerebral circulation. Here, we describe 4D flow MRI approaches for analyzing the cerebral vasculature. We then survey key hemodynamic biomarkers that can be reliably assessed using the technique. Finally, we highlight cerebrovascular diseases where one or multiple hemodynamic biomarkers are of central interest.
Collapse
Affiliation(s)
- Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science and Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Hossain SS, Starosolski Z, Sanders T, Johnson MJ, Wu MCH, Hsu MC, Milewicz DM, Annapragada A. Image-based patient-specific flow simulations are consistent with stroke in pediatric cerebrovascular disease. Biomech Model Mechanobiol 2021; 20:2071-2084. [PMID: 34283347 PMCID: PMC8666092 DOI: 10.1007/s10237-021-01495-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Moyamoya disease (MMD) is characterized by narrowing of the distal internal carotid artery and the circle of Willis (CoW) and leads to recurring ischemic and hemorrhagic stroke. A retrospective review of data from 50 pediatric MMD patients revealed that among the 24 who had a unilateral stroke and were surgically treated, 11 (45.8%) had a subsequent, contralateral stroke. There is no reliable way to predict these events. After a pilot study in Acta-/- mice that have features of MMD, we hypothesized that local hemodynamics are predictive of contralateral strokes and sought to develop a patient-specific analysis framework to noninvasively assess this stroke risk. A pediatric MMD patient with an occlusion in the right middle cerebral artery and a right-sided stroke, who was surgically treated and then had a contralateral stroke, was selected for analysis. By using an unsteady Navier-Stokes solver within an isogeometric analysis framework, blood flow was simulated in the CoW model reconstructed from the patient's postoperative imaging data, and the results were compared with those from an age- and sex-matched control subject. A wall shear rate (WSR) > 60,000 s-1 (about 12 × higher than the coagulation threshold of 5000 s-1 and 9 × higher than control) was measured in the terminal left supraclinoid artery; its location coincided with that of the subsequent postsurgical left-sided stroke. A parametric study of disease progression revealed a strong correlation between the degree of vascular morphology altered by MMD and local hemodynamic environment. The results suggest that an occlusion in the CoW could lead to excessive contralateral WSRs, resulting in thromboembolic ischemic events, and that WSR could be a predictor of future stroke.
Collapse
Affiliation(s)
- Shaolie S Hossain
- Molecular Cardiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| | - Zbigniew Starosolski
- Translational Imaging Group, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Travis Sanders
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| | - Michael J Johnson
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| | - Michael C H Wu
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center Houston, Houston, TX, USA
| | - Ananth Annapragada
- Translational Imaging Group, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Malm J, Birnefeld J, Zarrinkoob L, Wåhlin A, Eklund A. Hemodynamic Disturbances in Posterior Circulation Stroke: 4D Flow Magnetic Resonance Imaging Added to Computed Tomography Angiography. Front Neurosci 2021; 15:656769. [PMID: 34658752 PMCID: PMC8514699 DOI: 10.3389/fnins.2021.656769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: A clinically feasible, non-invasive method to quantify blood flow, hemodynamics, and collateral flow in the vertebrobasilar arterial tree is missing. The objective of this study was to evaluate the feasibility of quantifying blood flow and blood flow patterns using 4D flow magnetic resonance imaging (MRI) in consecutive patients after an ischemic stroke in the posterior circulation. We also explore if 4D-flow, analyzed in conjunction with computed tomography angiography (CTA), has potential as a diagnostic tool in posterior circulation stroke. Methods: Twenty-five patients (mean age 62 years; eight women) with acute ischemic stroke in the posterior circulation were investigated. At admission, all patients were examined with CTA followed by MRI (4D flow MRI and diffusion-weighted sequences) at median 4 days after the presenting event. Based on the classification of Caplan, patients were divided into proximal/middle (n = 16) and distal territory infarcts (n = 9). Absolute and relative blood flow rates were calculated for internal carotid arteries (ICA), vertebral arteries (VA), basilar artery (BA), posterior cerebral arteries (P1 and P2), and the posterior communicating arteries (Pcom). In a control group consisting of healthy elderly, the 90th and 10th percentiles of flow were calculated in order to define normal, increased, or decreased blood flow in each artery. "Major hemodynamic disturbance" was defined as low BA flow and either low P2 flow or high Pcom flow. Various minor hemodynamic disturbances were also defined. Blood flow rates were compared between groups. In addition, a comprehensive analysis of each patient's blood flow profile was performed by assessing relative blood flow rates in each artery in conjunction with findings from CTA. Results: There was no difference in total cerebral blood flow between patients and controls [604 ± 117 ml/min vs. 587 ± 169 ml/min (mean ± SD), p = 0.39] or in total inflow to the posterior circulation (i.e., the sum of total VA and Pcom flows, 159 ± 63 ml/min vs. 164 ± 52 ml/min, p = 0.98). In individual arteries, there were no significant differences between patients and controls in absolute or relative flow. However, patients had larger interindividual relative flow variance in BA, P1, and P2 (p = 0.01, <0.01, and 0.02, respectively). Out of the 16 patients that had proximal/middle territory infarcts, nine had CTA findings in VA and/or BA generating five with major hemodynamic disturbance identified with 4D flow MRI. For those without CTA findings, seven had no or minor 4D flow MRI hemodynamic disturbance. Among nine patients with distal territory infarcts, one had major hemodynamic disturbances, while the remaining had minor disturbances. Conclusion: 4D flow MRI contributed to the identification of the patients who had major hemodynamic disturbances from the vascular pathologies revealed on CTA. We thus conclude that 4D flow MRI could add valuable hemodynamic information when used in conjunction with CTA.
Collapse
Affiliation(s)
- Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Johan Birnefeld
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Laleh Zarrinkoob
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Björnfot C, Garpebring A, Qvarlander S, Malm J, Eklund A, Wåhlin A. Assessing cerebral arterial pulse wave velocity using 4D flow MRI. J Cereb Blood Flow Metab 2021; 41:2769-2777. [PMID: 33853409 PMCID: PMC8504412 DOI: 10.1177/0271678x211008744] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Intracranial arterial stiffening is a potential early marker of emerging cerebrovascular dysfunction and could be mechanistically involved in disease processes detrimental to brain function via several pathways. A prominent consequence of arterial wall stiffening is the increased velocity at which the systolic pressure pulse wave propagates through the vasculature. Previous non-invasive measurements of the pulse wave propagation have been performed on the aorta or extracranial arteries with results linking increased pulse wave velocity to brain pathology. However, there is a lack of intracranial "target-organ" measurements. Here we present a 4D flow MRI method to estimate pulse wave velocity in the intracranial vascular tree. The method utilizes the full detectable branching structure of the cerebral vascular tree in an optimization framework that exploits small temporal shifts that exists between waveforms sampled at varying depths in the vasculature. The method is shown to be stable in an internal consistency test, and of sufficient sensitivity to robustly detect age-related increases in intracranial pulse wave velocity.
Collapse
Affiliation(s)
- Cecilia Björnfot
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Cecilia Björnfot, Department of Radiation Sciences, Umeå University, Umeå SE 901 87, Sweden.
| | | | - Sara Qvarlander
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Zhang X, Liu J, Cheng Z, Wu B, Xie J, Zhang L, Zhang Z, Liu H. Personalized 0D-1D multiscale hemodynamic modeling and wave dynamics analysis of cerebral circulation for an elderly patient with dementia. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3510. [PMID: 34293250 DOI: 10.1002/cnm.3510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/10/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Senile dementia is associated with pronounced alterations in cerebral circulation. A fundamental understanding of intracranial hemodynamics and wave dynamics is essential for assessing dementia risk. Recent findings suggest that higher carotid artery wave intensity (WI) can predict future cognitive impairments in the elderly. However, wave power (WP) is more advantageous for assessing the risk of cognitive impairment and dementia because of its conservative form, which allows quantification of detailed WP distribution among the entire cerebrovascular network. Unfortunately, intracranial hemodynamics and wave dynamics in elderly patients with dementia remain poorly understood due to ethical issues and technical challenges. In this paper, we proposed a novel and easily achievable personalized methodology for the 0D-1D model of cerebral circulation using widely available clinical data on transcranial Doppler ultrasonography velocity, cerebral artery anatomy from magnetic resonance imaging, and brachial artery pressure. Using the proposed model, we simulated the cerebral blood flows and compared the wave dynamics between a healthy elderly subject and one living with dementia. Moreover, we performed a variance-based global sensitivity analysis to quantify the model-predicted WI and WP sensitivity to the uncertainties of model inputs. This provided more precise information for model personalization and further insights into the wave dynamics of cerebral circulation. In conclusion, the proposed personalized model framework provides a practical approach for patient-specific modeling and WI/WP analysis of cerebral circulation through noninvasive clinical data. The wave dynamics features of higher WI and lower WP in cerebral arteries may be an invaluable biomarker for assessing dementia risk.
Collapse
Affiliation(s)
- Xiancheng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zaiheng Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bokai Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- The Faculty of Life and Health Sciences, and Translational Research Center for the Nervous System(TRCNS)of Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Keough JRG, Cates VC, Tymko MM, Boulet LM, Jamieson AN, Foster GE, Day TA. Regional differences in cerebrovascular reactivity in response to acute isocapnic hypoxia in healthy humans: Methodological considerations. Respir Physiol Neurobiol 2021; 294:103770. [PMID: 34343693 DOI: 10.1016/j.resp.2021.103770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The cerebrovasculature responds to blood gas challenges. Regional differences (anterior vs. posterior) in cerebrovascular responses to increases in CO2 have been extensively studied. However, regional cerebrovascular reactivity (CVR) responses to low O2 (hypoxia) are equivocal, likely due to differences in analysis. We assessed the effects of acute isocapnic hypoxia on regional CVR comparing absolute and relative (%-change) responses in the middle cerebral artery (MCA) and posterior cerebral artery (PCA). We instrumented 14 healthy participants with a transcranial Doppler ultrasound (cerebral blood velocity), finometer (beat-by-beat blood pressure), dual gas analyzer (end-tidal CO2 and O2), and utilized a dynamic end-tidal forcing system to elicit a single 5-min bout of isocapnic hypoxia (∼45 Torr PETO2, ∼80 % SpO2). During exposure to acute hypoxia, absolute responses were larger in the anterior compared to posterior cerebral circulation (P < 0.001), but were not different when comparing relative responses (P = 0.45). Consistent reporting of CVR to hypoxia will aid understanding normative responses, particularly in assessing populations with impaired cerebrovascular function.
Collapse
Affiliation(s)
- Joanna R G Keough
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Valerie C Cates
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Michael M Tymko
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada; Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey M Boulet
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alenna N Jamieson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Vikner T, Eklund A, Karalija N, Malm J, Riklund K, Lindenberger U, Bäckman L, Nyberg L, Wåhlin A. Cerebral arterial pulsatility is linked to hippocampal microvascular function and episodic memory in healthy older adults. J Cereb Blood Flow Metab 2021; 41:1778-1790. [PMID: 33444091 PMCID: PMC8217890 DOI: 10.1177/0271678x20980652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microvascular damage in the hippocampus is emerging as a central cause of cognitive decline and dementia in aging. This could be a consequence of age-related decreases in vascular elasticity, exposing hippocampal capillaries to excessive cardiac-related pulsatile flow that disrupts the blood-brain barrier and the neurovascular unit. Previous studies have found altered intracranial hemodynamics in cognitive impairment and dementia, as well as negative associations between pulsatility and hippocampal volume. However, evidence linking features of the cerebral arterial flow waveform to hippocampal function is lacking. We used a high-resolution 4D flow MRI approach to estimate global representations of the time-resolved flow waveform in distal cortical arteries and in proximal arteries feeding the brain in healthy older adults. Waveform-based clustering revealed a group of individuals featuring steep systolic onset and high amplitude that had poorer hippocampus-sensitive episodic memory (p = 0.003), lower whole-brain perfusion (p = 0.001), and weaker microvascular low-frequency oscillations in the hippocampus (p = 0.035) and parahippocampal gyrus (p = 0.005), potentially indicating compromised neurovascular unit integrity. Our findings suggest that aberrant hemodynamic forces contribute to cerebral microvascular and hippocampal dysfunction in aging.
Collapse
Affiliation(s)
- Tomas Vikner
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Lars Bäckman
- Ageing Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Zarrinkoob L, Wåhlin A, Ambarki K, Eklund A, Malm J. Quantification and mapping of cerebral hemodynamics before and after carotid endarterectomy, using four-dimensional flow magnetic resonance imaging. J Vasc Surg 2021; 74:910-920.e1. [PMID: 33812036 DOI: 10.1016/j.jvs.2021.01.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Carotid stenosis can profoundly affect cerebral hemodynamics, which cannot simply be inferred from the degree of stenosis. We quantified and mapped the distribution of the blood flow rate (BFR) in the cerebral arteries before and after carotid endarterectomy using four-dimensional (4D) phase-contrast (PC) magnetic resonance imaging (MRI). METHODS Nineteen patients (age, 71 ± 6 years; 2 women) with symptomatic carotid stenosis (≥50%) undergoing carotid endarterectomy (CEA) were investigated using 4D PC-MRI before and after surgery. The BFR was measured in 17 cerebral arteries and the ophthalmic arteries. Collateral recruitment through the anterior and posterior communicating arteries, ophthalmic arteries, and leptomeningeal arteries was quantified. BFR laterality was significantly different between the paired contralateral and ipsilateral arteries. Subgroups were defined according to the presence of collateral recruitment. RESULTS The total cerebral blood flow had increased by 15% (P < .01) after CEA. Before CEA, laterality was seen in the internal carotid artery, anterior cerebral artery, and middle cerebral artery (MCA). On the ipsilateral side, an increased BFR was found after CEA in the internal carotid artery (246 ± 62 mL/min vs 135 ± 80 mL/min; P < .001), anterior cerebral artery (87 ± mL/min vs 38 ± 58 mL/min; P < .01), and MCA (149 ± 43 mL/min vs 119 ± 34 mL/min; P < .01), resulting in a postoperative BFR distribution without signs of laterality. In the nine patients with preoperatively recruited collaterals, BFR laterality was found in the MCA before, but not after, CEA (P < .01). This laterality was not found in the 10 patients without collateral recruitment (P = .2). The degree of stenosis did not differ between the groups with and without collateral recruitment (P = .85). CONCLUSIONS Using 4D PC-MRI, we have presented a comprehensive and noninvasive method to evaluate the cerebral hemodynamics due to carotid stenosis before and after CEA. MCA laterality, seen in the patients with collateral recruitment before CEA, pointed toward a hemodynamic disturbance in MCA territory for those patients. This methodologic advancement provides an insight into the pathophysiology of cerebral hemodynamics in patients with carotid stenosis.
Collapse
Affiliation(s)
- Laleh Zarrinkoob
- Division of Neuroscience, Department of Clinical Sciences, Umeå University, Umeå, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Khalid Ambarki
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
| | - Jan Malm
- Division of Neuroscience, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
28
|
Ngo MT, Lee UY, Ha H, Jin N, Chung GH, Kwak YG, Jung J, Kwak HS. Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics? J Pers Med 2021; 11:jpm11040253. [PMID: 33808514 PMCID: PMC8066205 DOI: 10.3390/jpm11040253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/04/2023] Open
Abstract
A multimodality approach was applied using four-dimensional flow magnetic resonance imaging (4D flow MRI), time-of-flight magnetic resonance angiography (TOF-MRA) signal intensity gradient (SIG), and computational fluid dynamics (CFD) to investigate the 3D blood flow characteristics and wall shear stress (WSS) of the cerebral arteries. TOF-MRA and 4D flow MRI were performed on the major cerebral arteries in 16 healthy volunteers (mean age 34.7 ± 7.6 years). The flow rate measured with 4D flow MRI in the internal carotid artery, middle cerebral artery, and anterior cerebral artery were 3.8, 2.5, and 1.2 mL/s, respectively. The 3D blood flow pattern obtained through CFD and 4D flow MRI on the cerebral arteries showed reasonable consensus. CFD delivered much greater resolution than 4D flow MRI. TOF-MRA SIG and CFD WSS of the major cerebral arteries showed reasonable consensus with the locations where the WSS was relatively high. However, the visualizations were very different between TOF-MRA SIG and CFD WSS at the internal carotid artery bifurcations, the anterior cerebral arteries, and the anterior communicating arteries. 4D flow MRI, TOF-MRA SIG, and CFD are complementary methods that can provide additional insight into the hemodynamics of the human cerebral artery.
Collapse
Affiliation(s)
- Minh Tri Ngo
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Ui Yun Lee
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeon-ju 54896, Korea;
| | - Hojin Ha
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Ning Jin
- Siemens Medical Solutions USA, Inc., Chicago, IL 60089, USA;
| | - Gyung Ho Chung
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Yeong Gon Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Jinmu Jung
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeon-ju 54896, Korea;
- Hemorheology Research Institute, Jeonbuk National University, Jeon-ju 54896, Korea
- Correspondence: (J.J.); (H.S.K.); Tel.: +82-63-270-3998 (J.J.); +82-63-250-2582 (H.S.K.)
| | - Hyo Sung Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
- Correspondence: (J.J.); (H.S.K.); Tel.: +82-63-270-3998 (J.J.); +82-63-250-2582 (H.S.K.)
| |
Collapse
|
29
|
Morgan AG, Thrippleton MJ, Wardlaw JM, Marshall I. 4D flow MRI for non-invasive measurement of blood flow in the brain: A systematic review. J Cereb Blood Flow Metab 2021; 41:206-218. [PMID: 32936731 PMCID: PMC8369999 DOI: 10.1177/0271678x20952014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 01/25/2023]
Abstract
The brain's vasculature is essential for brain health and its dysfunction contributes to the onset and development of many dementias and neurological disorders. While numerous in vivo imaging techniques exist to investigate cerebral haemodynamics in humans, phase-contrast magnetic resonance imaging (MRI) has emerged as a reliable, non-invasive method of quantifying blood flow within intracranial vessels. In recent years, an advanced form of this method, known as 4D flow, has been developed and utilised in patient studies, where its ability to capture complex blood flow dynamics within any major vessel across the acquired volume has proved effective in collecting large amounts of information in a single scan. While extremely promising as a method of examining the vascular system's role in brain-related diseases, the collection of 4D data can be time-consuming, meaning data quality has to be traded off against the acquisition time. Here, we review the available literature to examine 4D flow's capabilities in assessing physiological and pathological features of the cerebrovascular system. Emerging techniques such as dynamic velocity-encoding and advanced undersampling methods, combined with increasingly high-field MRI scanners, are likely to bring 4D flow to the forefront of cerebrovascular imaging studies in the years to come.
Collapse
Affiliation(s)
- Alasdair G Morgan
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
| | - Michael J Thrippleton
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
30
|
Vikner T, Nyberg L, Holmgren M, Malm J, Eklund A, Wåhlin A. Characterizing pulsatility in distal cerebral arteries using 4D flow MRI. J Cereb Blood Flow Metab 2020; 40:2429-2440. [PMID: 31722598 PMCID: PMC7820688 DOI: 10.1177/0271678x19886667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent reports have suggested that age-related arterial stiffening and excessive cerebral arterial pulsatility cause blood-brain barrier breakdown, brain atrophy and cognitive decline. This has spurred interest in developing non-invasive methods to measure pulsatility in distal vessels, closer to the cerebral microcirculation. Here, we report a method based on four-dimensional (4D) flow MRI to estimate a global composite flow waveform of distal cerebral arteries. The method is based on finding and sampling arterial waveforms from thousands of cross sections in numerous small vessels of the brain, originating from cerebral cortical arteries. We demonstrate agreement with internal and external reference methods and show the ability to capture significant increases in distal cerebral arterial pulsatility as a function of age. The proposed approach can be used to advance our understanding regarding excessive arterial pulsatility as a potential trigger of cognitive decline and dementia.
Collapse
Affiliation(s)
- Tomas Vikner
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Tomas Vikner, Department of Radiation Sciences, Umeå University, Umeå SE 901 87, Sweden.
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | | | - Jan Malm
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Youn SW, Lee J. From 2D to 4D Phase-Contrast MRI in the Neurovascular System: Will It Be a Quantum Jump or a Fancy Decoration? J Magn Reson Imaging 2020; 55:347-372. [PMID: 33236488 DOI: 10.1002/jmri.27430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Considering the crosstalk between the flow and vessel wall, hemodynamic assessment of the neurovascular system may offer a well-integrated solution for both diagnosis and management by adding prognostic significance to the standard CT/MR angiography. 4D flow MRI or time-resolved 3D velocity-encoded phase-contrast MRI has long been promising for the hemodynamic evaluation of the great vessels, but challenged in clinical studies for assessing intracranial vessels with small diameter due to long scan times and low spatiotemporal resolution. Current accelerated MRI techniques, including parallel imaging with compressed sensing and radial k-space undersampling acquisitions, have decreased scan times dramatically while preserving spatial resolution. 4D flow MRI visualized and measured 3D complex flow of neurovascular diseases such as aneurysm, arteriovenous shunts, and atherosclerotic stenosis using parameters including flow volume, velocity vector, pressure gradients, and wall shear stress. In addition to the noninvasiveness of the phase contrast technique and retrospective flow measurement through the wanted windows of the analysis plane, 4D flow MRI has shown several advantages over Doppler ultrasound or computational fluid dynamics. The evaluation of the flow status and vessel wall can be performed simultaneously in the same imaging modality. This article is an overview of the recent advances in neurovascular 4D flow MRI techniques and their potential clinical applications in neurovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jongmin Lee
- Department of Radiology and Biomedical Engineering, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
32
|
Maxa KM, Hoffman C, Rivera-Rivera LA, Motovylyak A, Turski PA, Mitchell CKC, Ma Y, Berman SE, Gallagher CL, Bendlin BB, Asthana S, Sager MA, Hermann BP, Johnson SC, Cook DB, Wieben O, Okonkwo OC. Cardiorespiratory Fitness Associates with Cerebral Vessel Pulsatility in a Cohort Enriched with Risk for Alzheimer's Disease. Brain Plast 2020; 5:175-184. [PMID: 33282680 PMCID: PMC7685671 DOI: 10.3233/bpl-190096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND There is increasing evidence that vascular disease risk factors contribute to evolution of the dementia syndrome of Alzheimer's disease (AD). One important measure of cerebrovascular health is pulsatility index (PI) which is thought to represent distal vascular resistance, and has previously been reported to be elevated in AD clinical syndrome. Physical inactivity has emerged as an independent risk factor for cardiovascular disease. OBJECTIVE This study aims to examine the relationship between a measure of habitual physical activity, cardiorespiratory fitness (CRF), and PI in the large cerebral vessels. METHODS Ninety-two cognitively-healthy adults (age = 65.34±5.95, 72% female) enrolled in the Wisconsin Registry for Alzheimer's Prevention participated in this study. Participants underwent 4D flow brain MRI to measure PI in the internal carotid artery (ICA), basilar artery, middle cerebral artery (MCA), and superior sagittal sinus. Participants also completed a self-report physical activity questionnaire. CRF was calculated using a previously-validated equation that incorporates sex, age, body-mass index, resting heart rate, and self-reported physical activity. A series of linear regression models adjusted for age, sex, APOE4 status, and 10-year atherosclerotic cardiovascular disease risk were used to analyze the relationship between CRF and PI. RESULTS Inverse associations were found between CRF and mean PI in the inferior ICA (p = .001), superior ICA (p = .035), and basilar artery (p = .040). No other cerebral vessels revealed significant associations between CRF and PI (p≥.228). CONCLUSIONS Higher CRF was associated with lower PI in several large cerebral vessels. Since increased pulsatility has been associated with poor brain health and reported in persons with AD, this suggests that aerobic fitness might provide protection against cerebrovascular changes related to the progression of AD clinical syndrome.
Collapse
Affiliation(s)
- Kaitlin M. Maxa
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carson Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Leonardo A. Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alice Motovylyak
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Patrick A. Turski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carol K. C. Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sara E. Berman
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW-Madison Medical Scientist and Neuroscience Training Programs, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L. Gallagher
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A. Sager
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
33
|
van Tuijl RJ, Ruigrok YM, Velthuis BK, van der Schaaf IC, Rinkel GJE, Zwanenburg JJM. Velocity Pulsatility and Arterial Distensibility Along the Internal Carotid Artery. J Am Heart Assoc 2020; 9:e016883. [PMID: 32783485 PMCID: PMC7660833 DOI: 10.1161/jaha.120.016883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Attenuation of velocity pulsatility along the internal carotid artery (ICA) is deemed necessary to protect the microvasculature of the brain. The role of the carotid siphon within the whole ICA trajectory in pulsatility attenuation is still poorly understood. This study aims to assess arterial variances in velocity pulsatility and distensibility over the whole ICA trajectory, including effects of age and sex. Methods and Results We assessed arterial velocity pulsatility and distensibility using flow-sensitized 2-dimensional phase-contrast 3.0 Tesla magnetic resonance imaging in 118 healthy participants. Velocity pulsatility index (vPI=(Vmax-Vmin)/Vmean) and arterial distensibility defined as area pulsatility index (Amax-Amin)/Amean) were calculated at C1, C3, and C7 segments of the ICA. vPI increased between C1 and C3 (0.85±0.13 versus 0.93±0.13, P<0.001 for averaged right+left ICA) and decreased between C3 and C7 (0.93±0.13 versus 0.84±0.13, P<0.001) with overall no effect (C1-C7). Conversely, the area pulsatility index decreased between C1 and C3 (0.18±0.06 versus 0.14±0.04, P<0.001) and increased between C3 and C7 (0.14±0.04 versus 0.31±0.09, P<0.001). vPI in men is higher than in women and increases with age (P<0.015). vPI over the carotid siphon declined with age but remained stable over the whole ICA trajectory. Conclusions Along the whole ICA trajectory, vPI increased from extracranial C1 up to the carotid siphon C3 with overall no effect on vPI between extracranial C1 and intracranial C7 segments. This suggests that the bony carotid canal locally limits the arterial distensibility of the ICA, increasing the vPI at C3 which is consequently decreased again over the carotid siphon. In addition, vPI in men is higher and increases with age.
Collapse
Affiliation(s)
- Rick J van Tuijl
- Department of Radiology University Medical Center Utrecht Utrecht The Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery Rudolf Magnus Institute of Neuroscience University Medical Center Utrecht Utrecht The Netherlands
| | - Birgitta K Velthuis
- Department of Radiology University Medical Center Utrecht Utrecht The Netherlands
| | | | - Gabriël J E Rinkel
- Department of Neurology and Neurosurgery Rudolf Magnus Institute of Neuroscience University Medical Center Utrecht Utrecht The Netherlands
| | - Jaco J M Zwanenburg
- Department of Radiology University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
34
|
Multiparametric flow analysis using four-dimensional flow magnetic resonance imaging can detect cerebral hemodynamic impairment in patients with internal carotid artery stenosis. Neuroradiology 2020; 62:1421-1431. [PMID: 32518970 DOI: 10.1007/s00234-020-02464-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE MRI-based risk stratification should be established to identify patients with internal carotid artery stenosis (ICS) who require further PET or SPECT evaluation. This study assessed whether multiparametric flow analysis using time-resolved 3D phase-contrast (4D flow) MRI can detect cerebral hemodynamic impairment in patients with ICS. METHODS This retrospective study analyzed 26 consecutive patients with unilateral ICS (21 men; mean age, 71 years) who underwent 4D flow MRI and acetazolamide-stress brain perfusion SPECT. Collateral flow via the Willis ring was visually evaluated. Temporal mean flow volume rate (Net), pulsatile flow volume (ΔV), and pulsatility index (PI) at the middle cerebral artery were measured. Cerebral vascular reserve (CVR) was calculated from the SPECT dataset. Patients were assigned to the misery perfusion group if the CVR was < 10% and to the nonmisery perfusion group if the CVR was ≥ 10%. Parameters showing a significant difference in both groups were statistically evaluated. RESULTS Affected side ΔV, ratio of affected to contralateral side Net (rNet), and ratio of affected to contralateral side ΔV were significantly correlated to CVR (p = 0.030, p = 0.010, p = 0.015, respectively). Absence of retrograde flow at the posterior communicating artery was observed in the misery perfusion group (p = 0.020). Combined cut-off values of the affected side ΔV (0.18 ml) and rNet (0.64) showed a sensitivity and specificity of 100% and 77.8%, respectively. CONCLUSION Multiparametric flow analysis using 4D flow MRI can detect misery perfusion by comprehensively assessing blood flow data, including blood flow volume, pulsation, and collateral flow.
Collapse
|
35
|
Zarrinkoob L, Wåhlin A, Ambarki K, Birgander R, Eklund A, Malm J. Blood Flow Lateralization and Collateral Compensatory Mechanisms in Patients With Carotid Artery Stenosis. Stroke 2020; 50:1081-1088. [PMID: 30943887 PMCID: PMC6485302 DOI: 10.1161/strokeaha.119.024757] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background and Purpose- Four-dimensional phase-contrast magnetic resonance imaging enables quantification of blood flow rate (BFR; mL/min) in multiple cerebral arteries simultaneously, making it a promising technique for hemodynamic investigation in patients with stroke. The aim of this study was to quantify the hemodynamic disturbance and the compensatory pattern of collateral flow in patients with symptomatic carotid stenosis. Methods- Thirty-eight patients (mean, 72 years; 27 men) with symptomatic carotid stenosis (≥50%) or occlusion were investigated using 4-dimensional phase-contrast magnetic resonance imaging. For each patient, BFR was measured in 19 arteries/locations. The ipsilateral side to the symptomatic carotid stenosis was compared with the contralateral side. Results- Internal carotid artery BFR was lower on the ipsilateral side (134±87 versus 261±95 mL/min; P<0.001). BFR in anterior cerebral artery (A1 segment) was lower on ipsilateral side (35±58 versus 119±72 mL/min; P<0.001). Anterior cerebral artery territory bilaterally was primarily supplied by contralateral internal carotid artery. The ipsilateral internal carotid artery mainly supplied the ipsilateral middle cerebral artery (MCA) territory. MCA was also supplied by a reversed BFR found in the ophthalmic and the posterior communicating artery routes on the ipsilateral side (-5±28 versus 10±28 mL/min, P=0.001, and -2±12 versus 6±6 mL/min, P=0.03, respectively). Despite these compensations, BFR in MCA was lower on the ipsilateral side, and this laterality was more pronounced in patients with severe carotid stenosis (≥70%). Although comparing ipsilateral MCA BFR between stenosis groups (<70% and ≥70%), there was no difference ( P=0.95). Conclusions- With a novel approach using 4-dimensional phase-contrast magnetic resonance imaging, we could simultaneously quantify and rank the importance of collateral routes in patients with carotid stenosis. An important observation was that contralateral internal carotid artery mainly secured the bilateral anterior cerebral artery territory. Because of the collateral recruitment, compromised BFR in MCA is not necessarily related to the degree of carotid stenosis. These findings highlight the importance of simultaneous investigation of the hemodynamics of the entire cerebral arterial tree.
Collapse
Affiliation(s)
- Laleh Zarrinkoob
- From the Department of Pharmacology and Clinical Neuroscience, Umeå, Sweden (L.Z., J.M.).,Department of Surgical and Perioperative Sciences, Umeå, Sweden (L.Z.)
| | - Anders Wåhlin
- Department of Radiation Science, Umeå, Sweden (A.W., K.A., R.B., A.E.).,Centre for Biomedical Engineering and Physics, Umeå, Sweden (A.W., K.A., A.E.).,Umeå Center for Functional Brain Imaging, Sweden (A.W., A.E.)
| | - Khalid Ambarki
- Department of Radiation Science, Umeå, Sweden (A.W., K.A., R.B., A.E.).,Centre for Biomedical Engineering and Physics, Umeå, Sweden (A.W., K.A., A.E.)
| | - Richard Birgander
- Department of Radiation Science, Umeå, Sweden (A.W., K.A., R.B., A.E.)
| | - Anders Eklund
- Department of Radiation Science, Umeå, Sweden (A.W., K.A., R.B., A.E.).,Centre for Biomedical Engineering and Physics, Umeå, Sweden (A.W., K.A., A.E.).,Umeå Center for Functional Brain Imaging, Sweden (A.W., A.E.)
| | - Jan Malm
- From the Department of Pharmacology and Clinical Neuroscience, Umeå, Sweden (L.Z., J.M.)
| |
Collapse
|
36
|
Kellawan JM, Peltonen GL, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Differential contribution of cyclooxygenase to basal cerebral blood flow and hypoxic cerebral vasodilation. Am J Physiol Regul Integr Comp Physiol 2019; 318:R468-R479. [PMID: 31868517 DOI: 10.1152/ajpregu.00132.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclooxygenase (COX) is proposed to regulate cerebral blood flow (CBF); however, accurate regional contributions of COX are relatively unknown at baseline and particularly during hypoxia. We hypothesized that COX contributes to both basal and hypoxic cerebral vasodilation, but COX-mediated vasodilation is greater in the posterior versus anterior cerebral circulation. CBF was measured in 9 healthy adults (28 ± 4 yr) during normoxia and isocapnic hypoxia (fraction of inspired oxygen = 0.11), with COX inhibition (oral indomethacin, 100mg) or placebo. Four-dimensional flow magnetic resonance imaging measured cross-sectional area (CSA) and blood velocity to quantify CBF in 11 cerebral arteries. Cerebrovascular conductance (CVC) was calculated (CVC = CBF × 100/mean arterial blood pressure) and hypoxic reactivity was expressed as absolute and relative change in CVC [ΔCVC/Δ pulse oximetry oxygen saturation (SpO2)]. At normoxic baseline, indomethacin reduced CVC by 44 ± 5% (P < 0.001) and artery CSA (P < 0.001), which was similar across arteries. Hypoxia (SpO2 80%-83%) increased CVC (P < 0.01), reflected as a similar relative increase in reactivity (% ΔCVC/-ΔSpO2) across arteries (P < 0.05), in part because of increases in CSA (P < 0.05). Indomethacin did not alter ΔCVC or ΔCVC/ΔSpO2 to hypoxia. These findings indicate that 1) COX contributes, in a largely uniform fashion, to cerebrovascular tone during normoxia and 2) COX is not obligatory for hypoxic vasodilation in any regions supplied by large extracranial or intracranial arteries.
Collapse
Affiliation(s)
- J Mikhail Kellawan
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin.,Department of Health and Exercise Science, University of Oklahoma, Norman, OK
| | - Garrett L Peltonen
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin.,Department of Kinesiology, Western New Mexico University, Silver City, New Mexico
| | - John W Harrell
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| | - Alejandro Roldan-Alzate
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
37
|
Birnefeld J, Wåhlin A, Eklund A, Malm J. Cerebral arterial pulsatility is associated with features of small vessel disease in patients with acute stroke and TIA: a 4D flow MRI study. J Neurol 2019; 267:721-730. [PMID: 31728712 PMCID: PMC7035303 DOI: 10.1007/s00415-019-09620-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022]
Abstract
Cerebral small vessel disease (SVD) is a major cause of stroke and cognitive impairment. However, the underlying mechanisms behind SVD are still poorly understood. High cerebral arterial pulsatility has been suggested as a possible cause of SVD. In population studies, arterial pulsatility has been linked to white matter hyperintensities (WMH), cerebral atrophy, and cognitive impairment, all features of SVD. In stroke, pulsatility data are scarce and contradictory. The aim of this study was to investigate the relationship between arterial pulsatility and SVD in stroke patients. With a cross-sectional design, 89 patients with acute ischemic stroke or TIA were examined with MRI. A neuropsychological assessment was performed 1 year later. Using 4D flow MRI, pulsatile indices (PI) were calculated for the internal carotid artery (ICA) and middle cerebral artery (M1, M3). Flow volume pulsatility (FVP), a measure corresponding to the cyclic expansion of the arterial tree, was calculated for the same locations. These parameters were assessed for associations with WMH volume, brain volume and cognitive function. ICA-FVP was associated with WMH volume (β = 1.67, 95% CI: [0.1, 3.24], p = 0.037). M1-PI and M1-FVP were associated with decreasing cognitive function (β = − 4.4, 95% CI: [− 7.7, − 1.1], p = 0.009 and β = − 13.15, 95% CI: [− 24.26, − 2.04], p = 0.02 respectively). In summary, this supports an association between arterial pulsatility and SVD in stroke patients, and provides a potential target for further research and preventative treatment. FVP may become a useful biomarker for assessing pulsatile stress with PCMRI and 4D flow MRI.
Collapse
Affiliation(s)
- Johan Birnefeld
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden.
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
38
|
Holmgren M, Wåhlin A, Dunås T, Malm J, Eklund A. Assessment of Cerebral Blood Flow Pulsatility and Cerebral Arterial Compliance With 4D Flow MRI. J Magn Reson Imaging 2019; 51:1516-1525. [PMID: 31713964 PMCID: PMC7216927 DOI: 10.1002/jmri.26978] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Four-dimensional flow magnetic resonance imaging (4D flow MRI) enables efficient investigation of cerebral blood flow pulsatility in the cerebral arteries. This is important for exploring hemodynamic mechanisms behind vascular diseases associated with arterial pulsations. PURPOSE To investigate the feasibility of pulsatility assessments with 4D flow MRI, its agreement with reference two-dimensional phase-contrast MRI (2D PC-MRI) measurements, and to demonstrate how 4D flow MRI can be used to assess cerebral arterial compliance and cerebrovascular resistance in major cerebral arteries. STUDY TYPE Prospective. SUBJECTS Thirty-five subjects (20 women, 79 ± 5 years, range 70-91 years). FIELD STRENGTH/SEQUENCE 4D flow MRI (PC-VIPR) and 2D PC-MRI acquired with a 3T scanner. ASSESSMENT Time-resolved flow was assessed in nine cerebral arteries. From the pulsatile flow waveform in each artery, amplitude (ΔQ), volume load (ΔV), and pulsatility index (PI) were calculated. To reduce high-frequency noise in the 4D flow MRI data, the flow waveforms were low-pass filtered. From the total cerebral blood flow, total PI (PItot ), total volume load (ΔVtot ), cerebral arterial compliance (C), and cerebrovascular resistance (R) were calculated. STATISTICAL TESTS Two-tailed paired t-test, intraclass correlation (ICC). RESULTS There was no difference in ΔQ between 4D flow MRI and the reference (0.00 ± 0.022 ml/s, mean ± SEM, P = 0.97, ICC = 0.95, n = 310) with a cutoff frequency of 1.9 Hz and 15 cut plane long arterial segments. For ΔV, the difference was -0.006 ± 0.003 ml (mean ± SEM, P = 0.07, ICC = 0.93, n = 310) without filtering. Total R was 11.4 ± 2.41 mmHg/(ml/s) (mean ± SD) and C was 0.021 ± 0.009 ml/mmHg (mean ± SD). ΔVtot was 1.21 ± 0.29 ml (mean ± SD) with an ICC of 0.82 compared with the reference. PItot was 1.08 ± 0.21 (mean ± SD). DATA CONCLUSION We successfully assessed 4D flow MRI cerebral arterial pulsatility, cerebral arterial compliance, and cerebrovascular resistance. Averaging of multiple cut planes and low-pass filtering was necessary to assess accurate peak-to-peak features in the flow rate waveforms. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1516-1525.
Collapse
Affiliation(s)
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Tora Dunås
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Center for Demographic and Aging Research, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| |
Collapse
|
39
|
Miller KB, Howery AJ, Rivera-Rivera LA, Johnson SC, Rowley HA, Wieben O, Barnes JN. Age-Related Reductions in Cerebrovascular Reactivity Using 4D Flow MRI. Front Aging Neurosci 2019; 11:281. [PMID: 31680935 PMCID: PMC6811507 DOI: 10.3389/fnagi.2019.00281] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular reactivity (CVR), is important for determining future risk of cerebrovascular disease. It is unclear if primary aging is associated with reductions in CVR because previous studies often include participants with vascular risk factors. Additionally, the inconsistency in the literature may be due to the inherent difficulty in quantifying intracranial cerebral blood flow and CVR. To address these limitations, we determined the effect of age on CVR in the large intracranial vessels in adults with low vascular risk using state-of-the-art MRI techniques. We also determined if the effect of age on CVR was sex-specific. Young (n = 20; 25 ± 3 years) and older (n = 19; 61 ± 5 years) healthy, physically active adults participated in the study. CVR was measured in response to hypercapnia using 4D flow MRI, which allows for simultaneous angiographic and quantitative blood flow measurements in the intracranial arteries. Older adults had lower global CVR and CVR in multiple intracranial arteries [right and left internal carotid arteries (ICA), right and left middle cerebral arteries (MCA), and basilar artery (BA)] compared with young adults (p < 0.05 for all). In addition, the MCA dilated significantly in response to hypercapnia in young (p < 0.05), but not older adults. Young men demonstrated higher global CVR and CVR in multiple intracranial arteries (ICAs, MCAs, and BA) compared with young women and older men (p < 0.05 for both); however, CVR did not differ between young women and older women. Our results demonstrate that, using 4D flow MRI, primary aging is associated with lower CVR in adults with low vascular risk. In addition, the effect of age on CVR may be driven by men. The 4D flow MRI technique may provide a promising new alternative to measure cerebrovascular physiology without the limitations of commonly used techniques. Future studies could utilize this MRI technique to examine interventions to maintain CVR with advancing age. This study was registered under clinicaltrials.gov # NCT02840851.
Collapse
Affiliation(s)
- Kathleen B Miller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J Howery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Leonardo A Rivera-Rivera
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,William S. Middleton Memorial Veterans Hospital, Geriatric Research Education and Clinical Center, Madison, WI, United States
| | - Howard A Rowley
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
40
|
Theyers AE, Goldstein BI, Metcalfe AW, Robertson AD, MacIntosh BJ. Cerebrovascular blood oxygenation level dependent pulsatility at baseline and following acute exercise among healthy adolescents. J Cereb Blood Flow Metab 2019; 39:1737-1749. [PMID: 29561225 PMCID: PMC6727139 DOI: 10.1177/0271678x18766771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arterial stiffness is linked to cerebral small vessel damage and neurodegeneration, but barriers to accessing deep cerebrovascular anatomy limit our ability to assess the brain. This study describes an adaptation of a cardiac-related scrubbing method as a means of generating blood oxygenation level-dependent pulsatility maps based on the cardiac cycle. We examine BOLD pulsatility at rest, based on the non-parametric deviation from null metric, as well as changes following acute physiological stress from 20 min of moderate-intensity cycling in 45 healthy adolescents. We evaluate the influence of repetition time (TR) and echo time (TE) using simulated and multi-echo empirical data, respectively. There were tissue-specific and voxel-wise BOLD pulsatility decreases 20 min following exercise cessation. BOLD pulsatility detection was comparable over a range of TR and TE values when scan volumes were kept constant; however, short TRs (≤500 ms) and TEs (∼14 ms) acquisitions would yield the most efficient detection. Results suggest cardiac-related BOLD pulsatility may represent a robust and easily adopted method of mapping cerebrovascular pulsatility with voxel-wise resolution.
Collapse
Affiliation(s)
- Athena E Theyers
- 1 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ontario, Canada.,2 Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,3 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- 1 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ontario, Canada.,2 Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,4 Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada.,5 Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Arron Ws Metcalfe
- 1 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ontario, Canada.,2 Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,4 Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Andrew D Robertson
- 1 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ontario, Canada.,2 Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- 1 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ontario, Canada.,2 Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,3 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Vali A, Aristova M, Vakil P, Abdalla R, Prabhakaran S, Markl M, Ansari SA, Schnell S. Semi-automated analysis of 4D flow MRI to assess the hemodynamic impact of intracranial atherosclerotic disease. Magn Reson Med 2019; 82:749-762. [PMID: 30924197 DOI: 10.1002/mrm.27747] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/03/2019] [Accepted: 03/02/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE This study evaluated the feasibility of using 4D flow MRI and a semi-automated analysis tool to assess the hemodynamic impact of intracranial atherosclerotic disease (ICAD). The ICAD impact was investigated by evaluating pressure drop (PD) at the atherosclerotic stenosis and changes in cerebral blood flow distribution in patients compared to healthy controls. METHODS Dual-venc 4D flow MRI was acquired in 25 healthy volunteers and 16 ICAD patients (ICA, N = 3; MCA, N = 13) with mild (<50%), moderate (50-69%), or severe (>70%) intracranial stenosis. A semi-automated analysis tool was developed to quantify velocity and flow from 4D flow MRI and to evaluate cerebral blood flow redistribution. PD at stenosis was estimated using the Bernoulli equation. The PD calculation was examined by an in vitro phantom study against flow simulations. RESULTS Flow analysis in controls indicated symmetry in blood flow rate (FR) and peak velocity (PV) between the brain hemispheres. For patients, PV in the affected hemisphere was significantly (65%) higher than the normal side (P = 0.002). However, FR to both hemispheres of the brain was the same. The PD depicted significant correlation with PV asymmetry in patients (ρ = 0.67 and P = 0.02), and it was significantly higher for severe compared to moderate stenosis (3.73 vs. 2.30 mm Hg, P = 0.02). CONCLUSION 4D flow MRI quantification enables assessment of the hemodynamic impact of ICAD. The significant difference of the PD between patients with severe and moderate stenosis and its correlation with PV asymmetry suggest that PD may be a pertinent hemodynamic biomarker to evaluate ICAD.
Collapse
Affiliation(s)
- Alireza Vali
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Maria Aristova
- Department of Radiology, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Parmede Vakil
- Department of Radiology, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Ramez Abdalla
- Department of Radiology, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Sameer A Ansari
- Department of Radiology, Northwestern University, Chicago, Illinois.,Department of Neurology, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Susanne Schnell
- Department of Radiology, Northwestern University, Chicago, Illinois
| |
Collapse
|
42
|
Dunås T, Holmgren M, Wåhlin A, Malm J, Eklund A. Accuracy of blood flow assessment in cerebral arteries with 4D flow MRI: Evaluation with three segmentation methods. J Magn Reson Imaging 2019; 50:511-518. [PMID: 30637846 PMCID: PMC6767555 DOI: 10.1002/jmri.26641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/03/2022] Open
Abstract
Background Accelerated 4D flow MRI allows for high‐resolution velocity measurements with whole‐brain coverage. Such scans are increasingly used to calculate flow rates of individual arteries in the vascular tree, but detailed information about the accuracy and precision in relation to different postprocessing options is lacking. Purpose To evaluate and optimize three proposed segmentation methods and determine the accuracy of in vivo 4D flow MRI blood flow rate assessments in major cerebral arteries, with high‐resolution 2D PCMRI as a reference. Study Type Prospective. Subjects Thirty‐five subjects (20 women, 79 ± 5 years, range 70–91 years). Field Strength/Sequence 4D flow MRI with PC‐VIPR and 2D PCMRI acquired with a 3 T scanner. Assessment We compared blood flow rates measured with 4D flow MRI, to the reference, in nine main cerebral arteries. Lumen segmentation in the 4D flow MRI was performed with k‐means clustering using four different input datasets, and with two types of thresholding methods. The threshold was defined as a percentage of the maximum intensity value in the complex difference image. Local and global thresholding approaches were used, with evaluated thresholds from 6–26%. Statistical Tests Paired t‐test, F‐test, linear correlation (P < 0.05 was considered significant) along with intraclass correlation (ICC). Results With the thresholding methods, the lowest average flow difference was obtained for 20% local (0.02 ± 15.0 ml/min, ICC = 0.97, n = 310) or 10% global (0.08 ± 17.3 ml/min, ICC = 0.97, n = 310) thresholding with a significant lower standard deviation for local (F‐test, P = 0.01). For all clustering methods, we found a large systematic underestimation of flow compared with 2D PCMRI (16.1–22.3 ml/min). Data Conclusion A locally adapted threshold value gives a more stable result compared with a globally fixed threshold. 4D flow with the proposed segmentation method has the potential to become a useful reliable clinical tool for assessment of blood flow in the major cerebral arteries. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:511–518.
Collapse
Affiliation(s)
- Tora Dunås
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | | | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| |
Collapse
|
43
|
Dunås T, Wåhlin A, Zarrinkoob L, Malm J, Eklund A. 4D flow MRI—Automatic assessment of blood flow in cerebral arteries. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae8d1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Orita E, Murai Y, Sekine T, Takagi R, Amano Y, Ando T, Iwata K, Obara M, Kumita S. Four-Dimensional Flow MRI Analysis of Cerebral Blood Flow Before and After High-Flow Extracranial–Intracranial Bypass Surgery With Internal Carotid Artery Ligation. Neurosurgery 2018; 85:58-64. [DOI: 10.1093/neuros/nyy192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erika Orita
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | - Yasuo Murai
- Depar-tment of Neurological Surgery, Nippon Medical School, Tokyo, Japan
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | - Ryo Takagi
- Department of Radiology, Nippon Medical School, Tokyo, Japan
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuo Amano
- Department of Radiology, Nippon Medical School, Tokyo, Japan
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Takahiro Ando
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | - Kotomi Iwata
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | | | | |
Collapse
|
45
|
Cornelissen BMW, Schneiders JJ, Sprengers ME, van den Berg R, van Ooij P, Nederveen AJ, van Bavel E, Vandertop WP, Slump CH, Marquering HA, Majoie CBLM. Aneurysmal Parent Artery-Specific Inflow Conditions for Complete and Incomplete Circle of Willis Configurations. AJNR Am J Neuroradiol 2018; 39:910-915. [PMID: 29599169 DOI: 10.3174/ajnr.a5602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/31/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hemodynamics are thought to play a role in intracranial aneurysm growth and rupture. Computational fluid dynamics is frequently performed to assess intra-aneurysmal hemodynamics, using generalized flow waveforms of healthy volunteers as inflow boundary conditions. The purpose of this study was to assess differences in inflow conditions for different aneurysmal parent artery locations and variations of circle of Willis configurations. MATERIALS AND METHODS In a series of 96 patients with 103 aneurysms, velocity measurements were acquired using 2D phase-contrast MR imaging perpendicular to the aneurysmal parent arteries in the circle of Willis. Circle of Willis configurations were inspected for variations using multiple overlapping thin-slab-acquisition MRAs. Flow rates, velocity magnitudes, and pulsatility indices were calculated for each parent artery location in subgroups of complete and incomplete circle of Willis configurations. RESULTS Flow rates, velocity magnitudes, and pulsatility indices were significantly different among aneurysmal parent arteries. Incomplete circle of Willis configurations were observed in 24% of the cases. Significantly lower basilar artery flow rates were observed in configurations with hypoplastic P1 segments. Significantly higher A1 flow rates were observed in configurations with a hypoplastic contralateral A1 segment. CONCLUSIONS Inflow conditions vary substantially between aneurysmal parent arteries and circle of Willis configurations. We have created a collection of parent artery-specific inflow conditions tailored to the patient-specific circle of Willis configuration that can be used in future computational fluid dynamics studies analyzing intra-aneurysmal hemodynamics.
Collapse
Affiliation(s)
- B M W Cornelissen
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.) .,Biomedical Engineering and Physics (B.M.W.C., E.v.B., H.A.M.).,MIRA Institute for Biomedical Technology and Technical Medicine (B.M.W.C., C.H.S.), University of Twente, Enschede, the Netherlands
| | - J J Schneiders
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.).,Department of Radiology (J.J.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M E Sprengers
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.)
| | - R van den Berg
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.)
| | - P van Ooij
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.)
| | - A J Nederveen
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.)
| | - E van Bavel
- Biomedical Engineering and Physics (B.M.W.C., E.v.B., H.A.M.)
| | - W P Vandertop
- Neurosurgery (W.P.V.), Academic Medical Center, Amsterdam, the Netherlands
| | - C H Slump
- MIRA Institute for Biomedical Technology and Technical Medicine (B.M.W.C., C.H.S.), University of Twente, Enschede, the Netherlands
| | - H A Marquering
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.).,Biomedical Engineering and Physics (B.M.W.C., E.v.B., H.A.M.)
| | - C B L M Majoie
- From the Departments of Radiology and Nuclear Medicine (B.M.W.C., J.J.S., M.E.S., R.v.d.B., P.v.O., A.J.N., H.A.M., C.B.L.M.M.)
| |
Collapse
|
46
|
Chnafa C, Bouillot P, Brina O, Delattre BMA, Vargas MI, Lovblad KO, Pereira VM, Steinman DA. Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation. Physiol Meas 2017; 38:2044-2057. [DOI: 10.1088/1361-6579/aa92bf] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Mikhail Kellawan J, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J Cereb Blood Flow Metab 2017; 37:2025-2034. [PMID: 27406213 PMCID: PMC5464698 DOI: 10.1177/0271678x16659497] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inability to quantify cerebral blood flow and changes in macrocirculation cross-sectional area in all brain regions impedes robust insight into hypoxic cerebral blood flow control. We applied four-dimensional flow magnetic resonance imaging to quantify cerebral blood flow (ml • min-1) and cross-sectional area (mm2) simultaneously in 11 arteries. In healthy adults, blood pressure, O2 Saturation (SpO2), and end-tidal CO2 were measured at baseline and steady-state hypoxia (FiO2 = 0.11). We investigated left and right: internal carotid, vertebral, middle, anterior, posterior cerebral arteries, and basilar artery. Hypoxia (SpO2 = 80±2%) increased total cerebral blood flow from 621±38 to 742±50 ml • min-1 ( p < 0.05). Hypoxia increased cerebral blood flow, except in the right posterior cerebral arteries. Hypoxia increased cross-sectional area in the anterior arteries (left and right internal carotid arteries, left and right middle, p < 0.05; left and right anterior p = 0.08) but only the right vertebral artery of the posterior circulation. Nonetheless, relative cerebral blood flow distribution and vascular reactivity (Δ%cerebral blood flow • ΔSpO2-1) were not different between arteries. Collectively, moderate hypoxia: (1) increased cerebral blood flow, but relative distribution remains similar to normoxia, (2) evokes similar vascular reactivity between 11 arteries, and (3) increased cross-sectional area primarily in the anterior arteries. This study provides the first wide-ranging, quantitative, functional and structural data regarding intracranial arteries during hypoxia in humans, highlighting cerebral blood flow regulation of microcirculation and macrocirculation differs between anterior and posterior circulation.
Collapse
Affiliation(s)
- J Mikhail Kellawan
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| | - John W Harrell
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| | - Alejandro Roldan-Alzate
- 2 Departments of Medical Physics, University of Wisconsin - Madison, WI, USA.,3 Departments of Radiology, University of Wisconsin - Madison, WI, USA
| | - Oliver Wieben
- 2 Departments of Medical Physics, University of Wisconsin - Madison, WI, USA.,3 Departments of Radiology, University of Wisconsin - Madison, WI, USA
| | - William G Schrage
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
48
|
Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, Carlsson CM, Johnson SC, Wieben O. Changes in intracranial venous blood flow and pulsatility in Alzheimer's disease: A 4D flow MRI study. J Cereb Blood Flow Metab 2017; 37:2149-2158. [PMID: 27492950 PMCID: PMC5464708 DOI: 10.1177/0271678x16661340] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion may be important indicators of cerebrovascular health in aging and diseases of aging such as Alzheimer's disease. Noninvasive markers that assess these characteristics may be helpful in the study of co-occurrence of these diseases and potential additive and interacting effects. In this study, 4D flow MRI was used to measure intra-cranial flow features with cardiac-gated phase contrast MRI in cranial arteries and veins. Mean blood flow and pulsatility index as well as the transit time of the peak flow from the middle cerebral artery to the superior sagittal sinus were measured in a total of 104 subjects comprising of four groups: (a) subjects with Alzheimer's disease, (b) age-matched controls, (c) subjects with mild cognitive impairment, and (d) a group of late middle-aged with parental history of sporadic Alzheimer's disease. The Alzheimer's disease group exhibited: a significant decrease in mean blood flow in the superior sagittal sinus, transverse sinus, middle cerebral artery, and internal carotid arteries; a significant decrease of the peak and end diastolic blood flow in the middle cerebral artery and superior sagittal sinus; a faster transmission of peak flow from the middle cerebral artery to the superior sagittal sinus and increased pulsatility index along the carotid siphon.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sara E Berman
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
49
|
Bouillot P, Delattre BMA, Brina O, Ouared R, Farhat M, Chnafa C, Steinman DA, Lovblad KO, Pereira VM, Vargas MI. 3D phase contrast MRI: Partial volume correction for robust blood flow quantification in small intracranial vessels. Magn Reson Med 2017; 79:129-140. [PMID: 28244132 DOI: 10.1002/mrm.26637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE Recent advances in 3D-PCMRI (phase contrast MRI) sequences allow for measuring the complex hemodynamics in cerebral arteries. However, the small size of these vessels vs spatial resolution can lead to non-negligible partial volume artifacts, which must be taken into account when computing blood flow rates. For this purpose, we combined the velocity information provided by 3D-PCMRI with vessel geometry measured with 3DTOF (time of flight MRI) or 3DRA (3D rotational angiography) to correct the partial volume effects in flow rate assessments. METHODS The proposed methodology was first tested in vitro on cylindrical and patient specific vessels subject to fully controlled pulsatile flows. Both 2D- and 3D-PCMRI measurements using various spatial resolutions ranging from 20 to 1.3 voxels per vessel diameter were analyzed and compared with flowmeter baseline. Second, 3DTOF, 2D- and 3D-PCMRI measurements were performed in vivo on 35 patients harboring internal carotid artery (ICA) aneurysms indicated for endovascular treatments requiring 3DRA imaging. RESULTS The in vitro 2D- and 3D-PCMRI mean flow rates assessed with partial volume correction showed very low sensitivity to the acquisition resolution above ≈2 voxels per vessel diameter while uncorrected flow rates deviated critically when decreasing the spatial resolution. 3D-PCMRI flow rates measured in vivo in ICA agreed very well with 2D-PCMRI data and a good flow conservation was observed at the C7 bifurcation. Globally, partial volume correction led to 10-15% lower flow rates than uncorrected values as those reported in most of the published studies on intracranial flows. CONCLUSION Partial volume correction may improve the accuracy of PCMRI flow rate measurements especially in small vessels such as intracranial arteries. Magn Reson Med 79:129-140, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pierre Bouillot
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratory for Hydraulic Machines (LMH), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte M A Delattre
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Olivier Brina
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Rafik Ouared
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mohamed Farhat
- Laboratory for Hydraulic Machines (LMH), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christophe Chnafa
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | - Karl-Olof Lovblad
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vitor M Pereira
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Maria I Vargas
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Chnafa C, Valen-Sendstad K, Brina O, Pereira V, Steinman D. Improved reduced-order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops. J Biomech 2017; 51:83-88. [DOI: 10.1016/j.jbiomech.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/04/2016] [Accepted: 12/03/2016] [Indexed: 01/25/2023]
|