1
|
Sharma B, Mittal A, Sharma R, Rai P, Aulakh KK. Exploring Tractography: An Analysis of Brain Connectivity Patterns in Men. Cureus 2024; 16:e73991. [PMID: 39703304 PMCID: PMC11656998 DOI: 10.7759/cureus.73991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION White matter tracts that connect different parts of the brain comprise the structural connectome, which is essential to its operation. Assessing behavioral changes and brain health requires an understanding of these tracts. Diffusion tensor imaging (DTI), in particular, allows for the thorough viewing and characterization of these routes in tractography. In order to assess the impact of aging on white matter integrity, this study examines the 10 main white matter tracts in men, paying particular attention to volume, fractional anisotropy (FA), and mean diffusivity (MD). MATERIALS AND METHODS A cohort of 49 men aged 18-50 years was examined using a Philips Multiva 1.5T MRI. DTI scans were performed after obtaining informed consent. Participants with neuronal disorders were excluded. Ten tracts were assessed: inferior fronto-occipital fasciculus (IFOF), superior fronto-occipital fasciculus (SFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), cingulum, corticospinal tract (CST), forceps major, forceps minor, uncinate fasciculus, and anterior thalamic radiation (ATR). Statistical analysis employed Kruskal-Wallis tests to compare age groups. RESULTS Significant age-related differences were observed in the IFOF, which exhibited notable changes in both volume and MD. Specifically, the IFOF's volume peaked in the 31-40 age group (14.42 ± 6.05) and declined in the 41-50 age group (8.71 ± 5.07), with a statistically significant p-value of 0.019. In parallel, MD increased significantly with age, moving from 0.86 ± 0.08 in the 18-30 group to 1.09 ± 0.13 in the 31-40 group and stabilizing at 0.96 ± 0.12 in the 41-50 group (p < 0.001). Notably, while the FA values remained relatively stable across age groups (p = 0.063), the increase in MD suggests a decline in neural efficiency or potential myelin degradation. Other tracts, including the SFOF and SLF, displayed stability in volume, FA, and MD across age groups, indicating a degree of resilience in certain neural pathways. CONCLUSION This study highlights the utility of tractography in understanding age-related changes in white matter, such as in Alzheimer's disease, age- and sex-related abnormalities, and dementia, particularly emphasizing the IFOF's sensitivity. Findings offer insights into brain connectivity and neurological health, indicating a need for further contribution to inform interventions aimed at cognitive preservation.
Collapse
Affiliation(s)
- Bhamini Sharma
- Anatomy, Maharishi Markandeshwar Institute of Medical Science & Research, Ambala, IND
| | - Amit Mittal
- Radiodiagnosis, Maharishi Markandeshwar Institute of Medical Science & Research, Ambala, IND
| | - Rahul Sharma
- Anatomy, All India Institute of Medical Sciences, Rishikesh, IND
| | - Pinki Rai
- Anatomy, Government Medical College & Hospital, Chandigarh, IND
| | - Kirandeep K Aulakh
- Anatomy, Maharishi Markandeshwar Institute of Medical Science & Research, Ambala, IND
| |
Collapse
|
2
|
Yuan-Mou Yang J, Cottier R, Beare R, Genc S, Diadori P, Ngo A, Sahlas E, Bernhardt BC, Arbour G, Bouthillier A, Hadjinicolaou A, Weil AG. Advanced tractography-guided laser ablation of a perirolandic long-term epilepsy-associated tumor: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24139. [PMID: 39378521 PMCID: PMC11465345 DOI: 10.3171/case24139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/11/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Microsurgical resection of drug-resistant epilepsy-associated perirolandic lesions can lead to postoperative motor impairment. Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRgLITT) has emerged as a less invasive alternative, offering reduced surgical risks and improved neurological outcomes. Electrophysiological tools routinely used for motor mapping in resective microsurgery are incompatible with intraoperative MRI. The utilization of advanced neuroimaging adjuncts for eloquent brain mapping during MRgLITT is imperative. The authors present the case of a 17-year-old athlete who underwent MRgLITT for a perirolandic long-term epilepsy-associated tumor (LEAT). They performed probabilistic multi-tissue constrained spherical deconvolution (MT-CSD) tractography to delineate the corticospinal tract (CST) for presurgical planning and intraoperative image guidance. The CST tractography was integrated into neuronavigation and MRgLITT workstation software to guide the ablation while monitoring the CST throughout the procedure. OBSERVATIONS The integration of CST tractography into neuronavigation workstation planning and laser ablation workstation thermoablation is feasible and practical, facilitating complete ablation of a deep-seated perirolandic LEAT while preserving motor function. LESSONS Probabilistic MT-CSD tractography enhanced MRgLITT planning as well as intraprocedural CST visualization and preservation, leading to a favorable functional outcome. The limitations of tractography and the predictability of thermal output distribution compared to the gold standard of microsurgical resection merit further discussion. https://thejns.org/doi/10.3171/CASE24139.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children’s Hospital, Melbourne, Australia
- Neuroscience Research, Murdoch Children’s Research Institute, Melbourne, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Rachel Cottier
- Brain and Development Research Axis, Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
- Division of Neurosurgery, Department of Surgery, Sainte-Justine University Hospital Centre, Montréal, Québec, Canada
| | - Richard Beare
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- National Centre for Healthy Ageing, Melbourne, Australia
- Peninsula Clinical School, Central Clinical School, Monash University, Frankston, Australia
| | - Sila Genc
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children’s Hospital, Melbourne, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Paola Diadori
- Division of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montréal, Québec, Canada
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Gabrielle Arbour
- Division of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montréal, Québec, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Centre (CHUM), Montréal, Québec, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montréal, Québec, Canada
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| | - Alexander G Weil
- Brain and Development Research Axis, Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
- Division of Neurosurgery, Department of Surgery, Sainte-Justine University Hospital Centre, Montréal, Québec, Canada
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Centre (CHUM), Montréal, Québec, Canada
| |
Collapse
|
3
|
Radwan AM, Emsell L, Vansteelandt K, Cleeren E, Peeters R, De Vleeschouwer S, Theys T, Dupont P, Sunaert S. Comparative validation of automated presurgical tractography based on constrained spherical deconvolution and diffusion tensor imaging with direct electrical stimulation. Hum Brain Mapp 2024; 45:e26662. [PMID: 38646998 PMCID: PMC11033921 DOI: 10.1002/hbm.26662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance. This cross-sectional study investigated whether constrained spherical deconvolution (CSD) methods were more accurate than diffusion tensor imaging (DTI)-based methods for presurgical white matter mapping using intraoperative direct electrical stimulation (DES) as the ground truth. METHODS Five different tractography methods were compared (three DTI-based and two CSD-based) in 22 preoperative neurosurgical patients undergoing surgery with DES mapping. The corticospinal tract (CST, N = 20) and arcuate fasciculus (AF, N = 7) bundles were reconstructed, then minimum distances between tractograms and DES coordinates were compared between tractography methods. Receiver-operating characteristic (ROC) curves were used for both bundles. For the CST, binary agreement, linear modeling, and posthoc testing were used to compare tractography methods while correcting for relative lesion and bundle volumes. RESULTS Distance measures between 154 positive (functional response, pDES) and negative (no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. Higher agreement was found between pDES coordinates and CSD-based compared to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST tractograms showed significantly higher agreement with pDES, which was confirmed by linear modeling and posthoc tests (PFWE < .05). CONCLUSIONS CSD-based CST tractograms were more accurate than DTI-based ones when validated using DES-based assessment of motor and sensory function. This demonstrates the potential benefits of structural mapping using CSD in clinical practice.
Collapse
Affiliation(s)
- Ahmed Mohamed Radwan
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Kristof Vansteelandt
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Evy Cleeren
- UZ Leuven, Department of NeurologyLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
| | | | - Steven De Vleeschouwer
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuvenBelgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of RadiologyLeuvenBelgium
| |
Collapse
|
4
|
Becker D, Scherer M, Neher P, Jungk C, Jesser J, Pflüger I, Bendszus M, Maier-Hein K, Unterberg A. Q-ball high-resolution fiber tractography of language associated tracts: quantitative evaluation of applicability for glioma resections. J Neurosurg Sci 2024; 68:1-12. [PMID: 31680507 DOI: 10.23736/s0390-5616.19.04782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To date, fiber tractography (FT) is predominantly based on diffusion tensor imaging (DTI). High angular resolution diffusion imaging (HARDI)-based reconstructions have become a focus of interest, enabling the resolution of intravoxel fiber crossing. However, experience with high resolution tractography (HRFT) for neurosurgical applications is still limited to a few reports. This prospectively designed feasibility study shares our initial experience using an analytical q-ball approach (QBI) for FT of language-associated pathways in comparison with DTI-FT, focussing on a quantitative analysis and evaluation of its applicability in clinical routine. METHODS Probabilistic QBI-, and DTI-FT were performed for the major components of the language-associated fiber bundles (superior longitudinal fasciculus, inferior fronto-occipital fasciculus, medial/inferior longitudinal faciculus) in 11 patients with eloquent gliomas. The data was derived from a routine DWI sequence (b=1000s/mm2, 64 gradient directions). Quantitative analysis evaluated tract volume (TV), tract length (TL) and tract density (TD). Results were correlated to tumor and edema size. RESULTS Quantitative analysis showed larger TV and TL of the overall fiber object using QBI-FT compared with DTI-FT (TV: 16.45±1.85 vs. 10.07±1.15cm3; P<0.0001; TL: 81.95±6.14 vs. 72.06±6.92 mm; P=0.0011). Regarding overall TD, DTI delivered significantly higher values (40.57±6.59 vs. 60.98±15.94 points/voxel; P=0.0118). Bland-Altman analysis illustrated a systematic advantage to yield lager TV and TL via QBI compared with DTI for all reconstructed pathways. The results were independent of tumor or edema volume. CONCLUSIONS QBI proved to be suitable for an application in the neurosurgical setting without additional expense for the patient. Quantitative analysis of FT reveals larger overall TV, longer TL with lower TD using QBI compared with DTI, suggesting the better depiction of marginal and terminal fibers according to neuroanatomical knowledge. This emphasizes the known limitation of DTI to underestimate the dimensions of a pathway. Rather than relying on DTI, sophisticated HRFT techniques should be considered for preoperative planning and intraoperative guidance in selected cases of eloquent glioma surgery.
Collapse
Affiliation(s)
- Daniela Becker
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany -
| | - Moritz Scherer
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Neher
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Jessica Jesser
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Irada Pflüger
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Landers MJF, Rutten GJM, De Baene W, Gehring K, Sitskoorn MM, Butterbrod E. Executive functioning following surgery near the frontal aslant tract in low-grade glioma patients: A patient-specific tractography study. Cortex 2023; 167:66-81. [PMID: 37540952 DOI: 10.1016/j.cortex.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/09/2023] [Accepted: 05/18/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The Frontal Aslant Tract (FAT) has been associated with executive functions (EF), but it remains unclear what role the FAT plays in EF, and whether preoperative dysfunction of the FAT is associated to long-lasting postsurgical executive impairments. METHODS In this study, we examined the course of EF from pre-surgery (n = 75) to 3 (n = 61) and 12 (n = 25) months after surgery in patients with frontal and parietal low-grade gliomas (LGGs), to establish the degree to which long-term EF deficits exist. Secondly, we used patient-specific tractography to investigate the extent to which overlap of the tumor with the FAT, as well as integrity of the FAT, presurgery were related to EF on the short and longer term after surgery. RESULTS LGG patients performed worse than healthy controls on all EF tests before and 3 months postsurgery. Whereas performances on three out of the four tests had normalized 1 year postsurgery (n = 26), performance on the cognitive flexibility test remained significantly worse than in healthy controls. Patients in whom the tumor overlapped with the core of the right FAT performed worse presurgery on three of the EF tests compared to those in whom the tumor did not overlap with the right FAT. Presurgical right FAT integrity was not related to presurgical EF, but only to postsurgical EF (from pre-to 3 months postsurgery). Longitudinal analyses demonstrated that patients with right (but not left) FAT core overlap performed on average worse over the pre- and postsurgical timepoints on the cognitive flexibility test. CONCLUSIONS We emphasized that LGG patients perform worse than healthy controls on the EF tests, which normalizes 1-year postsurgery except for cognitive flexibility. Importantly, in patients with right hemispheric tumors, tumor involvement of the FAT was associated with worse pre- and 3- months postsurgical performance, specifically concerning cognitive flexibility.
Collapse
Affiliation(s)
- Maud J F Landers
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands.
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - K Gehring
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Elke Butterbrod
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Sullivan JJ, Zekelman LR, Zhang F, Juvekar P, Torio EF, Bunevicius A, Essayed WI, Bastos D, He J, Rigolo L, Golby AJ, O'Donnell LJ. Directionally encoded color track density imaging in brain tumor patients: A potential application to neuro-oncology surgical planning. Neuroimage Clin 2023; 38:103412. [PMID: 37116355 PMCID: PMC10165166 DOI: 10.1016/j.nicl.2023.103412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Diffusion magnetic resonance imaging white matter tractography, an increasingly popular preoperative planning modality used for pre-surgical planning in brain tumor patients, is employed with the goal of maximizing tumor resection while sparing postoperative neurological function. Clinical translation of white matter tractography has been limited by several shortcomings of standard diffusion tensor imaging (DTI), including poor modeling of fibers crossing through regions of peritumoral edema and low spatial resolution for typical clinical diffusion MRI (dMRI) sequences. Track density imaging (TDI) is a post-tractography technique that uses the number of tractography streamlines and their long-range continuity to map the white matter connections of the brain with enhanced image resolution relative to the acquired dMRI data, potentially offering improved white matter visualization in patients with brain tumors. The aim of this study was to assess the utility of TDI-based white matter maps in a neurosurgical planning context compared to the current clinical standard of DTI-based white matter maps. METHODS Fourteen consecutive brain tumor patients from a single institution were retrospectively selected for the study. Each patient underwent 3-Tesla dMRI scanning with 30 gradient directions and a b-value of 1000 s/mm2. For each patient, two directionally encoded color (DEC) maps were produced as follows. DTI-based DEC-fractional anisotropy maps (DEC-FA) were generated on the scanner, while DEC-track density images (DEC-TDI) were generated using constrained spherical deconvolution based tractography. The potential clinical utility of each map was assessed by five practicing neurosurgeons, who rated the maps according to four clinical utility statements regarding different clinical aspects of pre-surgical planning. The neurosurgeons rated each map according to their agreement with four clinical utility statements regarding if the map 1 identified clinically relevant tracts, (2) helped establish a goal resection margin, (3) influenced a planned surgical route, and (4) was useful overall. Cumulative link mixed effect modeling and analysis of variance were performed to test the primary effect of map type (DEC-TDI vs. DEC-FA) on rater score. Pairwise comparisons using estimated marginal means were then calculated to determine the magnitude and directionality of differences in rater scores by map type. RESULTS A majority of rater responses agreed with the four clinical utility statements, indicating that neurosurgeons found both DEC maps to be useful. Across all four investigated clinical utility statements, the DEC map type significantly influenced rater score. Rater scores were significantly higher for DEC-TDI maps compared to DEC-FA maps. The largest effect size in rater scores in favor of DEC-TDI maps was observed for clinical utility statement 2, which assessed establishing a goal resection margin. CONCLUSION We observed a significant neurosurgeon preference for DEC-TDI maps, indicating their potential utility for neurosurgical planning.
Collapse
Affiliation(s)
- Jared J Sullivan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Erickson F Torio
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Walid I Essayed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Dhiego Bastos
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Jianzhong He
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States
| | - Laura Rigolo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Alexandra J Golby
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States.
| |
Collapse
|
7
|
Tuleasca C, Peciu-Florianu I, Strachowski O, Derre B, Vannod-Michel Q, Reyns N. How to combine the use of intraoperative magnetic resonance imaging (MRI) and awake craniotomy for microsurgical resection of hemorrhagic cavernous malformation in eloquent area: a case report. J Med Case Rep 2023; 17:160. [PMID: 37041613 PMCID: PMC10091828 DOI: 10.1186/s13256-023-03816-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Cavernous malformations are clusters of abnormal and hyalinized capillaries without interfering brain tissue. Here, we present a cavernous malformation operated under awake conditions, due to location, in an eloquent area and using intraoperative magnetic resonance imaging due to patient's movement upon the awake phase. CASE PRESENTATION We present the pre-, per-, and postoperative course of an inferior parietal cavernous malformation, located in eloquent area, in a 27-year-old right-handed Caucasian male, presenting with intralesional hemorrhage and epilepsy. Preoperative diffusion tensor imaging has shown the cavernous malformation at the interface between the arcuate fasciculus and the inferior fronto-occipital fasciculus. We describe the microsurgical approach, combining preoperative diffusion tensor imaging, neuronavigation, awake microsurgical resection, and intraoperative magnetic resonance imaging. CONCLUSION Complete microsurgical en bloc resection has been performed and is feasible even in eloquent locations. Intraoperative magnetic resonance imaging was considered an important adjunct, particularly used in this case as the patient moved during the "awake" phase of the surgery and thus neuronavigation was not accurate anymore. Postoperative course was marked by a unique, generalized seizure without any adverse event. Immediate and 3 months postoperative magnetic resonance imaging confirmed the absence of any residue. Pre- and postoperative neuropsychological exams were unremarkable.
Collapse
Affiliation(s)
- Constantin Tuleasca
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France.
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
- Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Iulia Peciu-Florianu
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Ondine Strachowski
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Benoit Derre
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Quentin Vannod-Michel
- Neuroradiology Service, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Nicolas Reyns
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| |
Collapse
|
8
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
9
|
Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, Filss CP, Weiss Lucas C, Ruge MI, Langen KJ, Shah NJ, Fink GR, Galldiks N, Kocher M. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. Front Oncol 2022; 12:998069. [PMID: 36452509 PMCID: PMC9702073 DOI: 10.3389/fonc.2022.998069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. PATIENTS AND METHODS This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. RESULTS Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. CONCLUSIONS These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.
Collapse
Affiliation(s)
- Michel Friedrich
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Christian P. Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany
- Department of Neurology, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
10
|
Usuda N, Sugawara SK, Fukuyama H, Nakazawa K, Amemiya K, Nishimura Y. Quantitative comparison of corticospinal tracts arising from different cortical areas in humans. Neurosci Res 2022; 183:30-49. [PMID: 35787428 DOI: 10.1016/j.neures.2022.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/05/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
The corticospinal tract (CST), which plays a major role in the control of voluntary limb movements, arises from multiple motor- and somatosensory-related areas in monkeys. Although the cortical origin and quantitative differences in CSTs among the cortical areas are well-documented in monkeys, they are unclear in humans. We quantitatively investigated the CSTs from the cerebral cortex to the cervical cord in healthy volunteers using fiber tractography of diffusion-weighted magnetic resonance imaging. The corticospinal (CS) streamlines arose from nine cortical areas: primary motor area (mean ± SD = 49.71 ± 1.61%), dorsal (16.33 ± 1.37%) and ventral (11.02 ± 0.90%) premotor cortex, supplementary motor area (5.14 ± 0.36%), pre-supplementary motor area (2.46 ± 0.26%), primary somatosensory cortex (11.06 ± 0.91%), Brodmann area 5 (0.88 ± 0.09%), caudal cingulate zone (1.70 ± 0.30%), and posterior part of the rostral cingulate zone (1.70 ± 0.34%). In all cortical areas, the number of CS streamlines gradually decreased from the rostral to caudal spinal segments, but the proportion was maintained throughout the cervical cord. Over 75% of CS streamlines arose from the lateral surface of the frontal lobe, which may explain the voluntary control of dexterous and flexible limb movements in humans. (197/200 words).
Collapse
Affiliation(s)
- Noboru Usuda
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Hiroyuki Fukuyama
- Department of Radiology, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo 156-0057, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Kiyomi Amemiya
- Department of Radiology, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo 156-0057, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| |
Collapse
|
11
|
Shams B, Wang Z, Roine T, Aydogan DB, Vajkoczy P, Lippert C, Picht T, Fekonja LS. Machine learning-based prediction of motor status in glioma patients using diffusion MRI metrics along the corticospinal tract. Brain Commun 2022; 4:fcac141. [PMID: 35694146 PMCID: PMC9175193 DOI: 10.1093/braincomms/fcac141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal detailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the clinical utility of diffusion MRI metrics along the corticospinal tract, investigating whether motor glioma patients can be classified with respect to their motor status. We retrospectively included 116 brain tumour patients suffering from either left or right supratentorial, unilateral World Health Organization Grades II, III and IV gliomas with a mean age of 53.51 ± 16.32 years. Around 37% of patients presented with preoperative motor function deficits according to the Medical Research Council scale. At group level comparison, the highest non-overlapping diffusion MRI differences were detected in the superior portion of the tracts’ profiles. Fractional anisotropy and fibre density decrease, apparent diffusion coefficient axial diffusivity and radial diffusivity increase. To predict motor deficits, we developed a method based on a support vector machine using histogram-based features of diffusion MRI tract profiles (e.g. mean, standard deviation, kurtosis and skewness), following a recursive feature elimination method. Our model achieved high performance (74% sensitivity, 75% specificity, 74% overall accuracy and 77% area under the curve). We found that apparent diffusion coefficient, fractional anisotropy and radial diffusivity contributed more than other features to the model. Incorporating the patient demographics and clinical features such as age, tumour World Health Organization grade, tumour location, gender and resting motor threshold did not affect the model’s performance, revealing that these features were not as effective as microstructural measures. These results shed light on the potential patterns of tumour-related microstructural white matter changes in the prediction of functional deficits.
Collapse
Affiliation(s)
- Boshra Shams
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science , Espoo, Finland
- Turku Brain and Mind Center, University of Turku , Turku, Finland
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science , Espoo, Finland
- Department of Psychiatry, Helsinki University and Helsinki University Hospital , Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Kuopio, Finland
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam , Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| | - Lucius S. Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| |
Collapse
|
12
|
Accurate Preoperative Identification of Motor Speech Area as Termination of Arcuate Fasciculus Depicted by Q-ball Imaging Tractography. World Neurosurg 2022; 164:e764-e771. [PMID: 35595046 DOI: 10.1016/j.wneu.2022.05.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Tractography is one way to predict the distribution of cortical functional domains preoperatively. Diffusion tensor tractography (DTT) is commonly used in clinical practice but is known to have limitations in delineating crossed fibers, which can be overcome by q-ball imaging tractography (QBT). In this study, we aimed to compare the reliability of these two methods, based on the spatial correlation between the arcuate fasciculus depicted by tractography and direct cortical stimulation (DCS) during awake surgery. METHODS Fifteen patients with glioma underwent awake surgery with DCS. Tractography was depicted in a 3D computer graphic model preoperatively, which was integrated with the photograph of the actual brain cortex using our novel mixed-reality technology. The termination of the arcuate fasciculus depicted by either DTT or QBT and the results of DCS were compared, and sensitivity and specificity were calculated in speech-associated brain gyri: pars triangularis, pars opercularis, ventral precentral gyrus, and middle frontal gyrus. RESULTS QBT had significantly better sensitivity and lower false positive rate than DTT in the pars orpercularis. The same trend was noted for the other gyri. CONCLUSIONS QBT is more reliable than DTT in identification of the motor speech area and may be clinically useful in brain tumor surgery.
Collapse
|
13
|
Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Nahed BV, Berger MS, Vincent AJPE. Safe Surgery for Glioblastoma: Recent Advances and Modern Challenges. Neurooncol Pract 2022; 9:364-379. [PMID: 36127890 PMCID: PMC9476986 DOI: 10.1093/nop/npac019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the major challenges during glioblastoma surgery is balancing between maximizing extent of resection and preventing neurological deficits. Several surgical techniques and adjuncts have been developed to help identify eloquent areas both preoperatively (fMRI, nTMS, MEG, DTI) and intraoperatively (imaging (ultrasound, iMRI), electrostimulation (mapping), cerebral perfusion measurements (fUS)), and visualization (5-ALA, fluoresceine)). In this review, we give an update of the state-of-the-art management of both primary and recurrent glioblastomas. We will review the latest surgical advances, challenges, and approaches that define the onco-neurosurgical practice in a contemporary setting and give an overview of the current prospective scientific efforts.
Collapse
Affiliation(s)
| | | | | | - Philippe Schucht
- Department of Neurosurgery, University Hospital Bern, Switzerland
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston MA, USA
| | | | | |
Collapse
|
14
|
Zhylka A, Sollmann N, Kofler F, Radwan A, De Luca A, Gempt J, Wiestler B, Menze B, Krieg SM, Zimmer C, Kirschke JS, Sunaert S, Leemans A, Pluim JPW. Tracking the Corticospinal Tract in Patients With High-Grade Glioma: Clinical Evaluation of Multi-Level Fiber Tracking and Comparison to Conventional Deterministic Approaches. Front Oncol 2021; 11:761169. [PMID: 34970486 PMCID: PMC8712728 DOI: 10.3389/fonc.2021.761169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
While the diagnosis of high-grade glioma (HGG) is still associated with a considerably poor prognosis, neurosurgical tumor resection provides an opportunity for prolonged survival and improved quality of life for affected patients. However, successful tumor resection is dependent on a proper surgical planning to avoid surgery-induced functional deficits whilst achieving a maximum extent of resection (EOR). With diffusion magnetic resonance imaging (MRI) providing insight into individual white matter neuroanatomy, the challenge remains to disentangle that information as correctly and as completely as possible. In particular, due to the lack of sensitivity and accuracy, the clinical value of widely used diffusion tensor imaging (DTI)-based tractography is increasingly questioned. We evaluated whether the recently developed multi-level fiber tracking (MLFT) technique can improve tractography of the corticospinal tract (CST) in patients with motor-eloquent HGGs. Forty patients with therapy-naïve HGGs (mean age: 62.6 ± 13.4 years, 57.5% males) and preoperative diffusion MRI [repetition time (TR)/echo time (TE): 5000/78 ms, voxel size: 2x2x2 mm3, one volume at b=0 s/mm2, 32 volumes at b=1000 s/mm2] underwent reconstruction of the CST of the tumor-affected and unaffected hemispheres using MLFT in addition to deterministic DTI-based and deterministic constrained spherical deconvolution (CSD)-based fiber tractography. The brain stem was used as a seeding region, with a motor cortex mask serving as a target region for MLFT and a region of interest (ROI) for the other two algorithms. Application of the MLFT method substantially improved bundle reconstruction, leading to CST bundles with higher radial extent compared to the two other algorithms (delineation of CST fanning with a wider range; median radial extent for tumor-affected vs. unaffected hemisphere - DTI: 19.46° vs. 18.99°, p=0.8931; CSD: 30.54° vs. 27.63°, p=0.0546; MLFT: 81.17° vs. 74.59°, p=0.0134). In addition, reconstructions by MLFT and CSD-based tractography nearly completely included respective bundles derived from DTI-based tractography, which was however favorable for MLFT compared to CSD-based tractography (median coverage of the DTI-based CST for affected vs. unaffected hemispheres - CSD: 68.16% vs. 77.59%, p=0.0075; MLFT: 93.09% vs. 95.49%; p=0.0046). Thus, a more complete picture of the CST in patients with motor-eloquent HGGs might be achieved based on routinely acquired diffusion MRI data using MLFT.
Collapse
Affiliation(s)
- Andrey Zhylka
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Ahmed Radwan
- Department of Imaging and Pathology, Translational MRI, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- Neurology Department, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Bjoern Menze
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich (UZ), Zurich, Switzerland
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Sunaert
- Department of Imaging and Pathology, Translational MRI, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Radiology, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josien P. W. Pluim
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
15
|
Seow P, Hernowo AT, Narayanan V, Wong JHD, Bahuri NFA, Cham CY, Abdullah NA, Kadir KAA, Rahmat K, Ramli N. Neural Fiber Integrity in High- Versus Low-Grade Glioma using Probabilistic Fiber Tracking. Acad Radiol 2021; 28:1721-1732. [PMID: 33023809 DOI: 10.1016/j.acra.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/02/2023]
Abstract
RATIONALE AND OBJECTIVES Gliomatous tumors are known to affect neural fiber integrity, either by displacement or destruction. The aim of this study is to investigate the integrity and distribution of the white matter tracts within and around the glioma regions using probabilistic fiber tracking. MATERIAL AND METHODS Forty-two glioma patients were subjected to MRI using a standard tumor protocol with diffusion tensor imaging (DTI). The tumor and peritumor regions were delineated using snake model with reference to structural and diffusion MRI. A preprocessing pipeline of the structural MRI image, DTI data, and tumor regions was implemented. Tractography was performed to delineate the white matter (WM) tracts in the selected tumor regions via probabilistic fiber tracking. DTI indices were investigated through comparative mapping of WM tracts and tumor regions in low-grade gliomas (LGG) and high-grade gliomas (HGG). RESULTS Significant differences were seen in the planar tensor (Cp) in peritumor regions; mean diffusivity, axial diffusivity and pure isotropic diffusion in solid-enhancing tumor regions; and fractional anisotropy, axial diffusivity, pure anisotropic diffusion (q), total magnitude of diffusion tensor (L), relative anisotropy, Cp and spherical tensor (Cs) in solid nonenhancing tumor regions for affected WM tracts. In most cases of HGG, the WM tracts were not completely destroyed, but found intact inside the tumor. DISCUSSION Probabilistic fiber tracking revealed the existence and distribution of WM tracts inside tumor core for both LGG and HGG groups. There were more DTI indices in the solid nonenhancing tumor region, which showed significant differences between LGG and HGG.
Collapse
|
16
|
Landers MJF, Meesters SPL, van Zandvoort M, de Baene W, Rutten GJM. The frontal aslant tract and its role in executive functions: a quantitative tractography study in glioma patients. Brain Imaging Behav 2021; 16:1026-1039. [PMID: 34716878 PMCID: PMC9107421 DOI: 10.1007/s11682-021-00581-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
Focal white matter lesions can cause cognitive impairments due to disconnections within or between networks. There is some preliminary evidence that there are specific hubs and fiber pathways that should be spared during surgery to retain cognitive performance. A tract potentially involved in important higher-level cognitive processes is the frontal aslant tract. It roughly connects the posterior parts of the inferior frontal gyrus and the superior frontal gyrus. Functionally, the left frontal aslant tract has been associated with speech and the right tract with executive functions. However, there currently is insufficient knowledge about the right frontal aslant tract’s exact functional importance. The aim of this study was to investigate the role of the right frontal aslant tract in executive functions via a lesion-symptom approach. We retrospectively examined 72 patients with frontal glial tumors and correlated measures from tractography (distance between tract and tumor, and structural integrity of the tract) with cognitive test performances. The results indicated involvement of the right frontal aslant tract in shifting attention and letter fluency. This involvement was not found for the left tract. Although this study was exploratory, these converging findings contribute to a better understanding of the functional frontal subcortical anatomy. Shifting attention and letter fluency are important for healthy cognitive functioning, and when impaired they may greatly influence a patient’s wellbeing. Further research is needed to assess whether or not damage to the right frontal aslant tract causes permanent cognitive impairments, and consequently identifies this tract as a critical pathway that should be taken into account during neurosurgical procedures.
Collapse
Affiliation(s)
- Maud J F Landers
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands. .,Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Stephan P L Meesters
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martine van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wouter de Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
17
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|
18
|
Sheng Z, Yu J, Chen Z, Sun Y, Bu X, Wang M, Sarica C, Hernesniemi J, Nelson BJ, Zemmar A, Avecillas-Chasin JM. Constrained-Spherical Deconvolution Tractography in the Evaluation of the Corticospinal Tract in Glioma Surgery. Front Surg 2021; 8:646465. [PMID: 34395506 PMCID: PMC8358074 DOI: 10.3389/fsurg.2021.646465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Tractography has demonstrated utility for surgical resection in the setting of primary brain tumors involving eloquent white matter (WM) pathways. Methods: Twelve patients with glioma in or near eloquent motor areas were analyzed. The motor status was recorded before and after surgery. Two different tractography approaches were used to generate the motor corticospinal tract (CST): Constrained spherical deconvolution probabilistic tractography (CSD-Prob) and single tensor deterministic tractography (Tens-DET). To define the degree of disruption of the CST after surgical resection of the tumor, we calculated the percentage of the CST affected by surgical resection, which was then correlated with the postoperative motor status. Moreover, the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the CST generated by the CSD-Prob and the Tens-DET was measured and compared between the ipsilesional and contralesional side. Results: The CST was identified in all patients and its trajectory was displaced by the tumor. Only the CSD-Prob approach showed the CST with the characteristic fan-like projections from the precentral gyrus to the brainstem. Disruption of the CST was identified in 6/6 with postoperative motor deficit by CSD-Prob approach and in 5/6 in the Tens-DET. The degree of disruption was significantly associated with the motor deficit with the CSD-Prob approach (rho = −0.88, p = 0.021). However, with the Tens-DET approach the CST disruption did not show significant association with the motor function (rho = −0.27, p = 0.6). There was a significant decrease in FA (p = 0.006) and a significant increase in MD (p = 0.0004) and RD (p = 0.005) on the ipsilesional CST compared with the contralesional CST only with the CSD-Prob approach. Conclusion: CSD-Prob accurately represented the known anatomy of the CST and provided a meaningful estimate of microstructural changes of the CST affected by the tumor and its macrostructural damage after surgery. Newer surgical planning stations should include advanced models and algorithms of tractography in order to obtain more meaningful reconstructions of the WM pathways during glioma surgery.
Collapse
Affiliation(s)
- Zhiyuan Sheng
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Jinliang Yu
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Zhongcan Chen
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Yong Sun
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Xingyao Bu
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Meiyun Wang
- Department of Radiology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, China
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Juha Hernesniemi
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Bradley J Nelson
- Multi Scale Robotics Laboratory, ETH Zurich, Zurich, Switzerland
| | - Ajmal Zemmar
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Josue M Avecillas-Chasin
- Juha Hernesniemi International Neurosurgery Center, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurosurgery, Center for Neuromodulation, Mount Sinai Health System, New York, NY, United States
| |
Collapse
|
19
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
20
|
Porto de Oliveira JVM, Raquelo-Menegassio AF, Maldonado IL. What's your name again? A review of the superior longitudinal and arcuate fasciculus evolving nomenclature. Clin Anat 2021; 34:1101-1110. [PMID: 34218465 DOI: 10.1002/ca.23764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 11/11/2022]
Abstract
Studies of the superior longitudinal fasciculus (SLF) have multiplied in recent decades owing to methodological advances, but the absence of a convention for nomenclature remains a source of confusion. Here, we have reviewed existing nomenclatures in the context of the research studies that generated them and we have identified their agreements and disagreements. A literature search was conducted using PubMed/MEDLINE, Web-of-Science, Embase, and a review of seminal publications, without restrictions regarding publication date. Our search revealed that diffusion imaging, autoradiography, and fiber dissection have been the main methods contributing to tract designation. The first two have been particularly influential in systematizing the horizontal elements distant from the lateral sulcus. Twelve approaches to naming were identified, eight of them differing considerably from each other. The terms SLF and arcuate fasciculus (AF) were often used as synonyms until the second half of the 20th century. During the last 15 years, this has ceased to be the case in a growing number of publications. The term AF has been used to refer to the assembly of three different segments, or exclusively to long frontotemporal fibers. Similarly, the term SLF has been employed to denote the whole superior longitudinal associative system, or only the horizontal frontoparietal parts. As only partial correspondence can be identified among the available nomenclatures, and in the absence of an official designation of all anatomical structures that can be encountered in clinical practice, a high level of vigilance regarding the effectiveness of every oral or written act of communication is mandatory.
Collapse
Affiliation(s)
| | | | - Igor Lima Maldonado
- UMR Inserm U1253, iBrain, Université de Tours, Tours, France.,CHRU de Tours, Tours, France.,Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
21
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
22
|
Fekonja LS, Wang Z, Aydogan DB, Roine T, Engelhardt M, Dreyer FR, Vajkoczy P, Picht T. Detecting Corticospinal Tract Impairment in Tumor Patients With Fiber Density and Tensor-Based Metrics. Front Oncol 2021; 10:622358. [PMID: 33585250 PMCID: PMC7873606 DOI: 10.3389/fonc.2020.622358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Tumors infiltrating the motor system lead to significant disability, often caused by corticospinal tract injury. The delineation of the healthy-pathological white matter (WM) interface area, for which diffusion magnetic resonance imaging (dMRI) has shown promising potential, may improve treatment outcome. However, up to 90% of white matter (WM) voxels include multiple fiber populations, which cannot be correctly described with traditional metrics such as fractional anisotropy (FA) or apparent diffusion coefficient (ADC). Here, we used a novel fixel-based along-tract analysis consisting of constrained spherical deconvolution (CSD)-based probabilistic tractography and fixel-based apparent fiber density (FD), capable of identifying fiber orientation specific microstructural metrics. We addressed this novel methodology's capability to detect corticospinal tract impairment. We measured and compared tractogram-related FD and traditional microstructural metrics bihemispherically in 65 patients with WHO grade III and IV gliomas infiltrating the motor system. The cortical tractogram seeds were based on motor maps derived by transcranial magnetic stimulation. We extracted 100 equally distributed cross-sections along each streamline of corticospinal tract (CST) for along-tract statistical analysis. Cross-sections were then analyzed to detect differences between healthy and pathological hemispheres. All metrics showed significant differences between healthy and pathologic hemispheres over the entire tract and between peritumoral segments. Peritumoral values were lower for FA and FD, but higher for ADC within the entire cohort. FD was more specific to tumor-induced changes in CST than ADC or FA, whereas ADC and FA showed higher sensitivity. The bihemispheric along-tract analysis provides an approach to detect subject-specific structural changes in healthy and pathological WM. In the current clinical dataset, the more complex FD metrics did not outperform FA and ADC in terms of describing corticospinal tract impairment.
Collapse
Affiliation(s)
- Lucius S. Fekonja
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ziqian Wang
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dogu B. Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Melina Engelhardt
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix R. Dreyer
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt-Universität zu Berlin, Berlin, Germany
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Zhong L, Li T, Shu H, Huang C, Michael Johnson J, Schomer DF, Liu HL, Feng Q, Yang W, Zhu H. (TS) 2WM: Tumor Segmentation and Tract Statistics for Assessing White Matter Integrity with Applications to Glioblastoma Patients. Neuroimage 2020; 223:117368. [PMID: 32931941 PMCID: PMC7688588 DOI: 10.1016/j.neuroimage.2020.117368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM) brain tumor is the most aggressive white matter (WM) invasive cerebral primary neoplasm. Due to its inherently heterogeneous appearance and shape, previous studies pursued either the segmentation precision of the tumors or qualitative analysis of the impact of brain tumors on WM integrity with manual delineation of tumors. This paper aims to develop a comprehensive analytical pipeline, called (TS)2WM, to integrate both the superior performance of brain tumor segmentation and the impact of GBM tumors on the WM integrity via tumor segmentation and tract statistics using the diffusion tensor imaging (DTI) technique. The (TS)2WM consists of three components: (i) A dilated densely connected convolutional network (D2C2N) for automatically segment GBM tumors. (ii) A modified structural connectome processing pipeline to characterize the connectivity pattern of WM bundles. (iii) A multivariate analysis to delineate the local and global associations between different DTI-related measurements and clinical variables on both brain tumors and language-related regions of interest. Among those, the proposed D2C2N model achieves competitive tumor segmentation accuracy compared with many state-of-the-art tumor segmentation methods. Significant differences in various DTI-related measurements at the streamline, weighted network, and binary network levels (e.g., diffusion properties along major fiber bundles) were found in tumor-related, language-related, and hand motor-related brain regions in 62 GBM patients as compared to healthy subjects from the Human Connectome Project.
Collapse
Affiliation(s)
- Liming Zhong
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Tengfei Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Hai Shu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Department of Biostatistics, School of Global Public Health, New York University, New York, United States
| | - Chao Huang
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Jason Michael Johnson
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Donald F Schomer
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Ho-Ling Liu
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Qianjin Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.
| |
Collapse
|
24
|
Leroy HA, Lacoste M, Maurage CA, Derré B, Baroncini M, Reyns N, Delmaire C. Anatomo-radiological correlation between diffusion tensor imaging and histologic analyses of glial tumors: a preliminary study. Acta Neurochir (Wien) 2020; 162:1663-1672. [PMID: 32291589 DOI: 10.1007/s00701-020-04323-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE The challenge of the neurosurgical management of gliomas lies in achieving a maximal resection without persistent functional deficit. Diffusion tensor imaging (DTI) allows non-invasive identification of white matter tracts and their interactions with the tumor. Previous DTI validation studies were compared with intraoperative cortical stimulation, but none was performed based on the tumor anatomopathological analysis. This preliminary study evaluates the correlation between the preoperative subcortical DTI tractography and histology in terms of fiber direction as well as potential tumor-related fiber disruption. METHODS Eleven patients harboring glial tumors underwent preoperative DTI images. Correlations were performed between the visual color-coded anisotropy (FA) map analysis and the tumor histology after "en bloc" resection. Thirty-one tumor areas were classified according to the degree of tumor infiltration, the destruction of myelin fibers and neurofilaments, the presence of organized white matter fibers, and their orientation in space. RESULTS After histologic comparison, the DTI sensitivity and specificity to predict disrupted fiber tracts were respectively of 89% and 90%. The positive and negative predicted values of DTI were 80% and 95%. The DTI data were in line with the histologic myelin fiber orientation in 90% of patients. In our series, the prevalence of destructed fiber was 31%. Glioblastoma WHO grade IV harbored a higher proportion of destructed white matter tracts. Lower WHO grades were associated with higher preservation of subcortical fiber tracts. CONCLUSION This DTI/histology study of "en bloc"-resected gliomas reported a high and reproducible concordance of the visual color-coded FA map with the histologic examination to predict subcortical fiber tract disruption. Our series brought consistency to the DTI data that could be performed routinely for glioma surgery to predict the tumor grade and the postoperative clinical outcomes.
Collapse
Affiliation(s)
- Henri-Arthur Leroy
- Department of Neurosurgery, CHU Lille, Univ. Lille, F-59000, Lille, France.
- Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, Univ. Lille, F-59000, Lille, France.
| | - M Lacoste
- Department of Neuroradiology, CHU Lille, Univ. Lille, F-59000, Lille, France
| | - C-A Maurage
- Department of Anatomopathology, CHU Lille, Univ. Lille, F-59000, Lille, France
| | - B Derré
- Department of Neurosurgery, CHU Lille, Univ. Lille, F-59000, Lille, France
| | - M Baroncini
- Department of Neurosurgery, CHU Lille, Univ. Lille, F-59000, Lille, France
| | - N Reyns
- Department of Neurosurgery, CHU Lille, Univ. Lille, F-59000, Lille, France
- Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, Univ. Lille, F-59000, Lille, France
| | - C Delmaire
- Department of Neuroradiology, CHU Lille, Univ. Lille, F-59000, Lille, France
| |
Collapse
|
25
|
Dalamagkas K, Tsintou M, Rathi Y, O'Donnell LJ, Pasternak O, Gong X, Zhu A, Savadjiev P, Papadimitriou GM, Kubicki M, Yeterian EH, Makris N. Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain Imaging Behav 2020; 14:696-714. [PMID: 30617788 PMCID: PMC6614022 DOI: 10.1007/s11682-018-0006-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston, Boston, MA, 02215, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, USA
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA
- UCL Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - Magdalini Tsintou
- Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston, Boston, MA, 02215, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- UCL Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Peter Savadjiev
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George M Papadimitriou
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
Gatto RG, Weissmann C, Amin M, Finkielsztein A, Sumagin R, Mareci TH, Uchitel OD, Magin RL. Assessing neuraxial microstructural changes in a transgenic mouse model of early stage Amyotrophic Lateral Sclerosis by ultra-high field MRI and diffusion tensor metrics. Animal Model Exp Med 2020; 3:117-129. [PMID: 32613171 PMCID: PMC7323706 DOI: 10.1002/ame2.12112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/28/2020] [Accepted: 03/22/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the use of diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS. METHODS Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice. RESULTS Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased. In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL and CS values were unchanged or slightly smaller. Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI. CONCLUSIONS Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CS as imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALS.
Collapse
Affiliation(s)
- Rodolfo G. Gatto
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoILUSA
| | - Carina Weissmann
- Instituto de Fisiología Biologia Molecular y Neurociencias‐IFIBYNE‐CONICETUniversity of Buenos AiresBuenos AiresArgentina
| | - Manish Amin
- Department of BiochemistryNational High Magnetic Field LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Ariel Finkielsztein
- Department of PathologySchool of MedicineNorthwestern UniversityChicagoILUSA
| | - Ronen Sumagin
- Department of PathologySchool of MedicineNorthwestern UniversityChicagoILUSA
| | - Thomas H. Mareci
- Department of BiochemistryNational High Magnetic Field LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Osvaldo D. Uchitel
- Instituto de Fisiología Biologia Molecular y Neurociencias‐IFIBYNE‐CONICETUniversity of Buenos AiresBuenos AiresArgentina
| | - Richard L. Magin
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoILUSA
| |
Collapse
|
27
|
Ashmore J, Pemberton HG, Crum WD, Jarosz J, Barker GJ. Implementation of clinical tractography for pre-surgical planning of space occupying lesions: An investigation of common acquisition and post-processing methods compared to dissection studies. PLoS One 2020; 15:e0231440. [PMID: 32287298 PMCID: PMC7156092 DOI: 10.1371/journal.pone.0231440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Background and purpose There is limited standardization of acquisition and processing methods in diffusion tractography for pre-surgical planning, leading to a range of approaches. In this study, a number of representative acquisition variants and post processing methods are considered, to assess their importance when implementing a clinical tractography program. Methods Diffusion MRI was undertaken in ten healthy volunteers, using protocols typical of clinical and research scanning: a 32-direction diffusion acquisition with and without peripheral gating, and a non-gated 64 diffusion direction acquisition. All datasets were post-processed using diffusion tensor reconstruction with streamline tractography, and with constrained spherical deconvolution (CSD) with both streamline and probabilistic tractography, to delineate the cortico-spinal tract (CST) and optic radiation (OR). The accuracy of tractography results was assessed against a histological atlas using a novel probabilistic Dice overlap technique, together with direct comparison to tract volumes and distance of Meyer’s loop to temporal pole (ML-TP) from dissections studies. Three clinical case studies of patients with space occupying lesions were also investigated. Results Tracts produced by CSD with probabilistic tractography provided the greatest overlap with the histological atlas (overlap scores of 44% and 52% for the CST and OR, respectively) and best matched tract volume and ML-TP distance from dissection studies. The acquisition protocols investigated had limited impact on the accuracy of the tractography. In all patients, the CSD based probabilistic tractography created tracts with greatest anatomical plausibility, although in one case anatomically plausible pathways could not be reconstructed without reducing the probabilistic threshold, leading to an increase in false positive tracts. Conclusions Advanced post processing techniques such as CSD with probabilistic tractography are vital for pre-surgical planning. However, overall accuracy relative to dissection studies remains limited.
Collapse
Affiliation(s)
- Jonathan Ashmore
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, England, United Kingdom
- * E-mail:
| | - Hugh G. Pemberton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| | - William D. Crum
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| | - Jozef Jarosz
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Gareth J. Barker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| |
Collapse
|
28
|
Going Beyond Diffusion Tensor Imaging Tractography in Eloquent Glioma Surgery–High-Resolution Fiber Tractography: Q-Ball or Constrained Spherical Deconvolution? World Neurosurg 2020; 134:e596-e609. [DOI: 10.1016/j.wneu.2019.10.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
|
29
|
Schult T, Hauser TK, Klose U, Hurth H, Ehricke HH. Fiber visualization for preoperative glioma assessment: Tractography versus local connectivity mapping. PLoS One 2019; 14:e0226153. [PMID: 31830068 PMCID: PMC6907809 DOI: 10.1371/journal.pone.0226153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022] Open
Abstract
In diffusion MRI, the advent of high angular resolution diffusion imaging (HARDI) and HARDI with compressed sensing (HARDI+CS) has led to clinically practical signal acquisition techniques which allow for the assessment of white matter architecture in routine patient studies. However, the reconstruction and visualization of fiber pathways by tractography has not yet been established as a standard methodology which can easily be applied. This is due to various algorithmic problems, such as a lack of robustness, error propagation and the necessity of fine-tuning parameters depending on the clinical question. In the framework of a clinical study of glioma patients, we compare two different whole-brain tracking methods to a local connectivity mapping approach which has recently shown promising results in an adaptation to diffusion MRI. The ability of the three methods to correctly depict fiber affection is analyzed by comparing visualization results to representations of local diffusion profiles provided by orientation distribution functions (ODFs). Our results suggest that methods beyond fiber tractography, which visualize local connectedness rather than global connectivity, should be evaluated further for pre-surgical assessment of fiber affection.
Collapse
Affiliation(s)
- Thomas Schult
- Institute for Applied Computer Science, Stralsund University of Applied Sciences, Stralsund, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Helene Hurth
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Heino Ehricke
- Institute for Applied Computer Science, Stralsund University of Applied Sciences, Stralsund, Germany
| |
Collapse
|
30
|
Yu Q, Lin K, Liu Y, Li X. Clinical Uses of Diffusion Tensor Imaging Fiber Tracking Merged Neuronavigation with Lesions Adjacent to Corticospinal Tract : A Retrospective Cohort Study. J Korean Neurosurg Soc 2019; 63:248-260. [PMID: 31295976 PMCID: PMC7054117 DOI: 10.3340/jkns.2019.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the efficiency of diffusion tensor imaging (DTI) fiber-tracking based neuronavigation and assess its usefulness in the preoperative surgical planning, prognostic prediction, intraoperative course and outcome improvement. METHODS Seventeen patients with cerebral masses adjacent to corticospinal tract (CST) were given standard magnetic resonance imaging and DTI examination. By incorporation of DTI data, the relation between tumor and adjacent white matter tracts was reconstructed and assessed in the neuronavigation system. Distance from tumor border to CST was measured. RESULTS The sub-portion of CST in closest proximity to tumor was found displaced in all patients. The chief disruptive changes were classified as follows : complete interruption, partial interruption, or simple displacement. Partial interruption was evident in seven patients (41.2%) whose lesions were close to cortex. In the other 10 patients (58.8%), delineated CSTs were intact but distorted. No complete CST interruption was identified. Overall, the mean distance from resection border to CST was 6.12 mm (range, 0-21), as opposed to 8.18 mm (range, 2-21) with simple displacement and 2.33 mm (range, 0-5) with partial interruption. The clinical outcomes were analyzed in groups stratified by intervening distances (close, <5 mm; moderated, 5-10 mm; far, >10 mm). For the primary brain tumor patients, the proportion of completely resected tumors increased progressively from close to far grouping (42.9%, 50%, and 100%, respectively). Five patients out of seven (71.4%) experienced new neurologic deficits postoperatively in the close group. At meantime, motor deterioration was found in six cases in the close group. All patients in the far and moderate groups received excellent (modified Rankin Scale [mRS] score, 0-1) or good (mRS score, 2-3) rankings, but only 57.1% of patients in the close group earned good outcome scores. CONCLUSION DTI fiber tracking based neuronavigation has merit in assessing the relation between lesions and adjacent white matter tracts, allowing prediction of patient outcomes based on lesion-CST distance. It has also proven beneficial in formulating surgical strategies.
Collapse
Affiliation(s)
- Qi Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Liaoning, China.,Liaoning Key Laboratory of Neuro-Oncology, Liaoning, China
| | - Kun Lin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Liaoning, China.,Liaoning Key Laboratory of Neuro-Oncology, Liaoning, China
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Liaoning, China.,Liaoning Key Laboratory of Neuro-Oncology, Liaoning, China
| |
Collapse
|
31
|
O'Donnell LJ, Daducci A, Wassermann D, Lenglet C. Advances in computational and statistical diffusion MRI. NMR IN BIOMEDICINE 2019; 32:e3805. [PMID: 29134716 PMCID: PMC5951736 DOI: 10.1002/nbm.3805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 06/03/2023]
Abstract
Computational methods are crucial for the analysis of diffusion magnetic resonance imaging (MRI) of the brain. Computational diffusion MRI can provide rich information at many size scales, including local microstructure measures such as diffusion anisotropies or apparent axon diameters, whole-brain connectivity information that describes the brain's wiring diagram and population-based studies in health and disease. Many of the diffusion MRI analyses performed today were not possible five, ten or twenty years ago, due to the requirements for large amounts of computer memory or processor time. In addition, mathematical frameworks had to be developed or adapted from other fields to create new ways to analyze diffusion MRI data. The purpose of this review is to highlight recent computational and statistical advances in diffusion MRI and to put these advances into context by comparison with the more traditional computational methods that are in popular clinical and scientific use. We aim to provide a high-level overview of interest to diffusion MRI researchers, with a more in-depth treatment to illustrate selected computational advances.
Collapse
Affiliation(s)
- Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alessandro Daducci
- Computer Science department, University of Verona, Verona, Italy
- Radiology department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Demian Wassermann
- Athena Team, Inria Sophia Antipolis-Méditerranée, 2004 route des Lucioles, 06902 Biot, France
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
32
|
Romano A, D'Andrea G, Pesce A, Olivieri G, Rossi-Espagnet MC, Picotti V, Raco A, Bozzao A. Trigonal and Peritrigonal Lesions of the Lateral Ventricle: Presurgical Tractographic Planning and Clinic Outcome Evaluation. World Neurosurg 2018; 124:S1878-8750(18)32909-7. [PMID: 30599250 DOI: 10.1016/j.wneu.2018.12.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Surgery of lesions within the atrium of the lateral ventricle remains a challenging procedure because of the deep location and the relationship to vascular structures. The aim of this study was to determine the usefulness of tractography to evaluate the position of white matter tracts located along the course of the surgical access to trigonal and peritrigonal lesions. METHODS Diffusion tensor imaging (DTI) was acquired in 19 patients. All patients underwent surgical resection of brain tumors. Pre- and postoperative clinical conditions were evaluated by a neurosurgeon, using the Karnofsky Performance Status Scale. The corticospinal tract, optic radiation, and arcuate fasciculum were reconstructed because of their location close to the trigonal region. Two neurosurgeons were asked to assess the surgical approach with and without tractography. RESULTS According to the tractographic reconstructions, the surgical access was chosen from the middle temporal gyrus in 12 patients (63%) and the posterior parietal gyrus in 7 patients (37%), leading to an a priori change in the surgical approach in 14 patients (73%). Six patients (31%) showed new postsurgical transient symptoms, whereas in 2 patients (10%) the deficits were permanent. After 30 days, the Karnofsky Performance Status Scale evaluation showed an improvement or a substantial stability of symptoms in 90% of cases. In 2 patients, a worsening of 30% of clinical performance was appreciable. CONCLUSIONS The use of DTI in preoperative planning of trigonal and peritrigonal lesions may help in description of the best surgical approach for patient; this technique allows to reach the tumors, saving the white matter tracts, when it is possible.
Collapse
Affiliation(s)
- Andrea Romano
- Department of Odontostomatological and Maxillo-Facial Sciences, Umberto I Hospital, University Sapienza, Rome, Italy; NESMOS, Department of Neuroradiology, S.Andrea Hospital, University Sapienza, Rome, Italy.
| | - Giancarlo D'Andrea
- Department of Neurosurgery, Fabrizio Spaziani Hospital, Frosinone, Italy
| | - Alessandro Pesce
- NESMOS, Department of Neurosurgery, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Giorgia Olivieri
- Department of Clinical Pathology, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- NESMOS, Department of Neuroradiology, S.Andrea Hospital, University Sapienza, Rome, Italy; Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Veronica Picotti
- NESMOS, Department of Neurosurgery, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Antonino Raco
- NESMOS, Department of Neurosurgery, S.Andrea Hospital, University Sapienza, Rome, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S.Andrea Hospital, University Sapienza, Rome, Italy
| |
Collapse
|
33
|
Nilsson M, Englund E, Szczepankiewicz F, van Westen D, Sundgren PC. Imaging brain tumour microstructure. Neuroimage 2018; 182:232-250. [DOI: 10.1016/j.neuroimage.2018.04.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023] Open
|
34
|
Lee MB, Kim YH, Jahng GH, Kwon OI. Angular resolution enhancement technique for diffusion-weighted imaging (DWI) using predicted diffusion gradient directions. Neuroimage 2018; 183:836-846. [PMID: 30193975 DOI: 10.1016/j.neuroimage.2018.08.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/02/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022] Open
Abstract
Anisotropic diffusion MRI techniques using single-shell or multi-shell acquisitions have been proposed as a means to overcome some limitations imposed by diffusion tensor imaging (DTI), especially in complex models of fibre orientation distribution in voxels. A long acquisition time for the angular resolution of diffusion MRI is a major obstacle to practical clinical implementations. In this paper, we propose a novel method to improve angular resolution of diffusion MRI acquisition using given diffusion gradient (DG) directions. First, we define a local diffusion pattern map of diffusion MR signals on a single shell in given DG directions. Using the local diffusion pattern map, we design a prediction scheme to determine the best DG direction to be synthesized within a nearest neighborhood DG directions group. Second, the local diffusion pattern map and the spherical distance on the shell are combined to determine a synthesized diffusion signal in the new DG direction. Using the synthesized and measured diffusion signals on a single sphere, we estimate a spin orientation distribution function (SDF) with human brain data. Although the proposed method is applied to SDF, a basic idea is to increase the angular resolution using the measured diffusion signals in various DG directions. The method can be applicable to different acquired multi-shell data or diffusion spectroscopic imaging (DSI) data. We validate the proposed method by comparing the recovered SDFs using the angular resolution enhanced diffusion signals with the recovered SDF using the measured diffusion data. The developed method provides an enhanced SDF resolution and improved multiple fiber structure by incorporating synthesized signals. The proposed method was also applied neurite orientation dispersion and density imaging (NODDI) using multi-shell acquisitions.
Collapse
Affiliation(s)
- Mun Bae Lee
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeon Hyang Kim
- Department of Mathematics, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea
| | - Oh-In Kwon
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
35
|
Calamuneri A, Arrigo A, Mormina E, Milardi D, Cacciola A, Chillemi G, Marino S, Gaeta M, Quartarone A. White Matter Tissue Quantification at Low b-Values Within Constrained Spherical Deconvolution Framework. Front Neurol 2018; 9:716. [PMID: 30210438 PMCID: PMC6122130 DOI: 10.3389/fneur.2018.00716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
In the last decades, a number of Diffusion Weighted Imaging (DWI) based techniques have been developed to study non-invasively human brain tissues, especially white matter (WM). In this context, Constrained Spherical Deconvolution (CSD) is recognized as being able to accurately characterize water molecules displacement, as they emerge from the observation of MR diffusion weighted (MR-DW) images. CSD is suggested to be applied on MR-DW datasets consisting of b-values around 3,000 s/mm2 and at least 45 unique diffusion weighting directions. Below such technical requirements, Diffusion Tensor Imaging (DT) remains the most widely accepted model. Unlike CSD, DTI is unable to resolve complex fiber geometries within the brain, thus affecting related tissues quantification. In addition, thanks to CSD, an index called Apparent Fiber Density (AFD) can be measured to estimate intra-axonal volume fraction within WM. In standard clinical settings, diffusion based acquisitions are well below such technical requirements. Therefore, in this study we wanted to extensively compare CSD and DTI model outcomes on really low demanding MR-DW datasets, i.e., consisting of a single shell (b-value = 1,000 s/mm2) and only 30 unique diffusion encoding directions. To this end, we performed deterministic and probabilistic tractographic reconstruction of two major WM pathways, namely the Corticospinal Tract and the Arcuate Fasciculus. We estimated and analyzed tensor based features as well as, for the first time, AFD interpretability in our data. By performing multivariate statistics and tract-based ROI analysis, we demonstrate that WM quantification is affected by both the diffusion model and threshold applied to noisy tractographic maps. Consistently with existing literature, we showed that CSD outperforms DTI even in our scenario. Most importantly, for the first time we address the problem of accuracy and interpretation of AFD in a low-demanding DW setup, and show that it is still a biological meaningful measure for the analysis of intra-axonal volume even in clinical settings.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS Ospedale San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Enricomaria Mormina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Michele Gaeta
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Fresco Institute for Parkinson's & Movement Disorders, NYU-Langone School of Medicine, New York, NY, United States
| |
Collapse
|
36
|
Talozzi L, Testa C, Evangelisti S, Cirignotta L, Bianchini C, Ratti S, Fantazzini P, Tonon C, Manners DN, Lodi R. Along-tract analysis of the arcuate fasciculus using the Laplacian operator to evaluate different tractography methods. Magn Reson Imaging 2018; 54:183-193. [PMID: 30165094 DOI: 10.1016/j.mri.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/08/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE We propose a new along-tract algorithm to compare different tractography algorithms in tract curvature mapping and along-tract analysis of the arcuate fasciculus (AF). In particular, we quantified along-tract diffusion parameters and AF spatial distribution evaluating hemispheric asymmetries in a group of healthy subjects. METHODS The AF was bilaterally reconstructed in a group of 29 healthy subjects using the probabilistic ball-and-sticks model, and both deterministic and probabilistic constrained spherical deconvolution. We chose cortical ROIs as tractography targets and the developed along-tract algorithm used the Laplacian operator to parameterize the volume of the tract, allowing along-tract analysis and tract curvature mapping independent of the tractography algorithm used. RESULTS The Laplacian parameterization successfully described the tract geometry underlying hemispheric asymmetries in the AF curvature. Using the probabilistic tractography methods, we found more tracts branching towards cortical terminations in the left hemisphere. This influenced the left AF curvature and its diffusion parameters, which were significantly different with respect to the right. In particular, we detected projections towards the middle temporal and inferior frontal gyri bilaterally, and towards the superior temporal and precentral gyri in the left hemisphere, with a significantly increased volume and connectivity. CONCLUSIONS The approach we propose is useful to evaluate brain asymmetries, assessing the volume, the diffusion properties and the quantitative spatial localization of the AF.
Collapse
Affiliation(s)
- Lia Talozzi
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Claudia Testa
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Stefania Evangelisti
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Lorenzo Cirignotta
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Claudio Bianchini
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Stefano Ratti
- Department of Biomedical and NeuroMotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italia
| | - Paola Fantazzini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy, and Centro Enrico Fermi, Roma, Italia
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia; IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italia.
| | - David Neil Manners
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia; IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italia
| |
Collapse
|
37
|
Claustral structural connectivity and cognitive impairment in drug naïve Parkinson’s disease. Brain Imaging Behav 2018; 13:933-944. [DOI: 10.1007/s11682-018-9907-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Münnich T, Klein J, Hattingen E, Noack A, Herrmann E, Seifert V, Senft C, Forster MT. Tractography Verified by Intraoperative Magnetic Resonance Imaging and Subcortical Stimulation During Tumor Resection Near the Corticospinal Tract. Oper Neurosurg (Hagerstown) 2018; 16:197-210. [DOI: 10.1093/ons/opy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
BACKGROUND
Tractography is a popular tool for visualizing the corticospinal tract (CST). However, results may be influenced by numerous variables, eg, the selection of seeding regions of interests (ROIs) or the chosen tracking algorithm.
OBJECTIVE
To compare different variable sets by correlating tractography results with intraoperative subcortical stimulation of the CST, correcting intraoperative brain shift by the use of intraoperative MRI.
METHODS
Seeding ROIs were created by means of motor cortex segmentation, functional MRI (fMRI), and navigated transcranial magnetic stimulation (nTMS). Based on these ROIs, tractography was run for each patient using a deterministic and a probabilistic algorithm. Tractographies were processed on pre- and postoperatively acquired data.
RESULTS
Using a linear mixed effects statistical model, best correlation between subcortical stimulation intensity and the distance between tractography and stimulation sites was achieved by using the segmented motor cortex as seeding ROI and applying the probabilistic algorithm on preoperatively acquired imaging sequences. Tractographies based on fMRI or nTMS results differed very little, but with enlargement of positive nTMS sites the stimulation-distance correlation of nTMS-based tractography improved.
CONCLUSION
Our results underline that the use of tractography demands for careful interpretation of its virtual results by considering all influencing variables.
Collapse
Affiliation(s)
- Timo Münnich
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Jan Klein
- Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University Hospital, Frankfurt am Main, Germa-ny
| | - Anika Noack
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Eva Herrmann
- Institute for Biostatistics and Math-ematical Modelling, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | | |
Collapse
|
39
|
Thust SC, Heiland S, Falini A, Jäger HR, Waldman AD, Sundgren PC, Godi C, Katsaros VK, Ramos A, Bargallo N, Vernooij MW, Yousry T, Bendszus M, Smits M. Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice. Eur Radiol 2018. [PMID: 29536240 PMCID: PMC6028837 DOI: 10.1007/s00330-018-5314-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives At a European Society of Neuroradiology (ESNR) Annual Meeting 2015 workshop, commonalities in practice, current controversies and technical hurdles in glioma MRI were discussed. We aimed to formulate guidance on MRI of glioma and determine its feasibility, by seeking information on glioma imaging practices from the European Neuroradiology community. Methods Invitations to a structured survey were emailed to ESNR members (n=1,662) and associates (n=6,400), European national radiologists’ societies and distributed via social media. Results Responses were received from 220 institutions (59% academic). Conventional imaging protocols generally include T2w, T2-FLAIR, DWI, and pre- and post-contrast T1w. Perfusion MRI is used widely (85.5%), while spectroscopy seems reserved for specific indications. Reasons for omitting advanced imaging modalities include lack of facility/software, time constraints and no requests. Early postoperative MRI is routinely carried out by 74% within 24–72 h, but only 17% report a percent measure of resection. For follow-up, most sites (60%) issue qualitative reports, while 27% report an assessment according to the RANO criteria. A minority of sites use a reporting template (23%). Conclusion Clinical best practice recommendations for glioma imaging assessment are proposed and the current role of advanced MRI modalities in routine use is addressed. Key Points • We recommend the EORTC-NBTS protocol as the clinical standard glioma protocol. • Perfusion MRI is recommended for diagnosis and follow-up of glioma. • Use of advanced imaging could be promoted with increased education activities. • Most response assessment is currently performed qualitatively. • Reporting templates are not widely used, and could facilitate standardisation. Electronic supplementary material The online version of this article (10.1007/s00330-018-5314-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S C Thust
- Lysholm Neuroradiology Department, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Brain Rehabilitation and Repair, UCL Institute of Neurology, London, UK
- Imaging Department, University College London Hospital, London, UK
| | - S Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - A Falini
- Department of Neuroradiology, San Raffaele Scientific Institute, Milan, Italy
| | - H R Jäger
- Lysholm Neuroradiology Department, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Brain Rehabilitation and Repair, UCL Institute of Neurology, London, UK
- Imaging Department, University College London Hospital, London, UK
| | - A D Waldman
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - P C Sundgren
- Institution for Clinical Sciences/Radiology, Lund University, Lund, Sweden
- Centre for Imaging and Physiology, Skåne University hospital, Lund, Sweden
| | - C Godi
- Department of Neuroradiology, San Raffaele Scientific Institute, Milan, Italy
| | - V K Katsaros
- General Anti-Cancer and Oncological Hospital "Agios Savvas", Athens, Greece
- Central Clinic of Athens, Athens, Greece
- University of Athens, Athens, Greece
| | - A Ramos
- Hospital 12 de Octubre, Madrid, Spain
| | - N Bargallo
- Image Diagnostic Centre, Hospital Clinic de Barcelona, Barcelona, Spain
- Magnetic Resonance Core Facility, Institut per la Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - T Yousry
- Lysholm Neuroradiology Department, National Hospital for Neurology and Neurosurgery, London, UK
| | - M Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - M Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Mormina E, Petracca M, Bommarito G, Piaggio N, Cocozza S, Inglese M. Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging. World J Radiol 2017; 9:371-388. [PMID: 29104740 PMCID: PMC5661166 DOI: 10.4329/wjr.v9.i10.371] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique’s advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, 98100 Messina, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80138 Naples, Italy
| | - Giulia Bommarito
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Department of Neuroradiology, San Martino Hospital, 16132 Genoa, Italy
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
41
|
Castellano A, Cirillo S, Bello L, Riva M, Falini A. Functional MRI for Surgery of Gliomas. Curr Treat Options Neurol 2017; 19:34. [PMID: 28831723 DOI: 10.1007/s11940-017-0469-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Advanced neuroimaging techniques such as functional MRI (fMRI) and diffusion MR tractography have been increasingly used at every stage of the surgical management of brain gliomas, as a means to improve tumor resection while preserving brain functions. This review provides an overview of the last advancements in the field of functional MRI techniques, with a particular focus on their current clinical use and reliability in the preoperative and intraoperative setting, as well as their future perspectives for personalized multimodal management of patients with gliomas. RECENT FINDINGS fMRI and diffusion MR tractography give relevant insights on the anatomo-functional organization of eloquent cortical areas and subcortical connections near or inside a tumor. Task-based fMRI and diffusion tensor imaging (DTI) tractography have proven to be valid and highly sensitive tools for localizing the distinct eloquent cortical and subcortical areas before surgery in glioma patients; they also show good accuracy when compared with intraoperative stimulation mapping data. Resting-state fMRI functional connectivity as well as new advanced HARDI (high angular resolution diffusion imaging) tractography methods are improving and reshaping the role of functional MRI for surgery of gliomas, with potential benefit for personalized treatment strategies. Noninvasive functional MRI techniques may offer the opportunity to perform a multimodal assessment in brain tumors, to be integrated with intraoperative mapping and clinical data for improving surgical management and oncological and functional outcome in patients affected by gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy.
| | - Sara Cirillo
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Magnetic resonance imaging (MRI) is routinely employed in the diagnosis and clinical management of brain tumors. This review provides an overview of the advancements in the field of MRI, with a particular focus on the quantitative assessment by advanced physiological magnetic resonance techniques in light of the new molecular classification of brain tumor. RECENT FINDINGS Understanding how molecular phenotypes of brain tumors are reflected in noninvasive imaging is the goal of radiogenomics, which aims at determining the association between imaging features and molecular markers in neuro-oncology. Advanced MRI techniques such as diffusion magnetic resonance imaging and perfusion-weighted imaging add important structural, hemodynamic, and physiological information for tumor diagnosis and classification, as well as to stratify tumor response. Magnetic resonance spectroscopy is able to depict with unprecedented accuracy metabolic biomarkers, which are relevant for molecular subtyping. Ultra-high-field imaging enhances anatomical detail and enables to explore new horizon in tumor imaging. SUMMARY The noninvasive MRI-based assessment of tumor malignancy and molecular status may offer the opportunity to predict prognosis and to select patients who may be candidates for individualized targeted therapies, providing more sensitive tools for their follow-up.
Collapse
|
43
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Arrigo A, Gaeta M, Calamuneri A, Mormina E, Marino S, Stagno d'Alcontres F, Longo M, Granata F. Lipofibromatous hamartoma of the median nerve: 3T MRI evaluation by constrained spherical deconvolution analysis. Neuroradiol J 2017; 31:445-448. [PMID: 28541095 DOI: 10.1177/1971400917709622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study we described a case of lipofibromatous hamartoma involving the median nerve. We adopted diffusion tensor imaging and constrained spherical deconvolution-based tractography to reconstruct the affected median nerve. Moreover, we extracted diffusion-based parameters reflecting axonal integrity loss of median nerve fibres. Our data showed that constrained spherical deconvolution-based tractography outperformed the diffusion tensor imaging-based method, allowing the detection of the entire median nerve, including its branches, thus offering a robust method to investigate the involvement of the median nerve in pathological conditions. All clinical and technical implications are extensively described.
Collapse
Affiliation(s)
- Alessandro Arrigo
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Michele Gaeta
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Alessandro Calamuneri
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Enricomaria Mormina
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | | | | | - Marcello Longo
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Francesca Granata
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| |
Collapse
|
45
|
Amygdalar and hippocampal connections with brainstem and spinal cord: A diffusion MRI study in human brain. Neuroscience 2017; 343:346-354. [DOI: 10.1016/j.neuroscience.2016.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022]
|
46
|
Mormina E, Briguglio M, Morabito R, Arrigo A, Marino S, Di Rosa G, Micalizzi A, Valente EM, Salpietro V, Vinci SL, Longo M, Granata F. A rare case of cerebellar agenesis: a probabilistic Constrained Spherical Deconvolution tractographic study. Brain Imaging Behav 2016; 10:158-67. [PMID: 25832852 DOI: 10.1007/s11682-015-9377-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aim of this study is to show the potential of probabilistic tractographic techniques, based on the Constrained Spherical Deconvolution (CSD) algorithms, in recognizing white matter fiber bundle anomalies in patients with complex cerebral malformations, such as cerebellar agenesis. The morphological and tractographic study of a 17-year-old male patient affected by cerebellar agenesis was performed by using a 3Tesla MRI scanner. Genetic and neuropsychological tests were carried out. An MRI morphological study showed the absence of both cerebellar hemispheres and the flattening of the anterior side of the pons. Moreover, it showed a severe vermian hypoplasia with a minimal vermian residual. The study recognized two thin cerebellar remnants, medially in contact with the small vermian residual, at the pontine level. The third ventricle, morphologically normal, communicated with a permagna cerebello-medullary cistern. Probabilistic CSD tractography identified some abnormal and aberrant infratentorial tracts, symmetrical on both sides. In particular, the transverse pontine fibers were absent and the following tracts with aberrant trajectories have been identified: "cerebello-thalamic" tracts; "fronto-cerebellar" tracts; and ipsilateral and contralateral "spino-cerebellar" tracts. Abnormal tracts connecting the two thin cerebellar remnants have also been detected. There were no visible alterations in the main supratentorial tracts in either side. Neuropsychiatric evaluation showed moderate cognitive-motor impairment with discrete adaptive compensation. Probabilistic CSD tractography is a promising technique that overcome reconstruction biases of other diffusion tensor-based approaches and allowed us to recognize, in a patient with cerebellar agenesis, abnormal tracts and aberrant trajectories of normally existing tracts.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Marilena Briguglio
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Rosa Morabito
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Alessandro Arrigo
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy.
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Gabriella Di Rosa
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Alessia Micalizzi
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Laboratory, San Giovanni Rotondo, Italy
- Department of Biological and Environmental Science, University of Messina, Messina, Italy
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Laboratory, San Giovanni Rotondo, Italy
- Section of Neurosciences, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Vincenzo Salpietro
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Marcello Longo
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Francesca Granata
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| |
Collapse
|
47
|
Llufriu S, Martinez-Heras E, Solana E, Sola-Valls N, Sepulveda M, Blanco Y, Martinez-Lapiscina EH, Andorra M, Villoslada P, Prats-Galino A, Saiz A. Structural networks involved in attention and executive functions in multiple sclerosis. NEUROIMAGE-CLINICAL 2016; 13:288-296. [PMID: 28050344 PMCID: PMC5192049 DOI: 10.1016/j.nicl.2016.11.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 12/18/2022]
Abstract
Attention and executive deficits are disabling symptoms in multiple sclerosis (MS) that have been related to disconnection mechanisms. We aimed to investigate changes in structural connectivity in MS and their association with attention and executive performance applying an improved framework that combines high order probabilistic tractography and anatomical exclusion criteria postprocessing. We compared graph theory metrics of structural networks and fractional anisotropy (FA) of white matter (WM) connections or edges between 72 MS subjects and 38 healthy volunteers (HV) and assessed their correlation with cognition. Patients displayed decreased network transitivity, global efficiency and increased path length compared with HV (p < 0.05, corrected). Also, nodal strength was decreased in 26 of 84 gray matter regions. The distribution of nodes with stronger connections or hubs of the network was similar among groups except for the right pallidum and left insula, which became hubs in patients. MS subjects presented reduced edge FA widespread in the network, while FA was increased in 24 connections (p < 0.05, corrected). Decreased integrity of frontoparietal networks, deep gray nuclei and insula correlated with worse attention and executive performance (r between 0.38 and 0.55, p < 0.05, corrected). Contrarily, higher strength in the right transverse temporal cortex and increased FA of several connections (mainly from cingulate, frontal and occipital cortices) were associated with worse functioning (r between − 0.40 and − 0.47, p < 0.05 corrected). In conclusion, structural brain connectivity is disturbed in MS due to widespread impairment of WM connections and gray matter structures. The increased edge connectivity suggests the presence of reorganization mechanisms at the structural level. Importantly, attention and executive performance relates to frontoparietal networks, deep gray nuclei and insula. These results support the relevance of network integrity to maintain optimal cognitive skills. High order tractography and anatomical exclusion criteria improve connectivity analyses. Structural connectivity is less efficient in multiple sclerosis. Attentional and executive functions relate to integrity of strategic networks. Increased connectivity suggests structural reorganization mechanisms.
Collapse
Affiliation(s)
- Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Nuria Sola-Valls
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Maria Sepulveda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Magi Andorra
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Alberto Prats-Galino
- Laboratory of Surgical NeuroAnatomy (LSNA), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
O'Donnell LJ, Suter Y, Rigolo L, Kahali P, Zhang F, Norton I, Albi A, Olubiyi O, Meola A, Essayed WI, Unadkat P, Ciris PA, Wells WM, Rathi Y, Westin CF, Golby AJ. Automated white matter fiber tract identification in patients with brain tumors. NEUROIMAGE-CLINICAL 2016; 13:138-153. [PMID: 27981029 PMCID: PMC5144756 DOI: 10.1016/j.nicl.2016.11.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
Abstract
We propose a method for the automated identification of key white matter fiber tracts for neurosurgical planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography, which include peritumoral edema, displacement, and mass effect caused by mass lesions. The proposed method has two parts. First, we learn a data-driven white matter parcellation or fiber cluster atlas using groupwise registration and spectral clustering of multi-fiber tractography from healthy controls. Key fiber tract clusters are identified in the atlas. Next, patient-specific fiber tracts are automatically identified using tractography-based registration to the atlas and spectral embedding of patient tractography. Results indicate good generalization of the data-driven atlas to patients: 80% of the 800 fiber clusters were identified in all 18 patients, and 94% of the 800 fiber clusters were found in 16 or more of the 18 patients. Automated subject-specific tract identification was evaluated by quantitative comparison to subject-specific motor and language functional MRI, focusing on the arcuate fasciculus (language) and corticospinal tracts (motor), which were identified in all patients. Results indicate good colocalization: 89 of 95, or 94%, of patient-specific language and motor activations were intersected by the corresponding identified tract. All patient-specific activations were within 3mm of the corresponding language or motor tract. Overall, our results indicate the potential of an automated method for identifying fiber tracts of interest for neurosurgical planning, even in patients with mass lesions. Spectral clustering machine learning approach for white matter tract identification Data-driven white matter parcellation learned from healthy subjects tractography White matter parcellation applied to 18 consecutive patients with brain tumors Arcuate fasciculus and corticospinal tracts identified in all patients All tracts within 3 mm of corresponding patient-specific functional activations
Collapse
Affiliation(s)
- Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yannick Suter
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland
| | - Laura Rigolo
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pegah Kahali
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaiah Norton
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Angela Albi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
| | - Olutayo Olubiyi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonio Meola
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pelin Aksit Ciris
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - William M Wells
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Mormina E, Arrigo A, Calamuneri A, Alafaci C, Tomasello F, Morabito R, Marino S, Longo M, Vinci SL, Granata F. Optic radiations evaluation in patients affected by high-grade gliomas: a side-by-side constrained spherical deconvolution and diffusion tensor imaging study. Neuroradiology 2016; 58:1067-1075. [PMID: 27516100 DOI: 10.1007/s00234-016-1732-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The need to improve surgical efficacy in patients affected by high-grade gliomas has led to development of advanced pre-surgical MRI-based techniques such as tractography. This study investigates pre-surgical planning of optic radiations (ORs) in patients affected by occipito-temporo-parietal high-grade gliomas, by means of constrained spherical deconvolution (CSD) and diffusion tensor imaging (DTI) tractography. METHODS Twelve patients with occipito-temporo-parietal high-grade gliomas were recruited and analyzed using a 3 T MRI scanner. Diffusion-weighted imaging (DWI) was conducted with 64 gradient diffusion directions. OR alterations were assessed qualitatively and quantitatively to evaluate the effectiveness of CSD- and DTI-based pre-surgical planning. RESULTS CSD-based tractography provided better qualitative evaluation of affected white matter tracts when compared to DTI; by thresholding tractographic probabilistic maps coming from all reconstructions, we detected, at the highest cutoff level, OR involvement in 75 % of patients (vs 41.67 % of patients with probabilistic DTI). Quantitative analysis of diffusion parameters revealed a statistically significant decrease in fractional anisotropy (FA) in the affected side following CSD-based reconstructions; on the contrary, DTI-based reconstructions did not show any significant quantitative alteration. CONCLUSION Our results showed improvement in pre-surgical planning of high-grade gliomas involving ORs with use of CSD-based tractography. This technique provided more useful information regarding the white matter spatial relationship with brain neoplasm and its involvement in the glioma, when compared to DTI. Using CSD model for OR evaluation may optimize safe surgical resection margins, helping to reduce risk of post-operative visual deficits.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, via Consolare Valeria, 1 c/o A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
- Department of Neurology - Icahn School of Medicine, New York, Mount Sinai, USA
| | - Alessandro Arrigo
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, via Consolare Valeria, 1 c/o A.O.U. Policlinico "G. Martino", 98125, Messina, Italy.
| | | | - Concetta Alafaci
- Department of Neurosciences, University of Messina, Messina, Italy
| | | | - Rosa Morabito
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, via Consolare Valeria, 1 c/o A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Marcello Longo
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, via Consolare Valeria, 1 c/o A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Sergio Lucio Vinci
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, via Consolare Valeria, 1 c/o A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Francesca Granata
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, via Consolare Valeria, 1 c/o A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| |
Collapse
|
50
|
Lupica R, Mormina E, Lacquaniti A, Trimboli D, Bianchimano B, Marino S, Bramanti P, Longo M, Buemi M, Granata F. 3 Tesla-Diffusion Tensor Imaging in Autosomal Dominant Polycystic Kidney Disease: The Nephrologist's Point of View. Nephron Clin Pract 2016; 134:73-80. [PMID: 27504997 DOI: 10.1159/000442296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS CT, MRI and ultrasound are currently used for screening and follow-up of individuals affected by autosomal dominant polycystic kidney disease (ADPKD). Dynamic contrast-enhanced MRI studies renal perfusion after gadolinium administration, with possible side effects, such as nephrogenic systemic fibrosis. The aim of our study was to evaluate the clinical application of 3 Tesla (3T)-diffusion tensor image (DTI) in ADPKD patients, correlating its parameters, such as fractional anisotropy (FA), and apparent diffusion coefficient (ADC) with kidney function tests. METHODS Eight ADPKD patients and 6 healthy volunteers (HS) were enrolled. FA and ADC mean values were calculated. And correlations between DTI-parameters, creatinine and estimated glomerular filtration rate (eGFR) were evaluated. RESULTS Parenchymal FA was significantly lower in ADPKD than HS (FA: 0.17 ± 0.03 vs. 0.22 ± 0.01; p = 0.02), whereas parenchymal ADC was higher in patients than controls (2.48 (×10-3) ± 0.16 vs. 2.28 (×10-3) ± 0.09), but a statistically significant difference was not achieved (p = 0.27). Direct correlations were revealed between eGFR and FA (r = 0.82; p = 0.0003), whereas an inverse correlation was found with creatinine (r = -0.77; p = 0.001). Similarly, ADC closely correlated with creatinine (r = 0.79; p = 0.0006) and eGFR (r = -0.620; p = 0.01). CONCLUSION 3T-DTI is a promising radiological tool that could be used by nephrologists to evaluate ADPKD patients, highlighting early micro-structure alterations, without side effects and contrast agent administration.
Collapse
Affiliation(s)
- Rosaria Lupica
- Department of Clinical and Experimental Medicine, Nephrology and Dialysis Unit, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|