1
|
Manning KY, Jaffer A, Lebel C. Windows of Opportunity: How Age and Sex Shape the Influence of Prenatal Depression on the Child Brain. Biol Psychiatry 2025; 97:227-247. [PMID: 39117167 DOI: 10.1016/j.biopsych.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Maternal prenatal depression can affect child brain and behavioral development. Specifically, altered limbic network structure and function is a likely mechanism through which prenatal depression impacts the life-long mental health of exposed children. While developmental trajectories are influenced by many factors that exacerbate risk or promote resiliency, the role of child age and sex in the relationship between prenatal depression and the child brain remains unclear. Here, we review studies of associations between prenatal depression and brain structure and function, with a focus on the role of age and sex in these relationships. After exposure to maternal prenatal depression, altered amygdala, hippocampal, and frontal cortical structure, as well as changes in functional and structural connectivity within the limbic network, are evident during the fetal, infant, preschool, childhood, and adolescent stages of development. Sex appears to play a key role in this relationship, with evidence of differential findings particularly in infants, with males showing smaller and females larger hippocampal and amygdala volumes following prenatal depression. Longitudinal studies in this area have only begun to emerge within the last 5 years and will be key to understanding critical windows of opportunity. Future research focused on the role of age and sex in this relationship is essential to further inform screening, policy, and interventions for children exposed to prenatal depression, interrupt the intergenerational transmission of depression, and ultimately support healthy brain development.
Collapse
Affiliation(s)
- Kathryn Y Manning
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aliza Jaffer
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Moniri M, Mirghafourvand M, Meedya S, Ghanbari‐Homaie S. Can Pregnancy Experience Predict Birth Experience, Postpartum Depression and Anxiety? A Prospective Descriptive Study. Nurs Open 2024; 11:e70116. [PMID: 39642152 PMCID: PMC11623343 DOI: 10.1002/nop2.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
AIM A positive pregnancy experience can be a good start for healthy motherhood. This study aimed to investigate Iranian women's pregnancy experience and how self-reported hassles and uplifts influence birth experience, postpartum depression and anxiety, and the association between childbirth experience and postpartum mental health. DESIGN A prospective descriptive study. METHODS A prospective descriptive study was conducted among 228 pregnant women from health centres in Tabriz, Iran. From the 28th to 36th weeks of pregnancy, participants completed the Pregnancy Experience Scale. Then, the mothers were followed up until 4-6 weeks postpartum, and Childbirth Experience Questionnaires version 2.0, Edinburgh Postnatal Depression and the short form of Specific Postpartum Anxiety Scales were completed. The data were analysed using the general linear model. RESULTS After adjusting for possible confounding variables, there was no statistically significant association between women's pregnancy and childbirth experiences. However, the mean scores of postpartum depression and anxiety were significantly higher in women who felt unhappy about the discomforts that they experienced during pregnancy (β [95% CI] = 0.01 [0.01-0.02]; p < 0.001, 0.22 [0.09-0.35]; p = 0.001, respectively). CONCLUSION There was a significant statistical reverse association between childbirth experience and postpartum anxiety and depression. The study demonstrated a significant association between women's pregnancy, birth experiences and postpartum psychological outcomes. Implementing interventions that create a positive pregnancy experience will likely have an impact on reducing the prevalence of postpartum depression and anxiety. PATIENT OR PUBLIC CONTRIBUTION Pregnant women participated solely in the data collection by responding to the questionnaires. No participant contributions were required for the study's design, outcome measurement or implementation.
Collapse
Affiliation(s)
- Monireh Moniri
- Students Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Solmaz Ghanbari‐Homaie
- Assistant Professor, Department of Midwifery, Faculty of Nursing and MidwiferyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
Herzberg MP, Smyser CD. Prenatal Social Determinants of Health: Narrative review of maternal environments and neonatal brain development. Pediatr Res 2024; 96:1417-1428. [PMID: 38961164 PMCID: PMC12013378 DOI: 10.1038/s41390-024-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
The Social Determinants of Health, a set of social factors including socioeconomic status, community context, and neighborhood safety among others, are well-known predictors of mental and physical health across the lifespan. Recent research has begun to establish the importance of these social factors at the earliest points of brain development, including during the prenatal period. Prenatal socioeconomic status, perceived stress, and neighborhood safety have all been reported to impact neonatal brain structure and function, with exploratory work suggesting subsequent effects on infant and child behavior. Secondary effects of the Social Determinants of Health, such as maternal sleep and psychopathology during pregnancy, have also been established as important predictors of infant brain development. This research not only establishes prenatal Social Determinants of Health as important predictors of future outcomes but may be effectively applied even before birth. Future research replicating and extending the effects in this nascent literature has great potential to produce more specific and mechanistic understanding of the social factors that shape early neurobehavioral development. IMPACT: This review synthesizes the research to date examining the effects of the Social Determinants of Health during the prenatal period and neonatal brain outcomes. Structural, functional, and diffusion-based imaging methodologies are included along with the limited literature assessing subsequent infant behavior. The degree to which results converge between studies is discussed, in combination with the methodological and sampling considerations that may contribute to divergence in study results. Several future directions are identified, including new theoretical approaches to assessing the impact of the Social Determinants of Health during the perinatal period.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, Saint Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Pediatrics, and Radiology, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Lautarescu A, Bonthrone AF, Bos B, Barratt B, Counsell SJ. Advances in fetal and neonatal neuroimaging and everyday exposures. Pediatr Res 2024; 96:1404-1416. [PMID: 38877283 PMCID: PMC11624138 DOI: 10.1038/s41390-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
The complex, tightly regulated process of prenatal brain development may be adversely affected by "everyday exposures" such as stress and environmental pollutants. Researchers are only just beginning to understand the neural sequelae of such exposures, with advances in fetal and neonatal neuroimaging elucidating structural, microstructural, and functional correlates in the developing brain. This narrative review discusses the wide-ranging literature investigating the influence of parental stress on fetal and neonatal brain development as well as emerging literature assessing the impact of exposure to environmental toxicants such as lead and air pollution. These 'everyday exposures' can co-occur with other stressors such as social and financial deprivation, and therefore we include a brief discussion of neuroimaging studies assessing the effect of social disadvantage. Increased exposure to prenatal stressors is associated with alterations in the brain structure, microstructure and function, with some evidence these associations are moderated by factors such as infant sex. However, most studies examine only single exposures and the literature on the relationship between in utero exposure to pollutants and fetal or neonatal brain development is sparse. Large cohort studies are required that include evaluation of multiple co-occurring exposures in order to fully characterize their impact on early brain development. IMPACT: Increased prenatal exposure to parental stress and is associated with altered functional, macro and microstructural fetal and neonatal brain development. Exposure to air pollution and lead may also alter brain development in the fetal and neonatal period. Further research is needed to investigate the effect of multiple co-occurring exposures, including stress, environmental toxicants, and socioeconomic deprivation on early brain development.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Bonthrone
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
5
|
Bjork J, Kenley JK, Gardner C, Latham A, Smyser TA, Miller JP, Shimony JJ, Neil JJ, Warner B, Luby J, Barch DM, Rogers CE, Smyser CD, Lean RE. Associations between prenatal adversity and neonatal white matter microstructure on language outcomes at age 2 years. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311434. [PMID: 39211873 PMCID: PMC11361255 DOI: 10.1101/2024.08.02.24311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Early life adversity is associated with microstructural alterations in white matter regions that subserve language. However, the mediating and moderating pathways between adversities experienced in utero and key neonatal white matter tracts including the corpus callosum (CC), superior longitudinal fasciculus (SLF), arcuate fasciculus (AF), inferior fronto- occipital fasciculus (IFOF), and uncinate on early language outcomes remains unknown. Methods This longitudinal study includes 160 neonates, oversampled for prenatal exposure to adversity, who underwent diffusion MRI (dMRI) in the first weeks of life. dMRI parameters were obtained using probabilistic tractography in FSL. Maternal Social Disadvantage and Psychosocial Stress was assessed throughout pregnancy. At age 2 years, the Bayley Scales of Infant and Toddler Development-III evaluated language outcomes. Linear regression, mediation, and moderation assessed associations between prenatal adversities and neonatal white matter on language outcomes. Results Prenatal exposure to Social Disadvantage (p<.001) and Maternal Psychosocial Stress (p<.001) were correlated with poorer language outcomes. When Social Disadvantage and maternal Psychosocial Stress were modeled simultaneously in relation to language outcomes, only Social Disadvantage was significant (p<.001). Independent of Social Disadvantage (p<.001), lower neonatal CC fractional anisotropy (FA) was related to poorer global (p=.02) and receptive (p=.02) language outcomes. CC FA did not mediate the association between Social Disadvantage and language outcomes (indirect effect 95% CIs -0.96-0.15), and there was no interaction between Social Disadvantage and CC FA on language outcomes (p>.05). Bilateral SLF/AF, IFOF, and uncinate were not significant (p>.05). Conclusions Prenatal exposure to Social Disadvantage and neonatal CC FA were independently related to language problems by age 2, with no evidence of mediating or moderating associations with language outcomes. These findings elucidate the early neural underpinnings of language development and suggest that the prenatal period may be an important time to provide poverty- reducing support to expectant mothers to promote offspring neurodevelopmental outcomes.
Collapse
|
6
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
7
|
Weiner S, Wu Y, Kapse K, Vozar T, Cheng JJ, Murnick J, Henderson D, Teramoto H, Limperopoulos C, Andescavage N. Prenatal Maternal Psychological Distress During the COVID-19 Pandemic and Newborn Brain Development. JAMA Netw Open 2024; 7:e2417924. [PMID: 38900424 PMCID: PMC11190810 DOI: 10.1001/jamanetworkopen.2024.17924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/17/2024] [Indexed: 06/21/2024] Open
Abstract
Importance Elevated maternal psychological distress during pregnancy is associated with altered fetal brain development. During the COVID-19 pandemic, prenatal maternal psychological distress more than doubled. Objective To examine the association of the pandemic and rising maternal psychological distress with brain growth in newborns using quantitative 3-dimensional volumetric magnetic resonance imaging (MRI). Design, Setting, and Participants This prospective cross-sectional study recruited mother-infant dyads at Children's National Hospital, Washington, DC, during the COVID-19 pandemic (June 1, 2020, to June 30, 2022) into a longitudinal infant brain development study and compared them with an existing normative healthy cohort (recruited March 1, 2014, to December 31, 2019). Exclusion criteria included multiple gestation pregnancy, known or suspected congenital infection, documented chromosomal abnormalities, or any maternal contraindication to MRI, as well as prenatal COVID-19 exposure. Infants with structural brain abnormalities or a postnatal confirmation of a genetic syndrome were excluded. Exposure Psychological distress during COVID-19 pandemic. Main Outcomes and Measures Prenatal maternal mental health was evaluated using the Spielberger State-Trait Anxiety Inventory and the Perceived Stress Scale. Neonates underwent nonsedated brain MRI. An ordinary least squares linear regression model was used to measure the differences in regional brain volumes of neonates born before vs during the pandemic with and without exposure to elevated prenatal maternal psychological distress after adjustment for neonatal sex and gestational age at MRI and maternal age and educational level. Results A total of 159 mother-infant dyads were included in the analysis: 103 before and 56 during the pandemic (median gestational age of infants, 39.6 [IQR, 38.4-40.4] weeks; median maternal age, 34.5 [IQR, 31.0-37.0] years). Eighty-three infants (52.2%) were female. Among the mothers, 130 (81.8%) had a college degree and 87 (54.7%) had a graduate degree. Forty-four mothers (27.7%) identified as Asian, Hispanic, or multiracial; 27 (17.0%), as Black; and 88 (55.3%), as White. Scores on anxiety and stress measures were significantly increased in the pandemic cohort. Infants of mothers with elevated maternal distress showed median reductions in white matter (-0.36 [95% CI, -0.61 to -0.11] cm3; Q < .001), right hippocampal (-0.35 [95% CI, -0.65 to -0.06] cm3; Q = .04), and left amygdala (-0.49 [95% CI, -0.84 to -0.13] cm3; Q = .03) volumes compared with infants of mothers with low distress levels. After adjusting for the cohort effect of the pandemic, elevated trait anxiety remained significantly associated with decreased left amygdalar volumes (-0.71 [95% CI, -1.12 to -0.29]; Q < .001). Conclusions and Relevance In this cross-sectional study of maternal-infant dyads prior to and during the COVID-19 pandemic, regional neonatal brain volumes were associated with elevated maternal psychological distress.
Collapse
Affiliation(s)
- Susan Weiner
- Developing Brain Institute, Children’s National Hospital, Washington, DC
- The Institute for Biomedical Sciences, George Washington University, Washington, DC
| | - Yao Wu
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Kushal Kapse
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Tracy Vozar
- Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
- Department of Psychology, Children’s National Hospital, Washington, DC
| | | | - Jonathan Murnick
- Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
- Department of Radiology, George Washington University, Washington, DC
- Department of Neonatology, Children’s National Hospital, Washington, DC
| | - Diedtra Henderson
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Hironori Teramoto
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National Hospital, Washington, DC
- Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington University, Washington, DC
- Department of Radiology, George Washington University, Washington, DC
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington University, Washington, DC
- Department of Neonatology, Children’s National Hospital, Washington, DC
| |
Collapse
|
8
|
Mandl S, Alexopoulos J, Doering S, Wildner B, Seidl R, Bartha-Doering L. The effect of prenatal maternal distress on offspring brain development: A systematic review. Early Hum Dev 2024; 192:106009. [PMID: 38642513 DOI: 10.1016/j.earlhumdev.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Prenatal maternal distress can negatively affect pregnancy outcomes, yet its impact on the offspring's brain structure and function remains unclear. This systematic review summarizes the available literature on the relationship between prenatal maternal distress and brain development in fetuses and infants up to 12 months of age. METHODS We searched Central, Embase, MEDLINE, PsycINFO, and PSYNDEXplus for studies published between database inception and December 2023. Studies were included if prenatal maternal anxiety, stress, and/or depression was assessed, neuroimaging was used to examine the offspring, and the offspring's brain was imaged within the first year of life. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-II. RESULTS Out of the 1516 studies retrieved, 71 met our inclusion criteria. Although the studies varied greatly in their methodology, the results generally pointed to structural and functional aberrations in the limbic system, prefrontal cortex, and insula in fetuses and infants prenatally exposed to maternal distress. CONCLUSIONS The hippocampus, amygdala, and prefrontal cortex have a high density of glucocorticoid receptors, which play a key role in adapting to stressors and maintaining stress-related homeostasis. We thus conclude that in utero exposure to maternal distress prompts these brain regions to adapt by undergoing structural and functional changes, with the consequence that these alterations increase the risk for developing a neuropsychiatric illness later on. Future research should investigate the effect of providing psychological support for pregnant women on the offspring's early brain development.
Collapse
Affiliation(s)
- Sophie Mandl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Doering
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brigitte Wildner
- University Library, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Dönmez A, Yeyğel Ç, Can ST. Examination of Risk of Depression and Perception of Social Support in Pregnant Women Undergoing Intrauterine Intervention. Niger J Clin Pract 2024; 27:504-512. [PMID: 38679774 DOI: 10.4103/njcp.njcp_806_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Interventions during pregnancy might increase the risk of depression becausethey may cause anxiety and stress in the mother. In these cases, it is important to provide social support to pregnant women. AIM This study aimed to determine the relationship between the risk of depression and the perception of social support in pregnant women who had undergone intrauterine intervention (IUI). METHODS The population of this descriptive study consisted of all pregnant women (n = 267) who attended a state hospital in Izmir between March and September 2022 and who had undergone IUI. Data were obtained using a sociodemographic data form, the Beck Depression Inventory (BDI), and the Multidimensional Scale of Perceived Social Support (MSPSS). Descriptive statistics and the Chi-square test were used in the study. RESULTS In this study, of the women, 42.7% had ≥3 pregnancies; the gestational week of 93.6% of the pregnant women was between 13-24 weeks. The mean scores of the pregnant women were 11.12 ± 8.04 on the BDI and 61.06 ± 19.84 on the MSPSS. According to the results of the correlation analysis, there was a weak (<0.05) negative reverse correlation between the scales. CONCLUSIONS In the results of this study, it has been determined that as perceived social support increases in pregnant women, symptoms of depression are less likely to occur. This result is important in terms of indicating the need for providing social support to pregnant women. Women should be able to identify depression risk factors during this process to receive appropriate care and support.
Collapse
Affiliation(s)
- A Dönmez
- İzmir Tınaztepe University, Faculty of Health Sciences, Division of Midwifery, İzmir, Turkey
| | - Ç Yeyğel
- İzmir Tınaztepe University, Faculty of Health Sciences, Division of Midwifery, İzmir, Turkey
| | - S T Can
- T.C. Ministry of Health İzmir Tepecik Training and Research Hospital, South Neighborhood, Yenişehir - Konak - İzmir, Turkey
| |
Collapse
|
10
|
Koerner R, Rechenberg K, Rinaldi K, Duffy A. Are Providers Adequately Screening for Anxiety Symptoms During Pregnancy? Nurs Womens Health 2024; 28:109-116. [PMID: 38278513 DOI: 10.1016/j.nwh.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
OBJECTIVE To examine the difference in prevalence of self-reported anxiety symptoms throughout pregnancy compared to clinical diagnosis of an anxiety disorder by a provider. DESIGN Secondary data analysis of a prospective cohort study of 50 pregnant individuals. SETTING/LOCAL PROBLEM Pregnant individuals commonly experience heightened anxiety symptoms, which are associated with adverse perinatal outcomes. However, a diagnosis of an anxiety disorder by a health care provider is less common, which may result in insufficient mental health intervention. PARTICIPANTS Pregnant individuals were recruited at their first prenatal appointment and followed until birth. INTERVENTION/MEASUREMENTS We examined anxiety symptoms using the Edinburgh Postnatal Depression Scale Anxiety subscale. We conducted a medical record review to examine if pregnant individuals were clinically diagnosed with an anxiety disorder. RESULTS Based on an Edinburgh Postnatal Depression Scale Anxiety subscale cutoff score of ≥5, 40% (n = 20) of individuals experienced anxiety symptoms during pregnancy. However, only 16% (n = 8) of participants were diagnosed with an anxiety disorder by a health care provider. CONCLUSION Anxiety symptoms are prevalent throughout pregnancy and may be underdiagnosed by health care providers. An intervention to increase clinical diagnosis of an anxiety disorder and subsequent referral to a mental health specialist may be indicated.
Collapse
|
11
|
Sullivan-Toole H, Jobson KR, Hoffman LJ, Stewart LC, Olson IR, Olino TM. Adolescents at risk for depression show increased white matter microstructure with age across diffuse areas of the brain. Dev Cogn Neurosci 2023; 64:101307. [PMID: 37813039 PMCID: PMC10570597 DOI: 10.1016/j.dcn.2023.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023] Open
Abstract
Maternal history of depression is a strong predictor of depression in offspring and linked to structural and functional alterations in the developing brain. However, very little work has examined differences in white matter in adolescents at familial risk for depression. In a sample aged 9-14 (n = 117), we used tract-based spatial statistics (TBSS) to examine differences in white matter microstructure between adolescents with (n = 42) and without (n = 75) maternal history of depression. Microstructure was indexed using fractional anisotropy (FA). Threshold-free cluster enhancement was applied and cluster maps were thresholded at whole-brain family-wise error < .05. There was no significant main effect of risk status on FA. However, there was a significant interaction between risk status and age, such that large and diffuse portions of the white matter skeleton showed relatively increased FA with age for youth with a maternal history of depression compared to those without. Most tracts identified by the interaction were robust to controlling for sex, youth internalizing, in-scanner motion, neighborhood SES, and intra-cranial volume, evidence that maternal depression is a unique predictor of white matter alterations in youth. Widespread increases in FA with age may correspond to a global pattern of accelerated brain maturation in youth at risk for depression.
Collapse
Affiliation(s)
| | - Katie R Jobson
- Department of Psychology and Neuroscience, Temple University, USA
| | - Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, USA
| | | | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, USA
| | - Thomas M Olino
- Department of Psychology and Neuroscience, Temple University, USA
| |
Collapse
|
12
|
Donnici C, Tomfohr-Madsen L, Long X, Manning KY, Giesbrecht G, Lebel C. Prenatal depressive symptoms are associated with altered structural brain networks in infants and moderated by infant sleep. J Affect Disord 2023; 339:118-126. [PMID: 37390922 PMCID: PMC10303328 DOI: 10.1016/j.jad.2023.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The prevalence of prenatal depressive symptoms has more than doubled during the COVID-19 pandemic, raising substantial concerns about child outcomes including sleep problems and altered brain development. The objective of this work was to determine relationships between prenatal depressive symptoms, infant brain network structure, and infant sleep. METHODS Pregnant individuals were recruited as part of the Pregnancy during the Pandemic (PdP) study. Maternal depressive symptoms were measured in pregnancy and postpartum. When infants of those participants were 3 months of age (n=66; 26 females), infants underwent diffusion magnetic resonance imaging and infant sleep was evaluated. Using tractography, we calculated structural connectivity matrices for the default mode (DMN) and limbic networks. We examined associations between graph theory metrics of infant brain networks and prenatal maternal depressive symptoms, with infant sleep as a moderator. RESULTS Prenatal depressive symptoms were negatively related to average DMN clustering coefficient and local efficiency in infant brains. Infant sleep duration was related to DMN global efficiency and moderated the relationship between prenatal depressive symptoms and density of limbic connections such that infants who slept less had a more negative relationship between prenatal depressive symptoms and local brain connectivity. CONCLUSIONS Prenatal depressive symptoms appear to impact early topological development in brain networks important for emotion regulation. In the limbic network, sleep duration moderated this relationship, suggesting sleep may play a role in infant brain network development.
Collapse
Affiliation(s)
- Claire Donnici
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lianne Tomfohr-Madsen
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Psychology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada; Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| | - Xiangyu Long
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Kathryn Y Manning
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Gerald Giesbrecht
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Liu YW, Liu H, Huang K, Zhu BB, Yan SQ, Hao JH, Zhu P, Tao FB, Shao SS. The association between pregnancy-related anxiety and behavioral development in 18-month-old children: The mediating effects of parenting styles and breastfeeding methods. J Affect Disord 2023; 333:392-402. [PMID: 37086809 DOI: 10.1016/j.jad.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Pregnancy-related anxiety (PRA) is a distinct type of anxiety from general anxiety, affects many pregnant women, and is correlated with poor behavioral development in children. However, the mediation paths were unclear. METHODS A total of 2032 mother-infant pairs from the Ma'anshan Birth Cohort were included in the current study. Maternal PRA was assessed in the second and third trimesters. Children's behavioral development was evaluated at the age of 18 months. In addition, information on parenting styles and breastfeeding methods was obtained at postpartum. Multivariate regression and structural equation modeling were used to examine the associations between maternal PRA and children's behavioral development. RESULTS Significant intercorrelations were found between maternal PRA, the potential mediators (parenting styles and breastfeeding methods), and 18-month-old children's ASQ scores. Parenting styles played an intermediary role in the relationship between maternal PRA and children's behavioral development (β = 0.030, 95 % confidence interval: 0.017-0.051), and the mediating effect accounted for 29.1 % of the total effect. However, breastfeeding methods did not mediate the link between PRA and children's behavior. LIMITATIONS Depression and postpartum anxiety were not controlled for in our analysis, which left us unable to estimate the independent impact of PRA on children's behavior. CONCLUSIONS Parenting rather than breastfeeding is the mediating factor of behavioral problems in children caused by PRA.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Bei-Bei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuang-Qin Yan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan 243011, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Shan-Shan Shao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
14
|
Donnici C, Long X, Reynolds J, Giesbrecht GF, Dewey D, Letourneau N, Huo Y, Landman B, Lebel C. Prenatal depressive symptoms and childhood development of brain limbic and default mode network structure. Hum Brain Mapp 2023; 44:2380-2394. [PMID: 36691973 PMCID: PMC10028635 DOI: 10.1002/hbm.26216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Prenatal depressive symptoms are linked to negative child behavioral and cognitive outcomes and predict later psychopathology in adolescent children. Prior work links prenatal depressive symptoms to child brain structure in regions like the amygdala; however, the relationship between symptoms and the development of brain structure over time remains unclear. We measured maternal depressive symptoms during pregnancy and acquired longitudinal T1-weighted and diffusion imaging data in children (n = 111; 60 females) between 2.6 and 8 years of age. Controlling for postnatal symptoms, we used linear mixed effects models to test relationships between prenatal depressive symptoms and age-related changes in (i) amygdala and hippocampal volume and (ii) structural properties of the limbic and default-mode networks using graph theory. Higher prenatal depressive symptoms in the second trimester were associated with more curvilinear trajectories of left amygdala volume changes. Higher prenatal depressive symptoms in the third trimester were associated with slower age-related changes in limbic global efficiency and average node degree across childhood. Our work provides evidence that moderate symptoms of prenatal depression in a low sociodemographic risk sample are associated with structural brain development in regions and networks implicated in emotion processing.
Collapse
Affiliation(s)
- Claire Donnici
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiangyu Long
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Jess Reynolds
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F Giesbrecht
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Bennett Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Catherine Lebel
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Ayyash S, Sunderji A, Gallant HD, Hall A, Davis AD, Pokhvisneva I, Meaney MJ, Silveira PP, Sassi RB, Hall GB. Examining resting-state network connectivity in children exposed to perinatal maternal adversity using anatomically weighted functional connectivity (awFC) analyses; A preliminary report. Front Neurosci 2023; 17:1066373. [PMID: 37008220 PMCID: PMC10060836 DOI: 10.3389/fnins.2023.1066373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionEnvironmental perturbations during critical periods can have pervasive, organizational effects on neurodevelopment. To date, the literature examining the long-term impact of early life adversity has largely investigated structural and functional imaging data outcomes independently. However, emerging research points to a relationship between functional connectivity and the brain’s underlying structural architecture. For instance, functional connectivity can be mediated by the presence of direct or indirect anatomical pathways. Such evidence warrants the use of structural and functional imaging in tandem to study network maturation. Accordingly, this study examines the impact of poor maternal mental health and socioeconomic context during the perinatal period on network connectivity in middle childhood using an anatomically weighted functional connectivity (awFC) approach. awFC is a statistical model that identifies neural networks by incorporating information from both structural and functional imaging data.MethodsResting-state fMRI and DTI scans were acquired from children aged 7–9 years old.ResultsOur results indicate that maternal adversity during the perinatal period can affect offspring’s resting-state network connectivity during middle childhood. Specifically, in comparison to controls, children of mothers who had poor perinatal maternal mental health and/or low socioeconomic status exhibited greater awFC in the ventral attention network.DiscussionThese group differences were discussed in terms of the role this network plays in attention processing and maturational changes that may accompany the consolidation of a more adult-like functional cortical organization. Furthermore, our results suggest that there is value in using an awFC approach as it may be more sensitive in highlighting connectivity differences in developmental networks associated with higher-order cognitive and emotional processing, as compared to stand-alone FC or SC analyses.
Collapse
Affiliation(s)
- Sondos Ayyash
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Aleeza Sunderji
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Heather D. Gallant
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Andrew D. Davis
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michael J. Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Faculty of Medicine and Health Sciences, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Translational Neuroscience Program, Agency for Science, Technology and Research (A*STAR), Singapore Yong Loo Lin School of Medicine, Singapore Institute for Clinical Sciences and Brain – Body Initiative, National University of Singapore, Singapore, Singapore
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Faculty of Medicine and Health Sciences, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Roberto B. Sassi
- Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Geoffrey B. Hall
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- *Correspondence: Geoffrey B. Hall,
| |
Collapse
|
16
|
Wang S, Ding C, Dou C, Zhu Z, Zhang D, Yi Q, Wu H, Xie L, Zhu Z, Song D, Li H. Associations between maternal prenatal depression and neonatal behavior and brain function - Evidence from the functional near-infrared spectroscopy. Psychoneuroendocrinology 2022; 146:105896. [PMID: 36037574 DOI: 10.1016/j.psyneuen.2022.105896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maternal prenatal depression is a significant public health issue associated with mental disorders of offspring. This study aimed to determine if maternal prenatal depressive symptoms are associated with changes in neonatal behaviors and brain function at the resting state. METHODS A total of 204 pregnant women were recruited during the third trimester and were evaluated by Edinburgh Postpartum Depression Scale (EPDS). The mother-infant pairs were divided into the depressed group (n = 75) and control group (n = 129) based on the EPDS, using a cut-off value of 10. Cortisol levels in the cord blood and maternal blood collected on admission for delivery were measured. On day three of life, all study newborns were evaluated by the Neonatal Behavior Assessment Scale (NBAS) and 165 infants were evaluated by resting-state functional near-infrared spectroscopy (rs-fNIRS). To minimize the influences of potential bias on the rs-fNIRS results, we used a binary logistic regression model to carry out propensity score matching between the depressed group and the control group. Rs-fNIRS data from 21 pairs of propensity score-matched newborns were used for analysis. The associations between maternal EPDS scores, neonatal NBAS scores, and cortisol levels were analyzed using linear regressions and the mediation analysis models. RESULTS Compared to the control group, the newborns in the depressed group had lower scores in the social-interaction and autonomic system dimensions of NBAS (P < 0.01). Maternal and umbilical cord plasma cortisol levels in the depressed group were higher (P < 0.01) than in the control group. However, only umbilical cord plasma cortisol played a negative mediating role in the relationship between maternal EPDS and NBAS in the social-interaction and autonomic system (β med = -0.054 [-0.115,-0.018] and -0.052 [-0.105,-0.019]. Proportional mediation was 13.57 % and 12.33 for social-interaction and autonomic systems, respectively. The newborns in the depressed group showed decreases in the strength of rs-fNIRS functional connections, primarily the connectivity of the left frontal-parietal and temporal-parietal regions. However, infants in the depressed and control groups showed no differences in topological characteristics of the brain network, including standardized clustering coefficient, characteristic path length, small-world property, global efficiency, and local efficiency (P > 0.05). The social-interaction Z-scores had positive correlations with functional connectivity strength of left prefrontal cortex-left parietal lobe (r = 0.57, p < 0.01),prefrontal cortex-left parietal lobe - left temporal lobe (r = 0.593, p < 0.01) and left parietal lobe - left temporal lobe (r = 0.498, p < 0.01). Autonomic system Z-scores were also significantly positive correlation with prefrontal cortex-left parietal lobe (r = 0.509, p < 0.01),prefrontal cortex-left parietal lobe - left temporal lobe (r = 0.464, p < 0.01), left parietal lobe - left temporal lobe (r = 0.381, p < 0.05), and right temporal lobe and left temporal lobe (r = 0.310, p < 0.05). CONCLUSION This study shows that maternal prenatal depression may affect the development of neonatal social-interaction and autonomic system and the strength of neonatal brain functional connectivity. The fetal cortisol may play a role in behavioral development in infants exposed to maternal prenatal depression. Our findings highlight the importance of prenatal screening for maternal depression and early postnatal behavioral evaluation that provide the opportunity for early diagnosis and intervention to improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Shan Wang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Neonatology, the Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenxi Ding
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengyin Dou
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiqi Yi
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haoyue Wu
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longshan Xie
- Department of Functional Neuroscience, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat -sen University), Guangdong, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Dongli Song
- Division of Neonatology, Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, CA, USA.
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Neonatology, the Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
17
|
Lean RE, Smyser CD, Brady RG, Triplett RL, Kaplan S, Kenley JK, Shimony JS, Smyser TA, Miller JP, Barch DM, Luby JL, Warner BB, Rogers CE. Prenatal exposure to maternal social disadvantage and psychosocial stress and neonatal white matter connectivity at birth. Proc Natl Acad Sci U S A 2022; 119:e2204135119. [PMID: 36219693 PMCID: PMC9586270 DOI: 10.1073/pnas.2204135119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Early life adversity (social disadvantage and psychosocial stressors) is associated with altered microstructure in fronto-limbic pathways important for socioemotional development. Understanding when these associations begin to emerge may inform the timing and design of preventative interventions. In this longitudinal study, 399 mothers were oversampled for low income and completed social background measures during pregnancy. Measures were analyzed with structural equation analysis resulting in two latent factors: social disadvantage (education, insurance status, income-to-needs ratio [INR], neighborhood deprivation, and nutrition) and psychosocial stress (depression, stress, life events, and racial discrimination). At birth, 289 healthy term-born neonates underwent a diffusion MRI (dMRI) scan. Mean diffusivity (MD) and fractional anisotropy (FA) were measured for the dorsal and inferior cingulum bundle (CB), uncinate, and fornix using probabilistic tractography in FSL. Social disadvantage and psychosocial stress were fitted to dMRI parameters using regression models adjusted for infant postmenstrual age at scan and sex. Social disadvantage, but not psychosocial stress, was independently associated with lower MD in the bilateral inferior CB and left uncinate, right fornix, and lower MD and higher FA in the right dorsal CB. Results persisted after accounting for maternal medical morbidities and prenatal drug exposure. In moderation analysis, psychosocial stress was associated with lower MD in the left inferior CB among the lower-to-higher socioeconomic status (SES) (INR ≥ 200%) group, but not the extremely low SES (INR < 200%) group. Increasing access to social welfare programs that reduce the burden of social disadvantage and related psychosocial stressors may be an important target to protect fetal brain development in fronto-limbic pathways.
Collapse
Affiliation(s)
- Rachel E. Lean
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Christopher D. Smyser
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Rebecca G. Brady
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Regina L. Triplett
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Sydney Kaplan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Jeanette K. Kenley
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Joshua S. Shimony
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Tara A. Smyser
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - J. Phillip Miller
- Department of Biostatistics, Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63130
| | - Joan L. Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Barbara B. Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Newborn Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
18
|
Tiryaki Ö, Zengin H, Gök K, Bostancı MS, Özden S. Concerns of High-Risk Pregnancies During Pandemic: COVID-19 and Fear of Birth. FLORENCE NIGHTINGALE JOURNAL OF NURSING 2022; 30:274-280. [PMID: 36106810 PMCID: PMC9623135 DOI: 10.5152/fnjn.2022.21251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
AIM This study was conducted to determine the fear of birth and coronavirus disease 2019 in pregnant women who applied to the high-risk pregnancy outpatient clinic during the pandemic and investigate whether there is a relationship between these fears. METHOD This study is a descriptive cross-sectional study using questionnaires. The Fear of COVID-19 Scale and Fear of Birth Scale for Pregnant Women were validated in Turkish in outpatient women with high-risk pregnancies. The study was carried out with 238 pregnant women between February 15 - April 15, 2021. RESULTS The mean age of the pregnant women participating in the study was 30.22 ± 6.01, the mean week of gestation was 30.87 ± 5.56, the total mean of Fear of COVID-19 Scale score was found to be 18.23 ± 6.41, and Fear of Birth Scale for Pregnant Women total mean score was 62.30 ± 25.66. An increased prevalence of anxiety has been found in high-risk pregnant women during the coronavirus disease-2019 pandemic. It was observed that there was a significant, positive, and low-level relationship between Fear of COVID-19 Scale-19 and Fear of Birth Scale for Pregnant Women of high-risk pregnant women (r = .268; p = .000). CONCLUSION Prenatal anxiety was prevalent among high-risk pregnant women who required routine anxiety screening and psychosocial support during the coronavirus disease-2019 pandemic.
Collapse
Affiliation(s)
- Öznur Tiryaki
- Department of Nursing, Sakarya University, Institute of Health Sciences, Sakarya, Turkey
| | - Hamide Zengin
- Department of Pediatric Nursing, Bilecik Şeyh Edebali University, Faculty of Health Sciences, Bilecik, Turkey
| | - Koray Gök
- Department of Obstetrics and Gynecology, Sakarya Education and Research Hospital, Sakarya, Turkey
| | - Mehmet Sühha Bostancı
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Selçuk Özden
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
19
|
Lautarescu A, Bonthrone AF, Pietsch M, Batalle D, Cordero-Grande L, Tournier JD, Christiaens D, Hajnal JV, Chew A, Falconer S, Nosarti C, Victor S, Craig MC, Edwards AD, Counsell SJ. Maternal depressive symptoms, neonatal white matter, and toddler social-emotional development. Transl Psychiatry 2022; 12:323. [PMID: 35945202 PMCID: PMC9363426 DOI: 10.1038/s41398-022-02073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - J-Donald Tournier
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Female Hormone Clinic, South London and Maudsley National Health Service Foundation Trust, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- EPSRC/Wellcome Centre for Medical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
20
|
Special Issue: "Exercise Intervention during Pregnancy and Maternal Health". J Clin Med 2022; 11:jcm11113108. [PMID: 35683495 PMCID: PMC9181077 DOI: 10.3390/jcm11113108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
For nine months, the process of pregnancy modifies all the organs and systems of the woman's body in order to achieve adequate fetal growth and development [...].
Collapse
|
21
|
Prenatal depression exposure alters white matter integrity and neurodevelopment in early childhood. Brain Imaging Behav 2022; 16:1324-1336. [PMID: 35000066 PMCID: PMC9107412 DOI: 10.1007/s11682-021-00616-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
Prenatal exposure to maternal depression increases the risk for onset of emotional and behavioral disorders in children. We investigated the effects of exposure to prenatal depression on white matter microstructural integrity at birth and at 2-3 years, and associated neurodevelopment. Diffusion-weighted images were acquired for children of the Drakenstein Child Health Study at 2-4 weeks postpartum (n=70, 47% boys) and at 2-3 years of age (n=60, 58% boys). Tract-Based Spatial Statistics was used to compare, using an ROI based approach, diffusion tensor metrics across groups defined by presence (>19 on Beck's Depression Inventory and/or >12 on the Edinburgh Postnatal Depression Scale) or absence (below depression thresholds) of depression, and associations with neurodevelopmental measures at age 2-3 years were determined. We did not detect group differences in white matter integrity at neonatal age, but at 2-3 years, children in the exposed group demonstrated higher fractional anisotropy, and lower mean and radial diffusivity in association tracts compared to controls. This was notable in the sagittal stratum (radial diffusivity: p<0.01). Altered white matter integrity metrics were also observed in projection tracts, including the corona radiata, which associated with cognitive and motor outcomes in exposed 2-3-year-olds (p<0.05). Our findings of widespread white matter alterations in 2-3-year-old children with prenatal exposure to depression are consistent with previous findings, as well as with neuroimaging findings in adults with major depression. Further, we identified novel associations of altered white matter integrity with cognitive development in depression-exposed children, suggesting that these neuroimaging findings may have early functional impact.
Collapse
|
22
|
Demers CH, Bagonis MM, Al-Ali K, Garcia SE, Styner MA, Gilmore JH, Hoffman MC, Hankin BL, Davis EP. Exposure to prenatal maternal distress and infant white matter neurodevelopment. Dev Psychopathol 2021; 33:1526-1538. [PMID: 35586027 PMCID: PMC9109943 DOI: 10.1017/s0954579421000742] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The prenatal period represents a critical time for brain growth and development. These rapid neurological advances render the fetus susceptible to various influences with life-long implications for mental health. Maternal distress signals are a dominant early life influence, contributing to birth outcomes and risk for offspring psychopathology. This prospective longitudinal study evaluated the association between prenatal maternal distress and infant white matter microstructure. Participants included a racially and socioeconomically diverse sample of 85 mother-infant dyads. Prenatal distress was assessed at 17 and 29 weeks' gestational age (GA). Infant structural data were collected via diffusion tensor imaging at 42-45 weeks' postconceptional age. Findings demonstrated that higher prenatal maternal distress at 29 weeks' GA was associated with increased fractional anisotropy (b = .283, t(64) = 2.319, p = .024) and with increased axial diffusivity (b = .254, t(64) = 2.067, p = .043) within the right anterior cingulate white matter tract. No other significant associations were found with prenatal distress exposure and tract fractional anisotropy or axial diffusivity at 29 weeks' GA, nor earlier in gestation.
Collapse
Affiliation(s)
- Catherine H. Demers
- Department of Psychology University of Denver, Denver CO,
USA
- Department of Psychiatry, University of Colorado Anschutz
Medical Campus, Aurora CO, USA
| | - Maria M. Bagonis
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
| | - Khalid Al-Ali
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
| | - Sarah E. Garcia
- Department of Psychology University of Denver, Denver CO,
USA
| | - Martin A. Styner
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
- Department of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill NC, USA
| | - John H. Gilmore
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
| | - M. Camille Hoffman
- Department of Psychiatry, University of Colorado Anschutz
Medical Campus, Aurora CO, USA
- Department of Obstetrics and Gynecology, Division of
Maternal and Fetal Medicine, University of Colorado Denver School of Medicine,
Aurora, Colorado, USA
| | - Benjamin L. Hankin
- Department of Psychology, University of Illinois at
Urbana-Champaign, Champaign IL, USA
| | - Elysia Poggi Davis
- Department of Psychology University of Denver, Denver CO,
USA
- Department of Psychiatry and Human Behavior, University of
California, Irvine, CA, USA
| |
Collapse
|
23
|
Association between maternal depression during pregnancy and newborn DNA methylation. Transl Psychiatry 2021; 11:572. [PMID: 34750344 PMCID: PMC8576002 DOI: 10.1038/s41398-021-01697-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Around 15-65% of women globally experience depression during pregnancy, prevalence being particularly high in low- and middle-income countries. Prenatal depression has been associated with adverse birth and child development outcomes. DNA methylation (DNAm) may aid in understanding this association. In this project, we analyzed associations between prenatal depression and DNAm from cord blood from participants of the South African Drakenstein Child Health Study. We examined DNAm in an epigenome-wide association study (EWAS) of 248 mother-child pairs. DNAm was measured using the Infinium MethylationEPIC (N = 145) and the Infinium HumanMethylation450 (N = 103) arrays. Prenatal depression scores, obtained with the Edinburgh Postnatal Depression Scale (EPDS) and the Beck Depression Inventory-II (BDI-II), were analyzed as continuous and dichotomized variables. We used linear robust models to estimate associations between depression and newborn DNAm, adjusted for measured (smoking status, household income, sex, preterm birth, cell type proportions, and genetic principal components) and unmeasured confounding using Cate and Bacon algorithms. Bonferroni correction was used to adjust for multiple testing. DMRcate and dmrff were used to test for differentially methylated regions (DMRs). Differential DNAm was significantly associated with BDI-II variables, in cg16473797 (Δ beta = -1.10E-02, p = 6.87E-08), cg23262030 (Δ beta per BDI-II total IQR = 1.47E-03, p = 1.18E-07), and cg04859497 (Δ beta = -6.42E-02, p = 1.06E-09). Five DMRs were associated with at least two depression variables. Further studies are needed to replicate these findings and investigate their biological impact.
Collapse
|
24
|
Effect of parental depressive symptoms on offspring's brain structure and function: A systematic review of neuroimaging studies. Neurosci Biobehav Rev 2021; 131:451-465. [PMID: 34592256 DOI: 10.1016/j.neubiorev.2021.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022]
Abstract
Perinatal Depression (PND) is a severe mental disorder that appears during pregnancy or in the post-partum. Although PND has been associated with behavioral problems in the offspring, its effects on brain development are unclear. With this review we aimed at summarizing the existing literature on the effects of perinatal depressive symptoms on children's brains. A search on PubMed and Embase of structural, functional Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) studies exploring the effect of PND on offspring's brain was conducted. We selected twenty-six studies, ten structural MRI, five DTI, six fMRI and five with combined techniques. Overall, the studies showed: a) gray matter alterations in amygdala and fronto-temporal lobes; b) microstructural alterations in amygdala, frontal lobe, cingulum, longitudinal fasciculus and fornix; and c) functional alterations between limbic and mesocortical networks. The small sample size and the heterogeneity in populations and methodologies limit this review. In conclusion, PND seems to influence structure and function of offspring, that may contribute to the risk of behavioral disturbances later in life.
Collapse
|
25
|
Vuong HE, Coley EJL, Kazantsev M, Cooke ME, Rendon TK, Paramo J, Hsiao EY. Interactions between maternal fluoxetine exposure, the maternal gut microbiome and fetal neurodevelopment in mice. Behav Brain Res 2021; 410:113353. [PMID: 33979656 DOI: 10.1016/j.bbr.2021.113353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely used treatment by women experiencing depression during pregnancy. However, the effects of maternal SSRI use on early offspring development remain poorly understood. Recent studies suggest that SSRIs can modify the gut microbiota and interact directly with particular gut bacteria, raising the question of whether the gut microbiome impacts host responses to SSRIs. In this study, we investigate effects of prenatal SSRI exposure on fetal neurodevelopment and further evaluate potential modulatory influences of the maternal gut microbiome. We demonstrate that maternal treatment with the SSRI fluoxetine induces widespread alterations in the fetal brain transcriptome during midgestation, including increases in the expression of genes relevant to synaptic organization and neuronal signaling and decreases in the expression of genes related to DNA replication and mitosis. Notably, maternal fluoxetine treatment from E7.5 to E14.5 has no overt effects on the composition of the maternal gut microbiota. However, maternal pretreatment with antibiotics to deplete the gut microbiome substantially modifies transcriptional responses of the fetal brain to maternal fluoxetine treatment. In particular, maternal fluoxetine treatment elevates localized expression of the opioid binding protein/cell adhesion molecule like gene Opcml in the fetal thalamus and lateral ganglionic eminence, which is prevented by maternal antibiotic treatment. Together, these findings reveal that maternal fluoxetine treatment alters gene expression in the fetal brain through pathways that are impacted, at least in part, by the presence of the maternal gut microbiota.
Collapse
Affiliation(s)
- Helen E Vuong
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Elena J L Coley
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria Kazantsev
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michaela E Cooke
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Tomiko K Rendon
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jorge Paramo
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
26
|
Copeland A, Silver E, Korja R, Lehtola SJ, Merisaari H, Saukko E, Sinisalo S, Saunavaara J, Lähdesmäki T, Parkkola R, Nolvi S, Karlsson L, Karlsson H, Tuulari JJ. Infant and Child MRI: A Review of Scanning Procedures. Front Neurosci 2021; 15:666020. [PMID: 34321992 PMCID: PMC8311184 DOI: 10.3389/fnins.2021.666020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a safe method to examine human brain. However, a typical MR scan is very sensitive to motion, and it requires the subject to lie still during the acquisition, which is a major challenge for pediatric scans. Consequently, in a clinical setting, sedation or general anesthesia is often used. In the research setting including healthy subjects anesthetics are not recommended for ethical reasons and potential longer-term harm. Here we review the methods used to prepare a child for an MRI scan, but also on the techniques and tools used during the scanning to enable a successful scan. Additionally, we critically evaluate how studies have reported the scanning procedure and success of scanning. We searched articles based on special subject headings from PubMed and identified 86 studies using brain MRI in healthy subjects between 0 and 6 years of age. Scan preparations expectedly depended on subject's age; infants and young children were scanned asleep after feeding and swaddling and older children were scanned awake. Comparing the efficiency of different procedures was difficult because of the heterogeneous reporting of the used methods and the success rates. Based on this review, we recommend more detailed reporting of scanning procedure to help find out which are the factors affecting the success of scanning. In the long term, this could help the research field to get high quality data, but also the clinical field to reduce the use of anesthetics. Finally, we introduce the protocol used in scanning 2 to 5-week-old infants in the FinnBrain Birth Cohort Study, and tips for calming neonates during the scans.
Collapse
Affiliation(s)
- Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanne Sinisalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Ding W, Lu J, Zhou Y, Wei W, Zhou Z, Chen M. Knowledge, attitudes, practices, and influencing factors of anxiety among pregnant women in Wuhan during the outbreak of COVID-19: a cross-sectional study. BMC Pregnancy Childbirth 2021; 21:80. [PMID: 33494723 PMCID: PMC7829651 DOI: 10.1186/s12884-021-03561-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Background Prenatal anxiety has been a significant public health issue globally, leading to adverse health outcomes for mothers and children. The study aimed to evaluate the sociodemographic characteristics, knowledge, attitudes, and practices (KAP), and anxiety level of pregnant women during the coronavirus disease 2019 (COVID-19) epidemic in Wuhan and investigate the influencing factors for prenatal anxiety in this specific context. Methods Pregnant subjects’ KAP towards COVID-19 and their sociodemographics and pregnancy information were collected using questionnaires. The Zung Self-Rating Anxiety Scale (SAS) was used to assess anxiety status. Factors associated with the level of prenatal anxiety were analyzed by Pearson’s chi-square test and multivariable logistic regression analyses. Results The prenatal anxiety prevalence in this population was 20.8%. The mean score of knowledge was 13.2 ± 1.1 on a 0 ~ 14 scale. The attitudes and practices data showed that 580/ 817 (71.0%) were very concerned about the news of COVID-19, 455/817 (55.7%) considered the official media to be the most reliable information source for COVID-19, and 681/817 (83.4%) were anxious about the possibility of being infected by COVID-19. However, only 83/817 (10.2%) worried about contracting COVID-19 infection through the ultrasound transducer during a routing morphology scan. About two-thirds 528/817 (64.6%) delayed or canceled the antenatal visits. Approximately half of them 410/817 (50.2%) used two kinds of personal protection equipments (PPEs) during hospital visits. Logistic regression analysis revealed that the influential factors for prenatal anxiety included previous children in the family, knowledge score, media trust, worry of contracting the COVID-19 infection and worry about getting infected with COVID-19 from the ultrasound probe antenatal care (ANC) schedule. Conclusion Prenatal anxiety was prevalent among pregnant women in Wuhan during the outbreak of COVID-19. The current findings identified factors associated with the level of prenatal anxiety that could be targeted for psychological care. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-03561-7.
Collapse
Affiliation(s)
- Wenping Ding
- Department of diagnostic ultrasound, Wuhan Women and Children Medical Care Center, Wuhan, 430030, China
| | - Jianmei Lu
- Department of diagnostic ultrasound, Wuhan Women and Children Medical Care Center, Wuhan, 430030, China
| | - Yan Zhou
- Department of Obstetrics, Wuhan Women and Children Medical Care Center, Wuhan, 430030, China
| | - Weizhong Wei
- Department of diagnostic ultrasound, Wuhan Women and Children Medical Care Center, Wuhan, 430030, China
| | - Zhihong Zhou
- Department of diagnostic ultrasound, Maternal and Children's Hospital of Jiangxia District, Wuhan, 430100, China
| | - Min Chen
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China. .,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China.
| |
Collapse
|