1
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Kamakura R, Raza GS, Sodum N, Lehto V, Kovalainen M, Herzig K. Colonic Delivery of Nutrients for Sustained and Prolonged Release of Gut Peptides: A Novel Strategy for Appetite Management. Mol Nutr Food Res 2022; 66:e2200192. [PMID: 35938221 PMCID: PMC9787473 DOI: 10.1002/mnfr.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Ghulam Shere Raza
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Nalini Sodum
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsFaculty of Science and ForestryUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Miia Kovalainen
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Karl‐Heinz Herzig
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
- Department of Pediatric Gastroenterology and Metabolic DiseasesPediatric InstitutePoznan University of Medical SciencesPoznań60–572Poland
| |
Collapse
|
3
|
Sokołowska E, Sadowska A, Sawicka D, Kotulska-Bąblińska I, Car H. A head-to-head comparison review of biological and toxicological studies of isomaltulose, d-tagatose, and trehalose on glycemic control. Crit Rev Food Sci Nutr 2021; 62:5679-5704. [PMID: 33715524 DOI: 10.1080/10408398.2021.1895057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is the most common metabolic disorder contributing to significant morbidity and mortality in humans. Different preventive and therapeutic agents, as well as various pharmacological strategies or non-pharmacological tools, improve the glycemic profile of diabetic patients. Isomaltulose, d-tagatose, and trehalose are naturally occurring, low glycemic sugars that are not synthesized by humans but widely used in food industries. Various studies have shown that these carbohydrates can regulate glucose metabolism and provide support in maintaining glucose homeostasis in patients with diabetes, but also can improve insulin response, subsequently leading to better control of hyperglycemia. In this review, we discussed the anti-hyperglycemic effects of isomaltulose, D-tagatose, and trehalose, comparing their properties with other known sweeteners, and highlighting their importance for the development of the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Xie SZ, Yang G, Jiang XM, Qin DY, Li QM, Zha XQ, Pan LH, Jin CS, Luo JP. Polygonatum cyrtonema Hua Polysaccharide Promotes GLP-1 Secretion from Enteroendocrine L-Cells through Sweet Taste Receptor-Mediated cAMP Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6864-6872. [PMID: 32456438 DOI: 10.1021/acs.jafc.0c02058] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells is a pleiotropic hormone with beneficial potential related to islet function, diet control, glucose homeostasis, inflammation relief, and cardiovascular protection. The present study aimed at investigating the effect of Polygonatum cyrtonema polysaccharide (PCP) after structural identification on GLP-1 secretion and the possible mechanism involved in the PCP-stimulated secretion of GLP-1. It was found that GLP-1 secretion was effectively promoted (p < 0.01) by PCP both in rats with oral administration for 5 weeks (13.9 ± 0.3-35.8 ± 0.3 pmol/L) and ileal administration within 2 h (13.6 ± 0.4-34.1 ± 1.1 pmol/L) and in enteroendocrine NCI-H716 cells with direct stimulation within 24 h (2.05 ± 0.3-20.7 ± 0.2 pmol/L). The sweet taste receptor T1R2/T1R3 was identified to be essential for NCI-H716 cells to directly recognize PCP. The intervention experiments showed that PCP-stimulated GLP-1 secretion was significantly depressed (p < 0.01) not only by antibodies, siRNA, and the inhibitor of T1R2/T1R3 but also by an adenylate cyclase inhibitor. These results suggest that PCP stimulates GLP-1 secretion from enteroendocrine cells possibly through activation of the T1R2/T1R3-mediated cAMP signaling pathway.
Collapse
Affiliation(s)
- Song-Zi Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guang Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian-Min Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dan-Yang Qin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chuan-Shan Jin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Incretin Hormones: The Link between Glycemic Index and Cardiometabolic Diseases. Nutrients 2019; 11:nu11081878. [PMID: 31412576 PMCID: PMC6724226 DOI: 10.3390/nu11081878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
This review aimed to describe the potential mechanisms by which incretin hormones could mediate the relationship between glycemic index and cardiometabolic diseases. A body of evidence from many studies suggests that low glycemic index (GI) diets reduces the risk for type 2 diabetes and coronary heart disease. In fact, despite the extensive literature on this topic, the mechanisms underlying unfavorable effects of high GI foods on health remain not well defined. The postprandial and hormonal milieu could play a key role in the relationship between GI and cardiovascular risk. Incretin hormones, glucagon-like peptide1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are important regulators of postprandial homeostasis by amplifying insulin secretory responses. Response of GIP and GLP-1 to GI have been studied more in depth, also by several studies on isomaltulose, which have been taken as an ideal model to investigate the kinetics of incretin secretion in response to foods’ GI. In addition, extrapancreatic effects of these incretin hormones were also recently observed. Emerging from this have been exciting effects on several targets, such as body weight regulation, lipid metabolism, white adipose tissue, cardiovascular system, kidney, and liver, which may importantly affect the health status.
Collapse
|
6
|
Martinussen C, Bojsen-Møller KN, Dirksen C, Svane MS, Kristiansen VB, Hartmann B, Holst JJ, Madsbad S. Augmented GLP-1 Secretion as Seen After Gastric Bypass May Be Obtained by Delaying Carbohydrate Digestion. J Clin Endocrinol Metab 2019; 104:3233-3244. [PMID: 30844053 DOI: 10.1210/jc.2018-02661] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Exaggerated postprandial glucagon-like peptide-1 (GLP-1) secretion seems important for weight loss and diabetes remission after Roux-en-Y gastric bypass (RYGB) and may result from carbohydrate absorption in the distal small intestine. OBJECTIVE To investigate distal [GLP-1; peptide YY (PYY)] and proximal [glucose-dependent insulinotropic polypeptide (GIP)] gut hormone secretion in response to carbohydrates hydrolyzed at different rates. We hypothesized that slow digestion restricts proximal absorption, facilitating distal delivery of carbohydrates and thereby enhanced GLP-1 secretion in unoperated individuals, whereas this may not apply after RYGB. DESIGN Single-blinded, randomized, crossover study. SETTING Hvidovre Hospital, Hvidovre, Denmark. PARTICIPANTS Ten RYGB-operated patients and 10 unoperated matched subjects. INTERVENTIONS Four separate days with ingestion of different carbohydrate loads, either rapidly/proximally digested (glucose plus fructose; sucrose) or slowly/distally digested (isomaltulose; sucrose plus acarbose). MAIN OUTCOME MEASURES GLP-1 secretion (area under the curve above baseline). Secondary outcomes included PYY and GIP. RESULTS Isomaltulose enhanced secretion of GLP-1 nearly threefold (P = 0.02) and PYY ninefold (P = 0.08) compared with sucrose in unoperated subjects but had a modest effect after RYGB. Acarbose failed to increase sucrose induced GLP-1 secretion in unoperated subjects and diminished the responses by 50% after RYGB (P = 0.03). In both groups, GIP secretion was reduced by isomaltulose and even more so by sucrose plus acarbose when compared with sucrose intake. CONCLUSIONS GLP-1 secretion depends on the rate of carbohydrate digestion, but in a different manner after RYGB. Enhanced GLP-1 secretion is central after RYGB, but it may also be obtained in unoperated individuals by delaying hydrolysis of carbohydrates, pushing their digestion and absorption distally in the small intestine.
Collapse
Affiliation(s)
- Christoffer Martinussen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Nyvold Bojsen-Møller
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Saur Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Hira T, Koga T, Sasaki K, Hara H. Canagliflozin potentiates GLP-1 secretion and lowers the peak of GIP secretion in rats fed a high-fat high-sucrose diet. Biochem Biophys Res Commun 2017; 492:161-165. [PMID: 28803984 DOI: 10.1016/j.bbrc.2017.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023]
Abstract
The glucose-induced secretion of incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), is dependent on luminal glucose levels and transport of glucose via the sodium-glucose transporter 1 (SGLT1) in the small intestine. Because GLP-1 and GIP function in decreasing and increasing the body weight, respectively, we aimed to analyze the effect of transient inhibition of SGLT1 by canagliflozin on incretin secretion in an obese rat model. Male Sprague-Dawley rats were maintained on a high-fat high-sucrose diet for 6-7 weeks, and plasma GLP-1 and GIP levels were measured during an oral glucose tolerance test (OGTT). In addition, GLP-1 secretion was examined in a murine GLP-1 producing enteroendocrine cell line, GLUTag. Concomitant administration of 10 mg/kg canagliflozin with glucose loading suppressed glucose excursion, increased total GLP-1 levels, and reduced total GIP levels in systemic circulation, as revealed in the OGTT. Total and active GLP-1 levels were increased in portal blood, whereas total and active GIP levels tended to be decreased 15 min after the administration of canagliflozin with glucose. Canagliflozin (at 0.1-30 μM) did not directly affect release of GLP-1 in vitro. These results suggest that the oral administration of canagliflozin suppresses GIP secretion via the inhibition of SGLT1 in the upper part of the intestine and enhances GLP-1 secretion by increasing the glucose delivery to the lower part of the small intestine in an obese rodent model.
Collapse
Affiliation(s)
- Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Toshiki Koga
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Hara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Tian L, Jin T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes 2016; 8:753-765. [PMID: 27287542 DOI: 10.1111/1753-0407.12439] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/09/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a cell type-specific post-translational product of proglucagon. It is encoded by the proglucagon gene and released primarily from intestinal endocrine L-cells in response to hormonal, neuronal, and nutritional stimuli. In addition to serving as an incretin in mediating the effect of meal consumption on insulin secretion, GLP-1 exerts other functions in pancreatic islets, including regulation of β-cell proliferation and protection of β-cells against metabolic stresses. Furthermore, GLP-1 exerts numerous other functions in extrapancreatic organs, whereas brain GLP-1 signaling controls satiety. Herein we review the discovery of two incretins and the development of GLP-1-based drugs. We also describe the development of cellular models for studying mechanisms underlying GLP-1 secretion over the past 30 years. However, the main content of this review is a summary of studies on the exploration of mechanisms underlying GLP-1 secretion. We not only summarize studies conducted over the past three decades on elucidating the role of nutritional components and hormonal factors in regulating GLP-1 secretion, but also present a few very recent studies showing the possible role of dietary polyphenols. Finally, the emerging role of gut microbiota in metabolic homeostasis with the potential implication on GLP-1 secretion is discussed.
Collapse
Affiliation(s)
- Lili Tian
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.
- Banting & Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Tsuda T. Possible abilities of dietary factors to prevent and treat diabetes via the stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 2015; 59:1264-73. [PMID: 25707985 DOI: 10.1002/mnfr.201400871] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
There is a pressing need for countermeasures against diabetes, which has increased in incidence, becoming a global issue. Glucagon-like peptide-1 (GLP-1), a molecule secreted in enteroendocrine L cells in the lower small and large intestines, is thought to be one of the most important molecular targets for the prevention and treatment of diabetes. There has been increasing interest in the possible ability of dietary factors to treat diabetes via modulating GLP-1 secretion. There is thought to be a close relationship between incretin and diet, and the purported best approach for using dietary factors to increase GLP-1 activity is promotion of secretion of endogenous GLP-1. It have been reported that nutrients as well as various non-nutrient dietary factors can function as GLP-1 secretogogues. Here, we present our findings on the GLP-1 secretion-stimulating functions of two dietary factors, curcumin and extract of edible sweet potato leaves, which contain caffeoylquinic acid derivatives. However, it is necessary to reveal in greater detail the stimulation of GLP-1 secretion by dietary factors for preventing and treating diabetes. It is desirable to clarify the exact GLP-1 secretory pathway, the effect of metabolites derived from dietary factors in gut lumen, and the relationship between incretin and meal.
Collapse
Affiliation(s)
- Takanori Tsuda
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
10
|
Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats. Br J Nutr 2015; 114:34-42. [PMID: 25671387 DOI: 10.1017/s0007114514004322] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucagon-like peptide-1 (GLP-1), which is produced and released from enteroendocrine L cells, plays pivotal roles in postprandial glycaemia. The ingestion of resistant maltodextrin (RMD), a water-soluble non-digestible saccharide, improves the glycaemic response. In the present study, we examined whether the continuous feeding of RMD to rats affected GLP-1 levels and glycaemic control. Male Sprague-Dawley rats (6 weeks of age) were fed an American Institute of Nutrition (AIN)-93G-based diet containing either cellulose (5 %) as a control, RMD (2.5 or 5 %), or fructo-oligosaccharides (FOS, 2.5 or 5 %) for 7 weeks. During the test period, an intraperitoneal glucose tolerance test (IPGTT) was performed after 6 weeks. Fasting GLP-1 levels were significantly higher in the 5 % RMD group than in the control group after 6 weeks. The IPGTT results showed that the glycaemic response was lower in the 5 % RMD group than in the control group. Lower caecal pH, higher caecal tissue and content weights were observed in the RMD and FOS groups. Proglucagon mRNA levels were increased in the caecum and colon of both RMD and FOS groups, whereas caecal GLP-1 content was increased in the 5 % RMD group. In addition, a 1 h RMD exposure induced GLP-1 secretion in an enteroendocrine L-cell model, and single oral administration of RMD increased plasma GLP-1 levels in conscious rats. The present study demonstrates that continuous ingestion of RMD increased GLP-1 secretion and production in normal rats, which could be stimulated by its direct and indirect (enhanced gut fermentation) effects on GLP-1-producing cells, and contribute to improving glucose tolerance.
Collapse
|
11
|
Ang M, Linn T. Comparison of the effects of slowly and rapidly absorbed carbohydrates on postprandial glucose metabolism in type 2 diabetes mellitus patients: a randomized trial. Am J Clin Nutr 2014; 100:1059-68. [PMID: 25030779 DOI: 10.3945/ajcn.113.076638] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Isomaltulose attenuates postprandial glucose and insulin concentrations compared with sucrose in patients with type 2 diabetes mellitus (T2DM). However, the mechanism by which isomaltulose limits postprandial hyperglycemia has not been clarified. OBJECTIVE The objective was therefore to assess the effects of bolus administration of isomaltulose on glucose metabolism compared with sucrose in T2DM. DESIGN In a randomized, double-blind, crossover design, 11 participants with T2DM initially underwent a 3-h euglycemic-hyperinsulinemic (0.8 mU · kg(-1) · min(-1)) clamp that was subsequently combined with 1 g/kg body wt of an oral (13)C-enriched isomaltulose or sucrose load. Hormonal responses and glucose kinetics were analyzed during a 4-h postprandial period. RESULTS Compared with sucrose, absorption of isomaltulose was prolonged by ∼50 min (P = 0.004). Mean plasma concentrations of insulin, C-peptide, glucagon, and glucose-dependent insulinotropic peptide were ∼10-23% lower (P < 0.05). In contrast, glucagon-like peptide 1 (GLP-1) was ∼64% higher (P < 0.001) after isomaltulose ingestion, which results in an increased insulin-to-glucagon ratio (P < 0.001) compared with sucrose. The cumulative amount of systemic glucose appearance was ∼35% lower after isomaltulose than after sucrose (P = 0.003) because of the reduction in orally derived and endogenously produced glucose and a higher first-pass splanchnic glucose uptake (SGU). Insulin action was enhanced after isomaltulose compared with sucrose (P = 0.013). CONCLUSIONS Ingestion of slowly absorbed isomaltulose attenuates postprandial hyperglycemia by reducing oral glucose appearance, inhibiting endogenous glucose production (EGP), and increasing SGU compared with ingestion of rapidly absorbed sucrose in patients with T2DM. In addition, GLP-1 secretion contributes to a beneficial shift in the insulin-to-glucagon ratio, suppression of EGP, and enhancement of SGU after isomaltulose consumption. This trial was registered at clinicaltrials.gov as NCT01070238.
Collapse
Affiliation(s)
- Meidjie Ang
- From Medical Clinic and Policlinic 3, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- From Medical Clinic and Policlinic 3, Justus Liebig University, Giessen, Germany
| |
Collapse
|
12
|
Sandoval D, Dunki-Jacobs A, Sorrell J, Seeley RJ, D’Alessio DD. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil 2013; 25:700-5. [PMID: 23663526 PMCID: PMC3706027 DOI: 10.1111/nmo.12152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/13/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Increases in L-cell release of GLP-1 are proposed to serve as a negative feedback signal for postprandial changes in gastric emptying and/or motility. Previous ex vivo data suggests that direct electrical stimulation (E-stim) of ileal segments stimulates secretion of GLP-1. This suggests potential feed-forward increases in GLP-1 driven by intestinal neuronal and/or motor activity. METHODS To determine if E-stim could increase GLP-1 levels in an in vivo setting, we administered E-stim and nutrients to male Long- Evans rats (300-350 g) under general anesthesia. KEY RESULTS Nutrient infusion into the duodenum or ileum significantly increased plasma GLP-1 levels, but E-stim applied to these locations did not (P < 0.05). However, the combination of E-stim and nutrient infusion, in either the ileum or duodenum, significantly increased plasma GLP-1 when compared to nutrient infusion alone (P < 0.05), and this effect was not blocked by either norepinephrine or atropine. To test the impact of intestinal motor activity, the effect of extra-luminal mechanical stimulation (M-stim) on GLP-1 levels was assessed. In the duodenum, but not the ileum, M-stim plus nutrient infusion significantly increased GLP-1 over nutrient infusion or M-stim alone (P < 0.05). CONCLUSIONS & INFERENCES Thus, both E- and M-stim of the duodenum, but only E-stim of the ileum augmented nutrient-stimulated GLP-1 release. These data demonstrate that factors beyond enteral nutrients could contribute to the regulation of GLP-1 secretion.
Collapse
Affiliation(s)
- Darleen Sandoval
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237
| | - Adam Dunki-Jacobs
- Ethicon Endo-Surgery, Research & Development, 4545 Creek Rd, Cincinnati, OH 45242
| | - Joyce Sorrell
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237
| | - Randy J. Seeley
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237
| | - David D. D’Alessio
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237,Cincinnati VAMC, 3200 Vine St, Cincinnati, OH 45220
| |
Collapse
|
13
|
Maeda A, Miyagawa JI, Miuchi M, Nagai E, Konishi K, Matsuo T, Tokuda M, Kusunoki Y, Ochi H, Murai K, Katsuno T, Hamaguchi T, Harano Y, Namba M. Effects of the naturally-occurring disaccharides, palatinose and sucrose, on incretin secretion in healthy non-obese subjects. J Diabetes Investig 2013; 4:281-6. [PMID: 24843667 PMCID: PMC4015665 DOI: 10.1111/jdi.12045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 11/08/2012] [Accepted: 11/15/2012] [Indexed: 12/24/2022] Open
Abstract
Aims/Introduction Incretins might play some pathophysiological role in glucose metabolism in diabetes and obesity; it is not clear whether or not the amount and the pattern of incretin secretion vary with different types of sugars. To evaluate the effect of two types of disaccharides on glucose metabolism and the kinetics of incretin secretion, plasma levels were measured after palatinose or sucrose ingestion in non‐obese healthy participants. Materials and Methods The study was carried out on healthy participants who were given a solution containing 50 g of palatinose or sucrose for ingestion. Blood samples were obtained before loading and after ingestion. Insulin, glucagon and incretins hormones were measured by the enzyme‐linked immunosorbent assay method. Results When the data were compared between palatinose and sucrose ingestion, both plasma glucose values at 15, 30 and 60 min, and plasma insulin values at 15 and 30 min after palatinose loading were significantly lower than those after sucrose loading. Plasma levels of total glucose‐dependent insulinotropic polypeptide at 15–90 min after palatinose loading were significantly lower than those after sucrose loading. Plasma levels of total and active glucagon‐like peptide‐1 at 90 min and the area under the curve (60–120 min) of the total glucagon‐like peptide‐1 were significantly higher with palatinose‐loading than with sucrose loading. Conclusion Compared with sucrose, palatinose appears to have a more favorable effect on glucose metabolism and protection of pancreatic islets as a result of less hyperglycemic and hyperinsulinemic potency.
Collapse
Affiliation(s)
- Aya Maeda
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Jun-Ichiro Miyagawa
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masayuki Miuchi
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Etsuko Nagai
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Kosuke Konishi
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Toshihiro Matsuo
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masaru Tokuda
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Yoshiki Kusunoki
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Humihiro Ochi
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Kazuki Murai
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Tomoyuki Katsuno
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Tomoya Hamaguchi
- Division of Innovative Diabetes Treatment Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Yutaka Harano
- Niseikai Center for Lifestyle-Related Diseases Osaka Japan
| | - Mitsuyoshi Namba
- Division of Diabetes and Metabolism, Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| |
Collapse
|