1
|
Kokila V, Namasivayam SKR, Amutha K, Kumar RR, Bharani RSA, Surya P. Hypocholesterolemic potential of Bacillus amyloliquefaciens KAVK1 modulates lipid accumulation on 3T3-L1 adipose cells and high fat diet-induced obese rat model. World J Microbiol Biotechnol 2024; 40:206. [PMID: 38755297 DOI: 10.1007/s11274-024-04016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.
Collapse
Affiliation(s)
- V Kokila
- Department of Plant Biology and Plant Biotechnology, Shree Chandraprabhu Jain College, Chennai, 601 203, India
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600 117, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - K Amutha
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600 117, India
| | - R Ramesh Kumar
- Department of Anatomy, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - R S Arvind Bharani
- Institute of Obstetrics and Gynaecology, Madras Medical College, Egmore, Chennai, Tamil Nadu, 600 008, India
| | - P Surya
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| |
Collapse
|
2
|
Papenkort S, Borsdorf M, Kiem S, Böl M, Siebert T. Regional differences in stomach stretch during organ filling and their implications on the mechanical stress response. J Biomech 2024; 168:112107. [PMID: 38677029 DOI: 10.1016/j.jbiomech.2024.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest. This study includes a detailed investigation of strains in the porcine stomach wall during passive organ filling. In addition, the observed strains were applied to tissue samples subjected to biaxial tensile tests. The results show inhomogeneous strains during filling, which tend to be higher in the circumferential direction (antrum: 13.2%, corpus: 22.0%, fundus: 67.8%), compared to the longitudinal direction (antrum: 4.8%, corpus: 24.7%, fundus: 50.0%) at a maximum filling of 3500 ml. Consequently, the fundus region experienced the greatest strain. In the biaxial tensile experiments, the corpus region appeared to be the stiffest, reaching nominal stress values above 400 kPa in the circumferential direction, whereas the other regions only reached stress levels of below 50 kPa in both directions for the investigated stretch range. Our findings gain new insight into stomach mechanics and provide valuable data for the development and validation of computational stomach models.
Collapse
Affiliation(s)
- Stefan Papenkort
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Mischa Borsdorf
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Simon Kiem
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
Sauvé B, Guay F, Létourneau Montminy MP. Impact of deoxynivalenol in a calcium depletion and repletion nutritional strategy in piglets. J Anim Sci 2024; 102:skae099. [PMID: 38613476 PMCID: PMC11056887 DOI: 10.1093/jas/skae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
This study evaluated the effect of dietary calcium (Ca) levels and deoxynivalenol (DON) contamination on Ca and phosphorus (P) utilization and bone mineralization in piglets. During an initial 13-d depletion phase, 64 piglets (15.7 ± 0.7 kg) received a control (DON-) or DON-contaminated treatment (DON+, 2.7 mg DON/kg) with either a low Ca (Ca-, 0.39%) or normal Ca level (Ca+, 0.65%) with a constant digestible P level (0.40%). A second group of 16 piglets received DON- or DON+ treatments for 9 d for gene expression analysis. During the subsequent 14-d repletion phase, all piglets were fed a Ca+ DON- diet containing 0.65% Ca and 0.35% digestible P without DON. After 5 d of the depletion phase, the absorption of P (DON × Ca; P < 0.05) and Ca was increased by the Ca- (P < 0.01) and DON+ (P < 0.01) diet. After 13 d, feed conversion ratio (P < 0.01) and average daily feed intake (P = 0.06) tended to decrease with the Ca- diet. The bone mineral content (BMC) gain was decreased by Ca, especially with Ca- DON + (DON × Ca, P < 0.05). The P absorption was increased by Ca- DON + (DON × Ca, P < 0.01), although the P retention efficiency was only increased by Ca+ DON + (DON × Ca, P < 0.001). The absorption of Ca was increased by DON+ (P < 0.001), and the Ca efficiency was increased by Ca- DON- (DON × Ca, P < 0.01). After 9 d, the gene expression of intestinal claudin 12 (P < 0.01) and CYP24A1 (P < 0.05), femur cortical RANKL (P < 0.05) and OPG (P = 0.06), and renal calbindin D9K (P < 0.05) and Klotho (P = 0.07) were decreased by DON+. The Ca (P = 0.06) and magnesium (P < 0.01) concentrations were decreased by DON+, and the Ca (P = 0.06) and P digestibility (P < 0.01) were increased. After the repletion phase, Ca- piglets recovered their BMC deficit, but not those receiving DON+ (DON × Ca; P = 0.06). The Ca (P < 0.05) and P (P = 0.06) retention efficiency tended to increase with Ca-. The absorption of Ca and P was increased by Ca- and DON+ (DON × Ca, P < 0.05). The results show that piglets increased their Ca and P utilization efficiency, allowing them to recover the BMC deficit caused by Ca-, but not when the piglets were exposed to DON. Pigs previously receiving Ca-deficient diet with DON still have lower body Ca and P, leading to elevated calcitriol concentrations and enhanced Ca and P intestinal absorption. The fact that DON decreased the expression of genes implicated in Ca intestinal and renal transport and P excretion after 9 d can potentially explain the reduced plasma Ca concentration.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | - Frédéric Guay
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | | |
Collapse
|
4
|
He W, Connolly ED, Wu G. Characteristics of the Digestive Tract of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:15-38. [PMID: 38625523 DOI: 10.1007/978-3-031-54192-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As for other mammals, the digestive system of dogs (facultative carnivores) and cats (obligate carnivores) includes the mouth, teeth, tongue, pharynx, esophagus, stomach, small intestine, large intestine, and accessory digestive organs (salivary glands, pancreas, liver, and gallbladder). These carnivores have a relatively shorter digestive tract but longer canine teeth, a tighter digitation of molars, and a greater stomach volume than omnivorous mammals such as humans and pigs. Both dogs and cats have no detectable or a very low activity of salivary α-amylase but dogs, unlike cats, possess a relatively high activity of pancreatic α-amylase. Thus, cats select low-starch foods but dogs can consume high-starch diets. In contrast to many mammals, the vitamin B12 (cobalamin)-binding intrinsic factor for the digestion and absorption of vitamin B12 is produced in: (a) dogs primarily by pancreatic ductal cells and to a lesser extent the gastric mucosa; and (b) cats exclusively by the pancreatic tissue. Amino acids (glutamate, glutamine, and aspartate) are the main metabolic fuels in enterocytes of the foregut. The primary function of the small intestine is to digest and absorb dietary nutrients, and its secondary function is to regulate the entry of dietary nutrients into the blood circulation, separate the external from the internal milieu, and perform immune surveillance. The major function of the large intestine is to ferment undigested food (particularly fiber and protein) and to absorb water, short-chain fatty acids (serving as major metabolic fuels for epithelial cells of the large intestine), as well as vitamins. The fermentation products, water, sloughed cells, digestive secretions, and microbes form feces and then pass into the rectum for excretion via the anal canal. The microflora influences colonic absorption and cell metabolism, as well as feces quality. The digestive tract is essential for the health, survival, growth, and development of dogs and cats.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Szadkowska D, Chłopecka M, Strawa JW, Jakimiuk K, Augustynowicz D, Tomczyk M, Mendel M. Effects of Cirsium palustre Extracts and Their Main Flavonoids on Colon Motility-An Ex Vivo Study. Int J Mol Sci 2023; 24:17283. [PMID: 38139112 PMCID: PMC10743795 DOI: 10.3390/ijms242417283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
For centuries, various species from the genus Cirsium have been utilized in traditional medicine worldwide. A number of ethnopharmacological reports have pointed out that Cirsium plants can be applied to diminish digestive problems. Among them, Cirsium palustre (L.) Scop. (Asteraceae) stands out as a promising herbal drug candidate because its constituents exhibit antimicrobial and antioxidant potential, as evidenced by ethnopharmacological reports. As a result, the species is particularly intriguing as an adjunctive therapy for functional gastrointestinal and motility disorders. Our research goal was to verify how the extracts, fractions, and main flavonoids of C. palustre affect colon contractility under ex vivo conditions. An alternative model with porcine-isolated colon specimens was used to identify the effects of C. palustre preparations and their primary flavonoids. LC-ESI-MS was utilized to evaluate the impacts of methanol (CP1), methanolic 50% (CP2), and aqueous (CP3) extracts as well as diethyl ether (CP4), ethyl acetate (CP5), and n-butanol (CP6) fractions. Additionally, the impacts of four flavonoids, apigenin (API), luteolin (LUT), apigenin 7-O-glucuronide (A7GLC), and chrysoeriol (CHRY), on spontaneous and acetylcholine-induced motility were assessed under isometric conditions. The results showed that C. palustre extracts, fractions, and their flavonoids exhibit potent motility-regulating effects on colonic smooth muscle. The motility-regulating effect was observed on spontaneous and acetylcholine-induced contractility. All extracts and fractions exhibited an enhancement of the spontaneous contractility of colonic smooth muscle. For acetylcholine-induced activity, CP1, CP2, and CP4 caused a spasmolytic effect, and CP5 and CP6 had a spasmodic effect. LUT and CHRY showed a spasmolytic effect in the case of spontaneous and acetylcholine-induced activity. In contrast, API and A7GLC showed a contractile effect in the case of spontaneous and pharmacologically induced activity. Considering the results obtained from the study, C. palustre could potentially provide benefits in the treatment of functional gastrointestinal disorders characterized by hypomotility and hypermotility.
Collapse
Affiliation(s)
- Dominika Szadkowska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland; (D.S.); (M.C.)
| | - Magdalena Chłopecka
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland; (D.S.); (M.C.)
| | - Jakub W. Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.W.S.); (K.J.); (D.A.); (M.T.)
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.W.S.); (K.J.); (D.A.); (M.T.)
| | - Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.W.S.); (K.J.); (D.A.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.W.S.); (K.J.); (D.A.); (M.T.)
| | - Marta Mendel
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland; (D.S.); (M.C.)
| |
Collapse
|
6
|
Kim J, Kang S, Choi MH, Park S, Nam SH, Park JU, Lee Y. Zwitterionic polymer on silicone implants inhibits the bacteria-driven pathogenic mechanism and progress of breast implant-associated anaplastic large cell lymphoma. Acta Biomater 2023; 171:378-391. [PMID: 37683967 DOI: 10.1016/j.actbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) occurs in the capsule surrounding breast implants. Malignant transformation of T cells by bacteria-driven chronic inflammation may be underlying BIA-ALCL mechanism. Here, we covalently grafted 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymers on a silicone surface and examined its effects against BIA-ALCL pathogenesis. MPC grafting strongly inhibited the adhesion of bacteria and bacteria-causing inflammation. Additionally, cancer T cell proliferation and capsule-derived fibroblast-cancer cell communication were effectively inhibited by MPC grafting. We further demonstrated the effect of MPC against the immune responses causing BIA-ALCL around human silicone implants in micro-pigs. Finally, we generated a xenograft anaplastic T cell lymphoma mouse model around the silicone implants and demonstrated that MPC grafting could effectively inhibit the lymphoma progression. This study is the first to show that bacteria-driven induction and progression of BIA-ALCL can be effectively inhibited by surface modification of implants. STATEMENT OF SIGNIFICANCE: Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a major concern in the field of plastic and reconstructive surgery. In this study, we demonstrate strong inhibitory effect of zwitterionic polymer grafting on BIA-ALCL pathogenesis and progression, induced by bacterial infection and inflammation, both in vitro and in vivo. This study provides a molecular basis for the development of novel breast implants that can prevent various potential complications such as excessive capsular contracture, breast implant illness, and BIA-ALCL incidence, as well as for expanding the biomedical applications of zwitterionic polymers.
Collapse
Affiliation(s)
- Jungah Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min-Ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul National University College of Medicine, 5 Gil 20, Boramae-ro, Dongjak-gu, Seoul 07061, Republic of Korea
| | - Sohyun Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - So Hee Nam
- College of Pharmacy, Dongduk Women's University, 60 Hwarang-ro 13-gil, Seongbuk-gu, Seoul 02748, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul National University College of Medicine, 5 Gil 20, Boramae-ro, Dongjak-gu, Seoul 07061, Republic of Korea; Institute of Medical and Biological Engineering, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Tóth Š, Fagová Z, Holodová M, Zeidan D, Hartel P, Čurgali K, Mechírová E, Maretta M, Nemcová R, Gancarčíková S, Danková M. Influence of Escherichia coli infection on intestinal mucosal barrier integrity of germ-free piglets. Life Sci 2023; 331:122036. [PMID: 37633417 DOI: 10.1016/j.lfs.2023.122036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
AIMS We focused on investigating the influence of Escherichia coli (E. coli) on the intestinal barrier. MATERIAL AND METHODS We studied changes in the distribution and secretory activities of goblet cells and enteroendocrine cells (EECs), as well as changes in the population of mast cells (MCs) in the jejunal and colonic mucosa of germ-free (GF) piglets as a healthy control group and GF piglets whose intestines were colonised with E. coli bacteria on day 5. KEY FINDINGS The results suggest that the colon of GF piglets is more resistant and less prone to coliform bacterial infection compared to the jejunum. This can be confirmed by a lower degree of histopathological injury index as well as an improvement of the morphometric parameters of the colonic mucosa, together with a significantly increased (p < 0.05) expression of MUC1/EMA, and ZO-3. We also observed a significant decrease in the population of activated MCs (p < 0.001) and EECs (p < 0.001). These findings may indicate a rapid response and better preparation of the intestinal barrier for possible pathological attacks and the subsequent development of mucosal lesions during the development and progression of the intestinal diseases. SIGNIFICANCE To date, gut-targeted therapeutic approaches that can modulate bacterial translocation and chronic inflammation are still in their infancy but represent one of the most promising areas of research for the development of new effective treatments or clinical strategies in the future. Therefore, a better understanding of these processes can significantly contribute to the development of these targeted strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Štefan Tóth
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Zuzana Fagová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Monika Holodová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Dema Zeidan
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Patrick Hartel
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Kristína Čurgali
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Eva Mechírová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Milan Maretta
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Neurology and L. Pasteur University Hospital, Trieda SNP 1, 040 01 Košice, Slovak Republic
| | - Radomíra Nemcová
- University of Veterinary Medicine and Pharmacy in Košice, Department of Microbiology and Immunology, Komenského 73, 041 70 Košice, Slovak Republic
| | - Soňa Gancarčíková
- University of Veterinary Medicine and Pharmacy in Košice, Department of Microbiology and Immunology, Komenského 73, 041 70 Košice, Slovak Republic
| | - Marianna Danková
- Comenius University in Bratislava, Faculty of Medicine, Institute of Histology and Embryology, Sasinkova 4, 811 04 Bratislava, Slovak Republic.
| |
Collapse
|
8
|
Yuan PQ, Li T, Million M, Larauche M, Atmani K, Bellier JP, Taché Y. New insight on the enteric cholinergic innervation of the pig colon by central and peripheral nervous systems: reduction by repeated loperamide administration. Front Neurosci 2023; 17:1204233. [PMID: 37650102 PMCID: PMC10463754 DOI: 10.3389/fnins.2023.1204233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction The central and peripheral nervous systems provide cholinergic innervation in the colon. The ability to assess their neuroanatomical distinctions is still a challenge. The pig is regarded as a relevant translational model due to the close similarity of its enteric nervous system (ENS) with that of human. Opioid-induced constipation is one of the most common side effects of opioid therapy. Methods We developed an approach to differentiate the central and peripheral cholinergic innervation of the pig colon using double immunolabeling with a novel mouse anti-human peripheral type of choline acetyltransferase (hpChAT) antibody combined with a rabbit anti-common type of ChAT (cChAT) antibody, a reliable marker of cholinergic neurons in the central nervous system. We examined their spatial configurations in 3D images of the ENS generated from CLARITY-cleared colonic segments. The density was quantitated computationally using Imaris 9.7. We assessed changes in the distal colon induced by daily oral treatment for 4 weeks with the μ opioid receptor agonist, loperamide (0.4 or 3 mg/kg). Results The double labeling showed strong cChAT immunoreactive (ir) fibers in the cervical vagus nerve and neuronal somata and fibers in the ventral horn of the sacral (S2) cord while hpChAT immunoreactivity was visualized only in the ENS but not in the vagus or sacral neural structures indicating the selectivity of these two antibodies. In the colonic myenteric plexus, dense hpChAT-ir neurons and fibers and varicose cChAT-ir fibers surrounding hpChAT-ir neurons were simultaneously visualized in 3D. The density of cChAT-ir varicose fibers in the outer submucosal plexus of both males and females were higher in the transverse and distal colon than in the proximal colon and in the myenteric plexus compared to the outer submucosal plexus and there was no cChAT innervation in the inner submucosal plexus. The density of hpChAT in the ENS showed no segmental or plexus differences in both sexes. Loperamide at the highest dose significantly decreased the density hpChAT-ir fibers + somata in the myenteric plexus of the distal colon. Discussion These data showed the distinct density of central cholinergic innervation between myenteric and submucosal plexuses among colonic segments and the localization of cChAT-ir fibers around peripheral hpChAT neurons in 3D. The reduction of cholinergic myenteric innervation by chronic opiate treatment points to target altered prokinetic cholinergic pathway to counteract opiate constipation.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
- VA GLAHS, Los Angeles, CA, United States
| | - Tao Li
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Karim Atmani
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Jean-Pierre Bellier
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
- VA GLAHS, Los Angeles, CA, United States
| |
Collapse
|
9
|
Schaaf CR, Polkoff KM, Carter A, Stewart AS, Sheahan B, Freund J, Ginzel J, Snyder JC, Roper J, Piedrahita JA, Gonzalez LM. A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease. FASEB J 2023; 37:e22975. [PMID: 37159340 PMCID: PMC10446885 DOI: 10.1096/fj.202300223r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/β-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Collapse
Affiliation(s)
- Cecilia R. Schaaf
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kathryn M. Polkoff
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amber Carter
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amy S. Stewart
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Breanna Sheahan
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - John Freund
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Joshua Ginzel
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Joshua C. Snyder
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jatin Roper
- Department of Medicine, Division of GastroenterologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
10
|
Yao R, Cools A, Matthijs A, Deyn PPD, Maes D, Janssens GPJ. Peculiarities in the Amino Acid Composition of Sow Colostrum and Milk, and Their Potential Relevance to Piglet Development. Vet Sci 2023; 10:vetsci10040298. [PMID: 37104453 PMCID: PMC10141862 DOI: 10.3390/vetsci10040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The composition of mother's milk is considered the ideal diet for neonates. This study investigated how conserved or variable the amino acid profile of sow colostrum and milk is throughout lactation, compared with other studies in sows and other species. Twenty-five sows (parity one to seven) from one farm with gestation lengths of 114 to 116 d were sampled on d 0, 3, and 10 after parturition. The total amino acid profile of the samples was analyzed through ion-exchange chromatography, and the results were displayed as the percentage of total amino acid and compared with literature data. Most of the amino acid concentrations in sow milk decreased significantly (p < 0.05) throughout the lactation period, while the amino acid profile generally showed a conserved pattern, especially from d 3 to d 10, and was rather similar across different studies. Glutamine + glutamate was the most abundant amino acid in milk at all sampling moments, accounting for 14-17% of total amino acids. The proportions of proline, valine, and glycine in sow milk nearly accounted for 11%, 7%, and 6% respectively, and were higher compared to human, cow, and goat milk, while the methionine proportion was less than the other three. Compared to the large variations often reported in macronutrient concentrations, the amino acid profile of sow milk in the present study, as well as in others, seems well conserved across the lactation period. Similarities with characteristic differences were also observed between sow milk and piglet body composition, which might reflect the nutrition requirements of preweaning piglets. This study warrants further research exploring the link between the whole amino acid profile and the particular amino acids for suckling piglets and could facilitate insight for optimizing creep feed.
Collapse
Affiliation(s)
- Renjie Yao
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - An Cools
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Anneleen Matthijs
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
11
|
Ragan MV, Wala SJ, Sajankila N, Duff AF, Wang Y, Volpe SG, Al-Hadidi A, Dumbauld Z, Purayil N, Wickham J, Conces MR, Mihi B, Goodman SD, Bailey MT, Besner GE. Development of a novel definitive scoring system for an enteral feed-only model of necrotizing enterocolitis in piglets. Front Pediatr 2023; 11:1126552. [PMID: 37138566 PMCID: PMC10149862 DOI: 10.3389/fped.2023.1126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Necrotizing enterocolitis (NEC) is a complex inflammatory disorder of the human intestine that most often occurs in premature newborns. Animal models of NEC typically use mice or rats; however, pigs have emerged as a viable alternative given their similar size, intestinal development, and physiology compared to humans. While most piglet NEC models initially administer total parenteral nutrition prior to enteral feeds, here we describe an enteral-feed only piglet model of NEC that recapitulates the microbiome abnormalities present in neonates that develop NEC and introduce a novel multifactorial definitive NEC (D-NEC) scoring system to assess disease severity. Methods Premature piglets were delivered via Caesarean section. Piglets in the colostrum-fed group received bovine colostrum feeds only throughout the experiment. Piglets in the formula-fed group received colostrum for the first 24 h of life, followed by Neocate Junior to induce intestinal injury. The presence of at least 3 of the following 4 criteria were required to diagnose D-NEC: (1) gross injury score ≥4 of 6; (2) histologic injury score ≥3 of 5; (3) a newly developed clinical sickness score ≥5 of 8 within the last 12 h of life; and (4) bacterial translocation to ≥2 internal organs. Quantitative reverse transcription polymerase chain reaction was performed to confirm intestinal inflammation in the small intestine and colon. 16S rRNA sequencing was performed to evaluate the intestinal microbiome. Results Compared to the colostrum-fed group, the formula-fed group had lower survival, higher clinical sickness scores, and more severe gross and histologic intestinal injury. There was significantly increased bacterial translocation, D-NEC, and expression of IL-1α and IL-10 in the colon of formula-fed compared to colostrum-fed piglets. Intestinal microbiome analysis of piglets with D-NEC demonstrated lower microbial diversity and increased Gammaproteobacteria and Enterobacteriaceae. Conclusions We have developed a clinical sickness score and a new multifactorial D-NEC scoring system to accurately evaluate an enteral feed-only piglet model of NEC. Piglets with D-NEC had microbiome changes consistent with those seen in preterm infants with NEC. This model can be used to test future novel therapies to treat and prevent this devastating disease.
Collapse
Affiliation(s)
- Mecklin V. Ragan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Samantha J. Wala
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Nitin Sajankila
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Audrey F. Duff
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Yijie Wang
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Samuel G. Volpe
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ameer Al-Hadidi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Zachary Dumbauld
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Nanditha Purayil
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Miriam R. Conces
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Belgacem Mihi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gail E. Besner
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
12
|
Zeebone YY, Kovács M, Bóta B, Zdeněk V, Taubner T, Halas V. Dietary fumonisin may compromise the nutritive value of feed and distort copper and zinc digestibility and retention in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:504-517. [PMID: 35534935 DOI: 10.1111/jpn.13724] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
Abstract
Fumonisins (FUM) have been reported to impede gut functioning in pigs. However, investigations into the possible effect on mineral metabolism are limited. Thus, the trial studied the apparent total tract digestibility (ATTD) and retention of dietary nitrogen and minerals, intestinal architecture, digestive enzymes activity and heat-shock protein 70 (Hsp70) activity. Eighteen weaned piglets of 7 weeks old were assigned to three groups and their feed either contained 0, 15 or 30 mg FUM/kg for 21 days. ATTD and retention of dietary N and minerals were measured in a 5- day long balance trial between Day 17 and Day 21. The digestible and metabolisable energy (DE and ME) content of the feeds were also determined. The body weights, cumulative feed intake, relative organ weights, digestive enzymes activity and intestinal morphology were not affected (p > 0.05) by dietary treatments. The DE content was significantly lower (p < 0.05) when the feed contained 15 mg/kg FUM, but no statistically reliable treatment effect was confirmed for ME content. Dietary FUM significantly lowered (p < 0.05) the ATTD of Ca and P but not (p > 0.05) N, K, Mg and Na. The relative retention rate of N, Ca, P, K, Mg and Na in all groups were not impacted (p > 0.05) by treatments. The ATTD and relative retention of Cu and Zn were remarkably (p < 0.05) lower in piglets fed FUM-contaminated feed. In addition, the expression of Hsp70 activity in the liver was significantly elevated (p < 0.05) in the highest treatment group. These findings suggest that a dietary dose of 15 or 30 mg FUM/kg diet distorts the nutritive value of the mixed feed, results in poor ATTD and retention rates of Zn and Cu, and elevate Hsp70 activity in the liver without altering intestinal architecture or digestive enzymes' activity in weaned piglets.
Collapse
Affiliation(s)
- Y Y Zeebone
- Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Kaposvár, Hungary.,MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - M Kovács
- Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Kaposvár, Hungary.,MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - B Bóta
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - V Zdeněk
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Prague, Czechia
| | - T Taubner
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czechia
| | - V Halas
- Department of Farm Animal Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Kaposvár, Hungary
| |
Collapse
|
13
|
Barmpatsalou V, Rodler A, Jacobson M, Karlsson EML, Pedersen BL, Bergström CAS. Development and validation of a porcine artificial colonic mucus model reflecting the properties of native colonic mucus in pigs. Eur J Pharm Sci 2023; 181:106361. [PMID: 36528165 DOI: 10.1016/j.ejps.2022.106361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Colonic mucus plays a key role in colonic drug absorption. Mucus permeation assays could therefore provide useful insights and support rational formulation development in the early stages of drug development. However, the collection of native colonic mucus from animal sources is labor-intensive, does not yield amounts that allow for routine experimentation, and raises ethical concerns. In the present study, we developed an in vitro porcine artificial colonic mucus model based on the characterization of native colonic mucus. The structural properties of the artificial colonic mucus were validated against the native secretion for their ability to capture key diffusion patterns of macromolecules in native mucus. Moreover, the artificial colonic mucus could be stored under common laboratory conditions, without compromising its barrier properties. In conclusion, the porcine artificial colonic mucus model can be considered a biorelevant way to study the diffusion behavior of drug candidates in colonic mucus. It is a cost-efficient screening tool easily incorporated into the early stages of drug development and it contributes to the implementation of the 3Rs (refinement, reduction, and replacement of animals) in the drug development process.
Collapse
Affiliation(s)
- Vicky Barmpatsalou
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - Agnes Rodler
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden
| | - Eva Marie-Louise Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Betty Lomstein Pedersen
- Product Development & Drug Delivery, Global Pharmaceutical R&D, Ferring Pharmaceuticals A/S, Amager Strandvej 405, Kastrup 2770, Denmark
| | | |
Collapse
|
14
|
Li T, Morselli M, Su T, Million M, Larauche M, Pellegrini M, Taché Y, Yuan PQ. Comparative transcriptomics reveals highly conserved regional programs between porcine and human colonic enteric nervous system. Commun Biol 2023; 6:98. [PMID: 36693960 PMCID: PMC9872754 DOI: 10.1038/s42003-023-04478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
The porcine gut is increasingly regarded as a useful translational model. The enteric nervous system in the colon coordinates diverse functions. However, knowledge of the molecular profiling of porcine enteric nerve system and its similarity to that of human is still lacking. We identified the distinct transcriptional programs associated with functional characteristics between inner submucosal and myenteric ganglia in porcine proximal and distal colon using bulk RNA and single-cell RNA sequencing. Comparative transcriptomics of myenteric ganglia in corresponding colonic regions of pig and human revealed highly conserved programs in porcine proximal and distal colon, which explained >96% of their transcriptomic responses to vagal nerve stimulation, suggesting that porcine proximal and distal colon could serve as predictors in translational studies. The conserved programs specific for inflammatory modulation were displayed in pigs with vagal nerve stimulation. This study provides a valuable transcriptomic resource for understanding of human colonic functions and neuromodulation using porcine model.
Collapse
Affiliation(s)
- Tao Li
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Marco Morselli
- Department of Molecular, Cell, & Developmental Biology, UCLA, Los Angeles, USA
| | - Trent Su
- Department of Biological Chemistry, UCLA, Los Angeles, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, & Developmental Biology, UCLA, Los Angeles, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, USA
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA.
- VA Greater Los Angeles Healthcare System, Los Angeles, USA.
| |
Collapse
|
15
|
Elfers K, Schäuffele S, Hoppe S, Michel K, Zeller F, Demir IE, Schemann M, Mazzuoli-Weber G. Distension evoked mucosal secretion in human and porcine colon in vitro. PLoS One 2023; 18:e0282732. [PMID: 37053302 PMCID: PMC10101454 DOI: 10.1371/journal.pone.0282732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/20/2023] [Indexed: 04/15/2023] Open
Abstract
It was suggested that intestinal mucosal secretion is enhanced during muscle relaxation and contraction. Mechanisms of mechanically induced secretion have been studied in rodent species. We used voltage clamp Ussing technique to investigate, in human and porcine colonic tissue, secretion evoked by serosal (Pser) or mucosal (Pmuc) pressure application (2-60 mmHg) to induce distension into the mucosal or serosal compartment, respectively. In both species, Pser or Pmuc caused secretion due to Cl- and, in human colon, also HCO3- fluxes. In the human colon, responses were larger in proximal than distal regions. In porcine colon, Pmuc evoked larger responses than Pser whereas the opposite was the case in human colon. In both species, piroxicam revealed a strong prostaglandin (PG) dependent component. Pser and Pmuc induced secretion was tetrodotoxin (TTX) sensitive in porcine colon. In human colon, a TTX sensitive component was only revealed after piroxicam. However, synaptic blockade by ω-conotoxin GVIA reduced the response to mechanical stimuli. Secretion was induced by tensile rather than compressive forces as preventing distension by a filter inhibited the secretion. In conclusion, in both species, distension induced secretion was predominantly mediated by PGs and a rather small nerve dependent response involving mechanosensitive somata and synapses.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Susanne Hoppe
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Michel
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | | | - Ihsan Ekin Demir
- University Hospital Rechts der Isar, Technical University of Munich, München, Germany
| | - Michael Schemann
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
16
|
Safavipour S, Tabeidian SA, Toghyani M, Foroozandeh Shahraki AD, Ghalamkari G, Habibian M. Laying performance, egg quality, fertility, nutrient digestibility, digestive enzymes activity, gut microbiota, intestinal morphology, antioxidant capacity, mucosal immunity, and cytokine levels in meat-type Japanese quail breeders fed different phytogenic levels. Res Vet Sci 2022; 153:74-87. [PMID: 36327622 DOI: 10.1016/j.rvsc.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
A total of 180 female Japanese quail breeders were allocated to 5 treatments with 6 replicates of 6 birds and fed a diet supplemented with 0, 125, 250, 500, or 1000 mg/kg of a phytogenic feed additive (PFA) in a 9-wk experiment. Egg weight, feed efficiency, shell breaking strength and calcium content, specific gravity, Haugh unit, and percentages of fertile eggs increased with increasing PFA levels (P < 0.05). Increasing of PFA levels increased nutrient digestibility, dietary AMEn, and activities of digestive enzymes in the pancreas and intestinal digesta (P < 0.05). Supplementation of PFA reduced Escherichia coli (P < 0.05), Clostridium spp. (P < 0.05) and Salmonella spp. counts (P < 0.05), while increased Lactobacillus and Bifidobacterium spp. counts in the ileal and cecal contents (P < 0.05). Dietary PFA increased jejunal villus height and decreased ileal crypt depth (P < 0.05). Serum diamine oxidase activity and D-lactate level were decreased with increase in PFA level (P < 0.05). Increasing PFA levels increased glutathione peroxidase activity in the pancreas, small intestine, and cecal tonsil, but decreased malondialdehyde contents (P < 0.05). Birds fed PFA exhibited increased levels of secretory IgA in the intestinal mucosa (P < 0.05), and increased the percentage of CD3+ T cells, ratio of CD4+/CD8+ T cells, and cytokine concentrations in the cecal tonsils (P < 0.05). In conclusion, PFA could improve gut health and nutrient utilization and, therefore, benefit productivity, egg quality, and fertility in quails.
Collapse
Affiliation(s)
- Saeed Safavipour
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Sayed Ali Tabeidian
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Majid Toghyani
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Gholamreza Ghalamkari
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mahmood Habibian
- Young Researchers and Elite Club, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| |
Collapse
|
17
|
Dietary zinc restriction affects the expression of genes related to immunity and stress response in the small intestine of pigs. J Nutr Sci 2022; 11:e104. [PMID: 36452400 PMCID: PMC9705703 DOI: 10.1017/jns.2022.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Zinc (Zn) is an essential mineral and its deficiency manifests in non-specific clinical signs that require long time to develop. The response of swine intestine to Zn restriction was evaluated to identify early changes that can be indicative of Zn deficiency. Twenty-seven pigs (body weight = 77⋅5 ± 2⋅5 kg) were assigned to one of three diets: diet without added Zn (Zn-restricted diet, ZnR), and ZnR-supplemented with either 50 (Zn50) or 100 mg of Zn/kg of diet (Zn100) of Zn supplied by ZnCl2. After 32 d consuming the diets, serum Zn concentration in ZnR pigs was below the range of 0⋅59-1⋅37 μg/ml considered sufficient, thereby confirming subclinical Zn deficiency. Pigs showed no obvious health or growth changes. RNA-seq analysis followed by qPCR showed decreased expression of metallothionein-1 (MT1) (P < 0⋅05) and increased expression of Zn transporter ZIP4 (P < 0⋅05) in jejunum and ileum of ZnR pigs compared with Zn-supplemented pigs. Ingenuity pathway analysis revealed that Zn50 and Zn100 induced changes in genes related to nucleotide excision repair and integrin signalling pathways. The top gene network in the ZnR group compared with Zn100 was related to lipid and drug metabolism; and compared with Zn50, was related to cellular proliferation, assembly and organisation. Dietary Zn concentrations resulted in differences in genes related to immune pathways. Our analysis showed that small intestine presents changes associated with Zn deficiency after 32 d of Zn restriction, suggesting that the intestine could be a sentinel organ for Zn deficiency.
Collapse
|
18
|
Effect of Chia ( Salvia hispanica L.) Associated with High-Fat Diet on the Intestinal Health of Wistar Rats. Nutrients 2022; 14:nu14224924. [PMID: 36432610 PMCID: PMC9696280 DOI: 10.3390/nu14224924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
A direct correlation has been reported between excessive fat intake and the development and progression of various enteropathies. Plant foods may contain bioactive compounds and non-digestible dietary fiber, with potential to improve intestinal health. Chia is a good source of dietary fiber and bioactive compounds. Our study evaluated the role of chia flour associated with a high-fat diet (HFD) on colon histomorphometry, intestinal functionality and intestinal microbiome composition and function in Wistar rats. The study used 32 young male rats separated into four groups to receive a standard diet (SD) or HFD, with or without chia, for 35 days. At the end of the study, the cecum, cecal content and duodenum were collected. The consumption of chia increased the production of short-chain fatty acids and improved fecal moisture. Chia consumption improved the circular muscle layer in the SD group. The diversity and abundance of intestinal bacteria were not affected, but increased richness was observed in the microbiome of the SD+chia group. Moreover, chia consumption decreased the expression of proteins involved in intestinal functionality. Chia consumption improved intestinal morphology and functionality in young Wistar rats but was insufficient to promote significant changes in the intestinal microbiome in a short term of 35 days.
Collapse
|
19
|
Oh SH, Jang JC, Lee CY, Han JH, Park BC. Direct-fed Enterococcus faecium plus bacteriophages as substitutes for pharmacological zinc oxide in weanling pigs: effects on diarrheal score and growth. Anim Biosci 2022; 35:1752-1759. [PMID: 36229021 PMCID: PMC9659466 DOI: 10.5713/ab.22.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/11/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Effects of direct-fed Enterococcus faecium plus bacteriophages (EF-BP) were investigated as potential substitutes for pharmacological ZnO for weanling pigs. METHODS Dietary treatments were supplementations to a basal diet with none (NC), 3,000- ppm ZnO (PC), 1×1010 colony-forming units of E. faecium plus 1×108 plaque-forming units (PFU) of anti-Salmonella typhimurium bacteriophages (ST) or 1×106 PFU of each of anti-enterotoxigenic Escherichia coli K88 (F4)-, K99 (F5)-, and F18-type bacteriophages (EC) per kg diet. In Exp 1, twenty-eight 21-day-old crossbred weanling pigs were individually fed one of the experimental diets for 14 days and euthanized for histological examination on intestinal mucosal morphology. In Exp 2, 128 crossbred weanling pigs aged 24 days were group-fed the same experimental diets in 16 pens of 8 piglets on a farm with a high incidence of post-weaning diarrhea. RESULTS None of the diarrheal score or fecal consistency score (FCS), average daily gain (ADG), gain: feed ratio, structural variables of the intestinal villus, and goblet cell density, differed between the EF-BP (ST+EC) and NC groups, between EF-BP and PC, or between ST and EC, with the exception of greater gain: feed for EF-BP than for PC (p<0.05) during days 7 to 14 (Exp 1). In Exp 2, ADG was less for EF-BP vs PC during days 0 to 7 and greater for EF-BP vs NC during days 7 to 14. FCS peaked on day 7 and declined by day 14. Moreover, FCS was less for EF-BP vs NC, did not differ between EF-BP and PC, and tended to be greater for ST vs EC (p = 0.099). Collectively, EF-BP was comparable to or slightly less effective than PC in alleviating diarrhea and growth check of the weanling pigs, with ST almost as effective as PC, when they were group-fed. CONCLUSION The E. faecium-bacteriophage recipe, especially E. faecium-anti-S. typhimurium, is promising as a potential substitute for pharmacological ZnO.
Collapse
Affiliation(s)
- Sang-Hyon Oh
- Department of Animal Resources Technology, Gyeongsang National University, Jinju 52725,
Korea
| | - Jae-Cheol Jang
- Department of Animal Resources Technology, Gyeongsang National University, Jinju 52725,
Korea
| | - Chul Young Lee
- Department of Animal Resources Technology, Gyeongsang National University, Jinju 52725,
Korea
| | - Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea,Corresponding Author: Byung-Chul Park, Tel: +82-33-5792, Fax: +82-33-339-5763, E-mail:
| |
Collapse
|
20
|
Richter P, Sebald K, Fischer K, Behrens M, Schnieke A, Somoza V. Bitter Peptides YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV, Released during Gastric Digestion of Casein, Stimulate Mechanisms of Gastric Acid Secretion via Bitter Taste Receptors TAS2R16 and TAS2R38. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11591-11602. [PMID: 36054030 PMCID: PMC9501810 DOI: 10.1021/acs.jafc.2c05228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 05/22/2023]
Abstract
Eating satiating, protein-rich foods is one of the key aspects of modern diet, although a bitter off-taste often limits the application of some proteins and protein hydrolysates, especially in processed foods. Previous studies of our group demonstrated that bitter-tasting food constituents, such as caffeine, stimulate mechanisms of gastric acid secretion as a signal of gastric satiation and a key process of gastric protein digestion via activation of bitter taste receptors (TAS2Rs). Here, we tried to elucidate whether dietary non-bitter-tasting casein is intra-gastrically degraded into bitter peptides that stimulate mechanisms of gastric acid secretion in physiologically achievable concentrations. An in vitro model of gastric digestion was verified by casein-fed pigs, and the peptides resulting from gastric digestion were identified by liquid chromatography-time-of-flight-mass spectrometry. The bitterness of five selected casein-derived peptides was validated by sensory analyses and by an in vitro screening approach based on human gastric parietal cells (HGT-1). For three of these peptides (YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV), an upregulation of gene expression of TAS2R16 and TAS2R38 was observed. The functional involvement of these TAS2Rs was verified by siRNA knock-down (kd) experiments in HGT-1 cells. This resulted in a reduction of the mean proton secretion promoted by the peptides by up to 86.3 ± 9.9% for TAS2R16kd (p < 0.0001) cells and by up to 62.8 ± 7.0% for TAS2R38kd (p < 0.0001) cells compared with mock-transfected cells.
Collapse
Affiliation(s)
- Phil Richter
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
| | - Karin Sebald
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
| | - Konrad Fischer
- Chair
of Livestock Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354Freising, Germany
| | - Maik Behrens
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
| | - Angelika Schnieke
- Chair
of Livestock Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354Freising, Germany
| | - Veronika Somoza
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
- Chair
of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354Freising, Germany
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090Wien, Austria
- . Phone +49-8161-71-2700
| |
Collapse
|
21
|
Influence of coliform bacteria infection on intestinal goblet cells secretory activity of germ-free piglets. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recently, influence of bacteria colonization on development and maturation of gut wall is getting more into the focus of gastrointestinal research. For years, the main interest and research were aimed to the development and maturation of gut wall and its functional properties in normal conditions, less attention has been paid on the germ-free animals. Germ-free (GF) piglets have clear microbiological background and are reared in sterile environment. GF piglets are regarded as clinically relevant models for studying of human diseases, as these piglets’ manifest similar clinical symptoms to humans. In this study we briefly summarised the main characteristics in the distribution of goblet cells in the wall of jejunum and colon of GF piglets as healthy control (HC) group and piglets, which were experimentally infected by E. coli O149:K88 as ECK group. Neutral mucins were stained with periodic acid-Shiff (PAS) whereas acidic mucins are stained with Alcian blue. Numbers of goblet cells containing total acidic mucins in both, the jejunum and colon, differed significantly between HC and ECK piglets and in the colon, a similar trend was also observed. In the ECK piglets, jejunal goblet cells exhibited decrease in neutral mucins. This change in mucin profile in response to bacterial colonization suggests a potential role as a protective mechanism against pathogenic invasion of the intestinal mucosa during of gut mucosa development in piglets.
Collapse
|
22
|
Li Y, Park HJ, Xiu H, Akoh CC, Kong F. Predicting intestinal effective permeability of different transport mechanisms: Comparing ex vivo porcine and in vitro dialysis models. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Vivanco-Maroto SM, Santos-Hernández M, Sanchón J, Picariello G, Recio I, Miralles B. In vitro digestion of milk proteins including intestinal brush border membrane peptidases. Transepithelial transport of resistant casein domains. Food Res Int 2022; 157:111238. [DOI: 10.1016/j.foodres.2022.111238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
|
24
|
Immunohistochemical visualisation of the enteric nervous system architecture in the germ-free piglets. J Mol Histol 2022; 53:773-780. [PMID: 35689149 DOI: 10.1007/s10735-022-10079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The enteric nervous system (ENS), considered as separate branch of the autonomic nervous system, is located throughout the length of the gastrointestinal tract as a series of interconnected ganglionic plexuses. Recently, the ENS is getting more in the focus of gastrointestinal research. For years, the main interest and research was aimed to the enteric neurons and their functional properties in normal conditions, less attention has been paid to the germ-free animals. Germ-free (GF) piglets have clear microbiological background and are reared in sterile environment. GF piglets are regarded as clinically relevant models for studying of human diseases, as these piglets' manifest similar clinical symptoms to humans. In this study we briefly summarised the main characteristics in immunohistochemical distribution of ENS elements in the wall of jejunum and colon of germ-free piglets.
Collapse
|
25
|
Blachier F, Andriamihaja M, Kong XF. Fate of undigested proteins in the pig large intestine: What impact on the colon epithelium? ANIMAL NUTRITION 2022; 9:110-118. [PMID: 35573094 PMCID: PMC9065739 DOI: 10.1016/j.aninu.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Apart from its obvious agronomic interest in feeding billions of people worldwide, the porcine species represents an irreplaceable experimental model for intestinal physiologists and nutritionists. In this review, we give an overview on the fate of proteins that are not fully digested in the pig small intestine, and thus are transferred into the large intestine. In the large intestine, dietary and endogenous proteins are converted to peptides and amino acids (AA) by the action of bacterial proteases and peptidases. AA, which cannot, except in the neonatal period, be absorbed to any significant level by the colonocytes, are used by the intestinal microbes for protein synthesis and for the production of numerous metabolites. Of note, the production of the AA-derived metabolites greatly depends on the amount of undigested polysaccharides in the pig's diet. The effects of these AA-derived bacterial metabolites on the pig colonic epithelium have not yet been largely studied. However, the available data, performed on colonic mucosa, isolated colonic crypts and colonocytes, indicate that some of them, like ammonia, butyrate, acetate, hydrogen sulfide (H2S), and p-cresol are active either directly or indirectly on energy metabolism in colonic epithelial cells. Further studies in that area will certainly gain from the utilization of the pig colonic organoid model, which allows for disposal of functional epithelial unities. Such studies will contribute to a better understanding of the potential causal links between diet-induced changes in the luminal concentrations of these AA-derived bacterial metabolites and effects on the colon epithelial barrier function and water/electrolyte absorption.
Collapse
|
26
|
Schaaf CR, Gonzalez LM. Use of Translational, Genetically Modified Porcine Models to Ultimately Improve Intestinal Disease Treatment. Front Vet Sci 2022; 9:878952. [PMID: 35669174 PMCID: PMC9164269 DOI: 10.3389/fvets.2022.878952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
For both human and veterinary patients, non-infectious intestinal disease is a major cause of morbidity and mortality. To improve treatment of intestinal disease, large animal models are increasingly recognized as critical tools to translate the basic science discoveries made in rodent models into clinical application. Large animal intestinal models, particularly porcine, more closely resemble human anatomy, physiology, and disease pathogenesis; these features make them critical to the pre-clinical study of intestinal disease treatments. Previously, large animal model use has been somewhat precluded by the lack of genetically altered large animals to mechanistically investigate non-infectious intestinal diseases such as colorectal cancer, cystic fibrosis, and ischemia-reperfusion injury. However, recent advances and increased availability of gene editing technologies has led to both novel use of large animal models in clinically relevant intestinal disease research and improved testing of potential therapeutics for these diseases.
Collapse
|
27
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
28
|
He Y, Zang X, Kuang J, Yang H, Gu T, Yang J, Li Z, Zheng E, Xu Z, Cai G, Wu Z, Hong L. iTRAQ-based quantitative proteomic analysis of porcine uterine fluid during pre-implantation period of pregnancy. J Proteomics 2022; 261:104570. [DOI: 10.1016/j.jprot.2022.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
29
|
Scott BB, Wang Y, Wu RC, Randolph MA, Redmond RW. Light-activated photosealing with human amniotic membrane strengthens bowel anastomosis in a hypotensive, trauma-relevant swine model. Lasers Surg Med 2022; 54:407-417. [PMID: 34664720 DOI: 10.1002/lsm.23485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gastrointestinal anastomotic leakage is a dreaded complication despite advancements in surgical technique. Photochemical tissue bonding (PTB) is a method of sealing tissue surfaces utilizing photoactive dye. We evaluated if crosslinked human amniotic membrane (xHAM) photosealed over the enteroenterostomy would augment anastomotic strength in a trauma-relevant swine hemorrhagic shock model. METHODS Yorkshire swine (40-45 kg, n = 14) underwent midline laparotomy and sharp transection of the small intestine 120 cm proximal to the ileocecal fold. Immediately following intestinal transection, a controlled arterial bleed was performed to reach hemorrhagic shock. Intestinal repair was performed after 60 minutes and autotransfusion of the withdrawn blood was performed for resuscitation. Animals were randomized to small intestinal anastomosis by one of the following methods (seven per group): suture repair (SR), or SR with PTB augmentation. Animals were euthanized at postoperative Day 28 and burst pressure (BP) strength testing was performed on all excised specimens. RESULTS Mean BP for SR, PTB, and native tissue groups were 229 ± 40, 282 ± 21, and 282 ± 47 mmHg, respectively, with the SR group statistically significantly different on analysis of variance (p = 0.02). Post-hoc Tukey all-pairs comparison demonstrated a statistically significant difference in burst pressure strength between the SR only and the PTB group (p = 0.04). All specimens in SR group ruptured at the anastomosis upon burst pressure testing, while all specimens in the PTB group ruptured at least 2.5 cm from the anastomosis. CONCLUSION Photosealing with xHAM significantly augments the strength of small intestinal anastomosis performed in a trauma porcine model.
Collapse
Affiliation(s)
- Benjamin B Scott
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
- Plastic Surgery Research Laboratory, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruby C Wu
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark A Randolph
- Plastic Surgery Research Laboratory, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert W Redmond
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Cai S, Duo T, Wang X, Tong X, Luo C, Chen Y, Li J, Mo D. A Comparative Analysis of Metabolic Profiles of Embryonic Skeletal Muscle from Lantang and Landrace Pigs. Animals (Basel) 2022; 12:ani12040420. [PMID: 35203128 PMCID: PMC8868109 DOI: 10.3390/ani12040420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The pig is one of the most important domesticated meat animals. Some studies have revealed that pigs with low meat production show more intense myogenesis at the early stage of embryonic muscle development than pigs with high meat production. Here, by gas chromatography–mass spectrometry GC–MS based metabolomics, we concluded that the nucleotide metabolism and energy metabolism of the longissimuslumborum (LL) were increased in Lantang pigs compared with Landrace pigs, indicating rapid synthesis of nucleic acids and ATP to meet the material and energy requirements of rapid cell proliferation and differentiation in Lantang pigs. Abstract Elucidation of the complex regulation of porcine muscle development is key to increasing pork output and improving pork quality. However, the molecular mechanisms involved in early porcine embryonic muscle development in different pig breeds remain largely unknown. Here, GC–MS based metabolomics and metabolomic profiling was used to examine the longissimus lumborum (LL) of the Lantang (LT) and the Landrace (LR) pig at embryonic day 35 (E35). Metabolites showed clear separation between LT and LR, with 40 metabolites having higher abundances in LT and 14 metabolites having lower abundances in LT compared with LR. In addition, these metabolic changes were mainly associated with nucleotide metabolism and energy metabolism, such as purine metabolism, pyrimidine metabolism, the pentose phosphate pathway, and the TCA cycle. More interestingly, the contents of DNA, RNA, and ATP per unit mass of LL tissues were higher in LT, indicating rapid synthesis of nucleic acids and ATP, to meet both the material and energy requirements of rapid cell proliferation and differentiation. Furthermore, enzyme activity associated with the TCA cycle and pentose phosphate pathway, including α-ketoglutaric dehydrogenase (KGDH), malate dehydrogenase (MDH), pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and glucose-6-phosphate dehydrogenase (G6PDH), were higher in LT. Based on these results, we conclude that there are significant differences in nucleotide metabolism and energy metabolism of LL between LT and LR, and we speculate that the enhanced nucleic acid metabolism and energy metabolism in LT can meet the material and energy requirements of rapid cell proliferation and differentiation, making myogenesis more intense in LT compared to LR which might be the metabolic mechanism underlying the distinct skeletal muscle development in the two breeds.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
- Correspondence: (J.L.); (D.M.); Tel.: +86-020-38765361 (J.L.); +86-020-39332991 (D.M.)
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
- Correspondence: (J.L.); (D.M.); Tel.: +86-020-38765361 (J.L.); +86-020-39332991 (D.M.)
| |
Collapse
|
31
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
32
|
Spencer TE, Wells KD, Lee K, Telugu BP, Hansen PJ, Bartol FF, Blomberg L, Schook LB, Dawson H, Lunney JK, Driver JP, Davis TA, Donovan SM, Dilger RN, Saif LJ, Moeser A, McGill JL, Smith G, Ireland JJ. Future of biomedical, agricultural, and biological systems research using domesticated animals. Biol Reprod 2022; 106:629-638. [PMID: 35094055 PMCID: PMC9189970 DOI: 10.1093/biolre/ioac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023] Open
Abstract
Increased knowledge of reproduction and health of domesticated animals is integral to sustain and improve global competitiveness of U.S. animal agriculture, understand and resolve complex animal and human diseases, and advance fundamental research in sciences that are critical to understanding mechanisms of action and identifying future targets for interventions. Historically, federal and state budgets have dwindled and funding for the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) competitive grants programs remained relatively stagnant from 1985 through 2010. This shortage in critical financial support for basic and applied research, coupled with the underappreciated knowledge of the utility of non-rodent species for biomedical research, hindered funding opportunities for research involving livestock and limited improvements in both animal agriculture and animal and human health. In 2010, the National Institutes of Health and USDA NIFA established an interagency partnership to promote the use of agriculturally important animal species in basic and translational research relevant to both biomedicine and agriculture. This interagency program supported 61 grants totaling over $107 million with 23 awards to new or early-stage investigators. This article will review the success of the 9-year Dual Purpose effort and highlight opportunities for utilizing domesticated agricultural animals in research.
Collapse
Affiliation(s)
- Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA,Correspondence: Division of Animal Sciences, University of Missouri, Columbia, MO, USA. Tel: +15738823467; E-mail:
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Bhanu P Telugu
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - LeAnn Blomberg
- The Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| | - Lawrence B Schook
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Harry Dawson
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, MD 20705-2350, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Ryan N Dilger
- The Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - Adam Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - George Smith
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - James J Ireland
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
33
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
34
|
Li H, Wang Y, Zhang M, Wang H, Cui A, Zhao J, Ji W, Chen YG. Establishment of porcine and monkey colonic organoids for drug toxicity study. CELL REGENERATION 2021; 10:32. [PMID: 34599392 PMCID: PMC8486901 DOI: 10.1186/s13619-021-00094-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
Pig and monkey are widely used models for exploration of human diseases and evaluation of drug efficiency and toxicity, but high cost limits their uses. Organoids have been shown to be promising models for drug test as they reasonably preserve tissue structure and functions. However, colonic organoids of pig and monkey are not yet established. Here, we report a culture medium to support the growth of porcine and monkey colonic organoids. Wnt signaling and PGE2 are important for long-term expansion of the organoids, and their withdrawal results in lineage differentiation to mature cells. Furthermore, we observe that porcine colonic organoids are closer to human colonic organoids in terms of drug toxicity response. Successful establishment of porcine and monkey colonic organoids would facilitate the mechanistic investigation of the homeostatic regulation of the intestine of these animals and is useful for drug development and toxicity studies.
Collapse
Affiliation(s)
- Haonan Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Along Cui
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianguo Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510700, China.
| |
Collapse
|
35
|
Li X, Zou C, Li M, Fang C, Li K, Liu Z, Li C. Transcriptome Analysis of In Vitro Fertilization and Parthenogenesis Activation during Early Embryonic Development in Pigs. Genes (Basel) 2021; 12:genes12101461. [PMID: 34680856 PMCID: PMC8535918 DOI: 10.3390/genes12101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Parthenogenesis activation (PA), as an important artificial breeding method, can stably preserve the dominant genotype of a species. However, the delayed development of PA embryos is still overly severe and largely leads to pre-implantation failure in pigs. The mechanisms underlying the deficiencies of PA embryos have not been completely understood. For further understanding of the molecular mechanism behind PA embryo failure, we performed transcriptome analysis among pig oocytes (meiosis II, MII) and early embryos at three developmental stages (zygote, morula, and blastocyst) in vitro fertilization (IVF) and PA group. Totally, 11,110 differentially expressed genes (DEGs), 4694 differentially expressed lincRNAs (DELs) were identified, and most DEGs enriched the regulation of apoptotic processes. Through cis- and trans-manner functional prediction, we found that hub lincRNAs were mostly involved in abnormal parthenogenesis embryonic development. In addition, twenty DE imprinted genes showed that some paternally imprinted genes in IVF displayed higher expression than that in PA. Notably, we identified that three DELs of imprinted genes (MEST, PLAGL1, and DIRAS3) were up regulated in IVF, and there was no significant change in PA group. Disordered expression of key genes for embryonic development might play key roles in abnormal parthenogenesis embryonic development. Our study indicates that embryos derived from different production techniques have varied in vitro development to the blastocyst stage, and they also affect the transcription level of corresponding genes, such as imprinted genes. This work will help future research on these genes and molecular-assisted breeding for pig parthenotes.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kui Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Z.L.); (C.L.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Z.L.); (C.L.)
| |
Collapse
|
36
|
Houriet J, Arnold YE, Pellissier L, Kalia YN, Wolfender JL. Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study. Metabolites 2021; 11:metabo11080541. [PMID: 34436482 PMCID: PMC8398828 DOI: 10.3390/metabo11080541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Herbal preparations (HPs) used in folk medicine are complex mixtures of natural products (NPs). Their efficacy in vivo after ingestion depends on the uptake of the active ingredient, and, in some cases, their metabolites, in the gastrointestinal tract. Thus, correlating bioactivities measured in vitro and efficacy in vivo is a challenge. An extract of Pueraria lobata rich in different types of isoflavones was used to evaluate the capacity of viable porcine small intestine ex vivo to elucidate the absorption of HP constituents, and, in some cases, their metabolites. The identification and transport of permeants across the jejunum was monitored by liquid chromatography-mass spectrometry (LC-MS), combining targeted and untargeted metabolite profiling approaches. It was observed that the C-glycoside isoflavones were stable and crossed the intestinal membrane, while various O-glycoside isoflavones were metabolized into their corresponding aglycones, which were then absorbed. These results are consistent with human data, highlighting the potential of using this approach. A thorough investigation of the impact of absorption and biotransformation was obtained without in vivo studies. The combination of qualitative untargeted and quantitative targeted LC-MS methods effectively monitored a large number of NPs and their metabolites, which is essential for research on HPs.
Collapse
Affiliation(s)
- Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
37
|
Zou X, Ouyang H, Pang D, Han R, Tang X. Pathological alterations in the gastrointestinal tract of a porcine model of DMD. Cell Biosci 2021; 11:131. [PMID: 34266495 PMCID: PMC8281460 DOI: 10.1186/s13578-021-00647-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Patients with Duchenne muscular dystrophy (DMD) develop severe skeletal and cardiac muscle pathologies, which result in premature death. Therefore, the current therapeutic efforts are mainly targeted to correct dystrophin expression in skeletal muscle and heart. However, it was reported that DMD patients may also exhibit gastrointestinal and nutritional problems. How the pathological alterations in gastrointestinal tissues contribute to the disease are not fully explored. Results Here we employed the CRISPR/Cas9 system combined with somatic nuclear transfer technology (SCNT) to establish a porcine model of DMD and explored their pathological alterations. We found that genetic disruption of dystrophin expression led to morphological gastrointestinal tract alterations, weakened the gastrointestinal tract digestion and absorption capacity, and eventually led to malnutrition and gastric dysfunction in the DMD pigs. Conclusions This work provides important insights into the pathogenesis of DMD and highlights the need to consider the gastrointestinal dysfunction as an additional therapeutic target for DMD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00647-9.
Collapse
Affiliation(s)
- Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
38
|
Yuan C, Zhang P, Jin Y, Ullah Shah A, Zhang E, Yang Q. Single-Blinded Study Highlighting the Differences between the Small Intestines of Neonatal and Weaned Piglets. Animals (Basel) 2021; 11:ani11020271. [PMID: 33494523 PMCID: PMC7910829 DOI: 10.3390/ani11020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The gut mucosa of pigs, which contains intestinal epithelium and subepithelial immune cells, forms a barrier against microorganisms. Nonetheless, infectious diseases of the digestive tract remain the most frequent and recurrent conditions in the swine industry. Changes in intestinal morphology and structure primarily occur at birth and during weaning. However, the difference in the intestinal structures between neonatal and weaned piglets remains unclear. In this study, for the first time, we evaluated the differences in the small intestine between neonatal (0-day-old) and weaned piglets (21-day-old) and analyzed the morphology and immunological components of the small intestines of 0- and 21-day-old piglets, thereby providing preliminary data for future mechanistic studies. Abstract The gut is one of the body’s major immune structures, and the gut mucosa, which contains intestinal epithelium and subepithelial immune cells, is the primary site for eliciting local immune responses to foreign antigens. Intestinal immune system development in pigs is a transitional period during birth and weaning. This study compares the morphological and immunological differences in the small intestine of neonatal and weaned piglets to potentially prevent intestinal infectious diseases in neonatal piglets. Histological analyses of weaned piglet intestines showed increased crypt depth, higher IEL count, and larger ileal Peyer’s patches compared with those of neonates. Additionally, the ileal villi of weaned piglets were longer than those of neonatal piglets, and claudin-3 protein expression was significantly higher in weaned than in neonatal piglets. The numbers of CD3+ T, goblet, and secretory cells were also higher in the small intestines of weaned piglets than in those of neonates. No significant differences were observed in the secretory IgA-positive cell number in the jejunum of weaned and neonatal piglets. The mRNA expression of most pattern recognition receptors genes in the duodenum and jejunum was higher in the weaned than neonatal piglets; however, the opposite was true in the ileum. The mRNA levels of IL-1β and TNF-α in the jejunal and ileal mucosa were higher in weaned piglets than in neonatal piglets. There were significantly fewer CD3+, CD4+, and CD8+ T cells from peripheral blood-mononuclear cells in neonatal piglets. Our study provides insights regarding the different immune mechanisms within the small intestines of 0- and 21-day-old piglets. Studies on the additional developmental stages and how differences in the small intestines affect the response of pigs to pathogens remain warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Yang
- Correspondence: ; Tel.: +86-025-8439-5817
| |
Collapse
|
39
|
Arnold YE, Kalia YN. Using Ex Vivo Porcine Jejunum to Identify Membrane Transporter Substrates: A Screening Tool for Early-Stage Drug Development. Biomedicines 2020; 8:biomedicines8090340. [PMID: 32927779 PMCID: PMC7555276 DOI: 10.3390/biomedicines8090340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Robust, predictive ex vivo/in vitro models to study intestinal drug absorption by passive and active transport mechanisms are scarce. Membrane transporters can significantly impact drug uptake and transporter-mediated drug–drug interactions can play a pivotal role in determining the drug safety profile. Here, the presence and activity of seven clinically relevant apical/basolateral drug transporters found in human jejunum were tested using ex vivo porcine intestine in a Ussing chamber system. Experiments using known substrates of peptide transporter 1 (PEPT1), organic anion transporting polypeptide (OATP2B1), organic cation transporter 1 (OCT1), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multi drug resistance-associated protein 2 and 3 (MRP2 and MRP3), in the absence and presence of potent inhibitors, showed that there was a statistically significant change in apparent intestinal permeability Papp,pig (cm/s) in the presence of the corresponding inhibitor. For MRP2, a transporter reportedly present at relatively low concentration, although Papp,pig did not significantly change in the presence of the inhibitor, substrate deposition (QDEP) in the intestinal tissue was significantly increased. The activity of the seven transport proteins was successfully demonstrated and the results provided insight into their apical/basolateral localization. In conclusion, the results suggest that studies using the porcine intestine/Ussing chamber system, which could easily be integrated into the drug development process, might enable the early-stage identification of new molecular entities that are substrates of membrane transporters.
Collapse
Affiliation(s)
- Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(0)22-379-3355
| |
Collapse
|
40
|
Compression and stretch sensitive submucosal neurons of the porcine and human colon. Sci Rep 2020; 10:13791. [PMID: 32796868 PMCID: PMC7428018 DOI: 10.1038/s41598-020-70216-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/24/2020] [Indexed: 01/28/2023] Open
Abstract
The pig is commonly believed to be a relevant model for human gut functions-however, there are only a few comparative studies and none on neural control mechanisms. To address this lack we identified as one central aspect mechanosensitive enteric neurons (MEN) in porcine and human colon. We used neuroimaging techniques to record responses to tensile or compressive forces in submucous neurons. Compression and stretch caused Ca-transients and immediate spike discharge in 5-11% of porcine and 15-24% of human enteric neurons. The majority of these MEN exclusively responded to either stimulus quality but about 9% responded to both. Most of the MEN expressed choline acetyltransferase and substance P; nitric oxide synthase-positive MEN primarily occurred in distal colon. The findings reveal common features of MEN in human and pig colon which we interpret as a result of species-independent evolutionary conservation rather than a specific functional proximity between the two species.
Collapse
|
41
|
Zhao Y, Guo W, Gu X, Chang C, Wu J. Repression of deoxynivalenol-triggered cytotoxicity and apoptosis by mannan/β-glucans from yeast cell wall: Involvement of autophagy and PI3K-AKT-mTOR signaling pathway. Int J Biol Macromol 2020; 164:1413-1421. [PMID: 32735928 DOI: 10.1016/j.ijbiomac.2020.07.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022]
Abstract
Deoxynivalenol (DON) is the most common trichothecene distributed in food and feed. So far, much work has focused on investigating the cytotoxicity of DON, while there is few researches aimed at intervening in the toxic impacts on humans and livestock posed by DON. The objective of this study is to investigate the underlying mechanism of biomacromolecules mannan/β-glucans from yeast cell wall (BYCW) for their potency to impede the cytotoxicity and apoptosis caused by DON with porcine jejunum epithelial cell lines (IPEC-J2) used as a cell injury model. We analyzed the cell morphology, cell activity, oxidative stress, fluorescence intensity and expressions of proteins relevant to autophagy, apoptosis and PI3K-AKT-mTOR signaling pathway by using inverted microscopy, MTS, reactive oxygen species (ROS), glutathione (GSH) and malondialdehyde (MDA) assay, Annexin V-FITC / propidium iodide (PI) double staining and Western blot assay. The consequent data demonstrated that in the presence of BYCW, the cell morphology and activity were relatively ameliorated and that the oxidation damage was attenuated with DON-induced autophagy concomitantly decreased, which, furthermore, was found involved in the positive regulation on PI3K-AKT-mTOR signaling pathway by BYCW. In a word, BYCW possess an ability to repress the cytotoxicity and apoptosis induced by DON through the inhibition of autophagy via activating PI3K-AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenyan Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
42
|
Huang C, Ming D, Wang W, Wang Z, Hu Y, Ma X, Wang F. Pyrroloquinoline Quinone Alleviates Jejunal Mucosal Barrier Function Damage and Regulates Colonic Microbiota in Piglets Challenged With Enterotoxigenic Escherichia coli. Front Microbiol 2020; 11:1754. [PMID: 32849383 PMCID: PMC7396494 DOI: 10.3389/fmicb.2020.01754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the effect of dietary supplementation with pyrroloquinoline quinone (PQQ) on gut inflammation and microbiota dysbiosis induced by enterotoxigenic Escherichia coli (ETEC). Twenty Duroc × Landrace × Yorkshire crossbred barrows were assigned to four groups: two E. coli K88 challenge groups and two non-challenge groups, each provided a basal diet supplemented with 0 or 3 mg/kg PQQ. On day 14, piglets were challenged with 10 mL 1 × 109 CFU/mL of E. coli K88 or PBS for 48 h. The villus height (VH) and villus height/crypt depth (VCR) ratio of the E. coli K88-challenged group supplemented with PQQ was significantly reduced than in the non-supplemented challenge group (P < 0.05), while levels of jejunal zonula occludens-3 (ZO-3), diamine oxidase, secretory immunoglobulin A (SIgA), interleukin-10 (IL-10), and IL-22 proteins were higher (P < 0.05), as were the activities of glutathione peroxidase, total superoxide dismutase, and total antioxidant capability (P < 0.05). Moreover, PQQ supplementation alleviated an increase in levels of mucosal inflammatory cytokines and reduced the activity of nuclear factor-kappa B (NF-κB) pathway by E. coli K88 (P < 0.05). Gene sequencing of 16S rRNA showed dietary supplementation with PQQ in E. coli K88-challenged piglets attenuated a decrease in Lactobacillus count and butyrate, isobutyrate level, and an increase in Ruminococcus and Intestinibacter counts, all of which were observed in non-supplemented, challenge-group piglets. These results suggest that dietary supplementation with PQQ can effectively alleviate jejunal mucosal inflammatory injury by inhibiting NF-κB pathways and regulating the imbalance of colonic microbiota in piglets challenged with E. coli K88.
Collapse
Affiliation(s)
- Caiyun Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxu Ming
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zijie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Dietary Phytase and Lactic Acid-Treated CerealGrains Differently Affected Calcium and PhosphorusHomeostasis from Intestinal Uptake to SystemicMetabolism in a Pig Model. Nutrients 2020; 12:nu12051542. [PMID: 32466313 PMCID: PMC7284645 DOI: 10.3390/nu12051542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
High intestinal availability of dietary phosphorus (P) may impair calcium (Ca)homeostasis and bone integrity. In the present study, we investigated the effect of phytasesupplementation in comparison to the soaking of cereal grains in 2.5% lactic acid (LA) on intestinalCa and P absorption; intestinal, renal, and bone gene expression regarding Ca and P homeostasis;bone parameters; and serum levels of regulatory hormones in growing pigs. Thirty-two pigs wererandomly assigned to one of four diets in a 2 × 2 factorial design in four replicate batches for 19days. The diets comprised either untreated or LA-treated wheat and maize without and withphytase supplementation (500 phytase units/kg). Although both treatments improved the Pbalance, phytase and LA-treated cereals differently modulated gene expression related to intestinalabsorption, and renal and bone metabolism of Ca and P, thereby altering homeostatic regulatorymechanisms as indicated by serum Ca, P, vitamin D, and fibroblast growth factor 23 levels.Moreover, phytase increased the gene expression related to reabsorption of Ca in the kidney,whereas LA-treated cereals decreased the expression of genes for osteoclastogenesis in bones,indicating an unbalanced systemic availability of minerals. In conclusion, high intestinalavailability of dietary P may impair Ca homeostasis and bone integrity.
Collapse
|
44
|
Wang P, Lu Z, He M, Shi B, Lei X, Shan A. The Effects of Endoplasmic-Reticulum-Resident Selenoproteins in a Nonalcoholic Fatty Liver Disease Pig Model Induced by a High-Fat Diet. Nutrients 2020; 12:nu12030692. [PMID: 32143527 PMCID: PMC7146353 DOI: 10.3390/nu12030692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the intervention of selenium in the oxidative stress and apoptosis of pig livers, which were induced by a high-fat diet, and the effects of four endoplasmic reticulum (ER)-resident selenoproteins in the process. A 2 × 4 design trial was conducted that included two dietary fat levels (BD = basal diet and HFD = high-fat diet) and four dietary Se supplementation levels (0, 0.3, 1.0, and 3.0 mg/kg of the diet, in the form of sodium selenite (Na2SeO3)). Our results indicated that the HFD significantly increased the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum, as well as the degree of steatosis, the content of malondialdehyde (MDA), the apoptotic rate, and the level of mRNA caspase-3 in the liver compared to their BD counterparts (p < 0.05). Moreover, these parameters in the HFD groups were more significantly reduced (p < 0.05) for a Se concentration of 1.0 mg/kg than for the other concentrations. Further, for both the BD and HFD, the groups supplemented with 1.0 mg/kg Se showed the highest mRNA level of selenoprotein S. In conclusion, the consumption of an HFD can induce oxidative damage and apoptosis in the liver. This shows that the supplementation of Se at 1.0 mg/kg may be the optimum concentration against damage induced by HFD, and Sels may play a key role in this process.
Collapse
Affiliation(s)
- Pengzu Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (M.H.); (B.S.)
| | - Zhuang Lu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (M.H.); (B.S.)
| | - Meng He
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (M.H.); (B.S.)
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (M.H.); (B.S.)
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (M.H.); (B.S.)
- Correspondence: ; Tel./Fax: +86-0451-55190685
| |
Collapse
|
45
|
Beasley JT, Johnson AAT, Kolba N, Bonneau JP, Glahn RP, Ozeri L, Koren O, Tako E. Nicotianamine-chelated iron positively affects iron status, intestinal morphology and microbial populations in vivo (Gallus gallus). Sci Rep 2020; 10:2297. [PMID: 32041969 PMCID: PMC7010747 DOI: 10.1038/s41598-020-57598-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/21/2019] [Indexed: 01/21/2023] Open
Abstract
Wheat flour iron (Fe) fortification is mandatory in 75 countries worldwide yet many Fe fortificants, such as Fe-ethylenediaminetetraacetate (EDTA), result in unwanted sensory properties and/or gastrointestinal dysfunction and dysbiosis. Nicotianamine (NA) is a natural chelator of Fe, zinc (Zn) and other metals in higher plants and NA-chelated Fe is highly bioavailable in vitro. In graminaceous plants NA serves as the biosynthetic precursor to 2' -deoxymugineic acid (DMA), a related Fe chelator and enhancer of Fe bioavailability, and increased NA/DMA biosynthesis has proved an effective Fe biofortification strategy in several cereal crops. Here we utilized the chicken (Gallus gallus) model to investigate impacts of NA-chelated Fe on Fe status and gastrointestinal health when delivered to chickens through intraamniotic administration (short-term exposure) or over a period of six weeks as part of a biofortified wheat diet containing increased NA, Fe, Zn and DMA (long-term exposure). Striking similarities in host Fe status, intestinal functionality and gut microbiome were observed between the short-term and long-term treatments, suggesting that the effects were largely if not entirely due to consumption of NA-chelated Fe. These results provide strong support for wheat with increased NA-chelated Fe as an effective biofortification strategy and uncover novel impacts of NA-chelated Fe on gastrointestinal health and functionality.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | | | - Nikolai Kolba
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA
| | - Lital Ozeri
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Elad Tako
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA.
| |
Collapse
|
46
|
Pradhan D, Mallappa RH, Grover S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106872] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Crespo-Moral M, García-Posadas L, López-García A, Diebold Y. Histological and immunohistochemical characterization of the porcine ocular surface. PLoS One 2020; 15:e0227732. [PMID: 31929592 PMCID: PMC6957219 DOI: 10.1371/journal.pone.0227732] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
The ocular surface of the white domestic pig (Sus scrofa domestica) is used as a helpful model of the human ocular surface; however, a complete histological description has yet to be published. In this work, we studied porcine eyeballs with intact eyelids to describe and characterize the different structures that form the ocular surface, including the cornea and conjunctiva that covers the bulbar sclera, tarsi, and the nictitating membrane. We determined the distribution of goblet cells of different types over the conjunctiva and analyzed the conjunctival-associated lymphoid tissue (CALT). Porcine eyeballs were obtained from a local slaughterhouse, fixed, processed, and embedded in paraffin blocks. Tissue sections (4 μm) were stained with hematoxylin/eosin, Alcian blue/Periodic Acid Schiff, and Giemsa. Slides were also stained with lectins from Arachis hypogaea (PNA) and Helix pomatia (HPA) agglutinins and immunostained with rabbit anti-CD3. We found that the porcine cornea was composed of 6–8 epithelial cell layers, stroma, Descemet’s membrane, and an endothelial monolayer. The total corneal thickness was 1131.0±87.5 μm (mean±standard error of the mean) in the center and increased to 1496.9±138.2 μm at the limbus. The goblet cell density was 71.25±12.29 cells/mm, ranging from the highest density (113.04±37.21 cells/mm) in the lower palpebral conjunctiva to the lowest density (12.69±4.29 cells/mm) in the bulbar conjunctiva. The CALT was distributed in the form of intraepithelial lymphocytes and subepithelial diffuse lymphoid tissue. Lenticular-shaped lymphoid follicles, about 8 per histological section, were also present within the conjunctival areas. In conclusion, we demonstrated that the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.
Collapse
Affiliation(s)
- Mario Crespo-Moral
- Ocular Surface Group, IOBA - University of Valladolid, Valladolid, Spain
| | | | - Antonio López-García
- Ocular Surface Group, IOBA - University of Valladolid, Valladolid, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Yolanda Diebold
- Ocular Surface Group, IOBA - University of Valladolid, Valladolid, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
48
|
Mackie A, Mulet-Cabero AI, Torcello-Gómez A. Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food Funct 2020; 11:9397-9431. [DOI: 10.1039/d0fo01981j] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gold standard for nutrition studies is clinical trials but they are expensive and variable, and do not always provide the mechanistic information required, hence the increased use ofin vitroand increasinglyin silicosimulations of digestion.
Collapse
Affiliation(s)
- Alan Mackie
- The School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | | | | |
Collapse
|
49
|
Kang S, Kim J, Kim S, Wufuer M, Park S, Kim Y, Choi D, Jin X, Kim Y, Huang Y, Jeon B, Choi TH, Park JU, Lee Y. Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization. Biomater Sci 2020; 8:1580-1591. [DOI: 10.1039/c9bm01802f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article presents the efficacy of heat-induced MPC-grafting against excessive fibrous capsule formation and related inflammation in tissues surrounding silicone breast implants inserted in a pig model.
Collapse
|
50
|
Wang X, Garrick MD, Collins JF. Animal Models of Normal and Disturbed Iron and Copper Metabolism. J Nutr 2019; 149:2085-2100. [PMID: 31504675 PMCID: PMC6887953 DOI: 10.1093/jn/nxz172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/04/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
Research on the interplay between iron and copper metabolism in humans began to flourish in the mid-20th century, and diseases associated with dysregulated homeostasis of these essential trace minerals are common even today. Iron deficiency is the most frequent cause of anemia worldwide, leading to significant morbidity, particularly in developing countries. Iron overload is also quite common, usually being the result of genetic mutations which lead to inappropriate expression of the iron-regulatory hormone hepcidin. Perturbations of copper homeostasis in humans have also been described, including rare genetic conditions which lead to severe copper deficiency (Menkes disease) or copper overload (Wilson disease). Historically, the common laboratory rat (Rattus norvegicus) was the most frequently utilized species to model human physiology and pathophysiology. Recently, however, the development of genetic-engineering technology combined with the worldwide availability of numerous genetically homogenous (i.e., inbred) mouse strains shifted most research on iron and copper metabolism to laboratory mice. This created new opportunities to understand the function of individual genes in the context of a living animal, but thoughtful consideration of whether mice are the most appropriate models of human pathophysiology was not necessarily involved. Given this background, this review is intended to provide a guide for future research on iron- and copper-related disorders in humans. Generation of complementary experimental models in rats, swine, and other mammals is now facile given the advent of newer genetic technologies, thus providing the opportunity to accelerate the identification of pathogenic mechanisms and expedite the development of new treatments to mitigate these important human disorders.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Michael D Garrick
- Department of Biochemistry, University at Buffalo–The State University of New York, Buffalo, NY, USA
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA,Address correspondence to JFC (e-mail: )
| |
Collapse
|