1
|
Shilbayeh SAR, Adeen IS, Alhazmi AS, Aljurayb H, Altokhais RS, Alhowaish N, Aldilaijan KE, Kamal M, Alnakhli AM. The polymorphisms of candidate pharmacokinetic and pharmacodynamic genes and their pharmacogenetic impacts on the effectiveness of risperidone maintenance therapy among Saudi children with autism. Eur J Clin Pharmacol 2024:10.1007/s00228-024-03658-w. [PMID: 38421437 DOI: 10.1007/s00228-024-03658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Antipsychotics, including risperidone (RIS), are frequently indicated for various autism spectrum disorder (ASD) manifestations; however, "actionable" PGx testing in psychiatry regarding antipsychotic dosing and selection has limited applications in routine clinical practice because of the lack of standard guidelines, mostly due to the inconsistency and scarcity of genetic variant data. The current study is aimed at examining the association of RIS effectiveness, according to ABC-CV and CGI indexes, with relevant pharmacokinetics (PK) and pharmacodynamics (PD) genes. METHODS Eighty-nine ASD children who received a consistent RIS-based regimen for at least 8 weeks were included. The Axiom PharmacoFocus Array technique was employed to generate accurate star allele-predicted phenotypes of 3 PK genes (CYP3A4, CYP3A5, and CYP2D6). Genotype calls for 5 candidate PD receptor genes (DRD1, DRD2, DRD3, HTR2C, and HTR2A) were obtained and reported as wild type, heterozygous, or homozygous for 11 variants. RESULTS Based on the ABC total score, 42 (47.2%) children were classified as responders, while 47 (52.8%) were classified as nonresponders. Multivariate logistic regression analyses, adjusted for nongenetic factors, suggested nonsignificant impacts of the star allele-predicted phenotypes of all 3 PK genes on improvement in ASD symptoms or CGI scores. However, significant positive or negative associations of certain PD variants involved in dopaminergic and serotonergic pathways were observed with specific ASD core and noncore symptom subdomains. Our significant polymorphism findings, mainly those in DRD2 (rs1800497, rs1799978, and rs2734841), HTR2C (rs3813929), and HTR2A (rs6311), were largely consistent with earlier findings (predictors of RIS effectiveness in adult schizophrenia patients), confirming their validity for identifying ASD children with a greater likelihood of core symptom improvement compared to noncarriers/wild types. Other novel findings of this study, such as significant improvements in DRD3 rs167771 carriers, particularly in ABC total and lethargy/social withdrawal scores, and DRD1 rs1875964 homozygotes and DRD2 rs1079598 wild types in stereotypic behavior, warrant further verification in biochemical and clinical studies to confirm their feasibility for inclusion in a PGx panel. CONCLUSION In conclusion, we provide evidence of potential genetic markers involved in clinical response variability to RIS therapy in ASD children. However, replication in prospective samples with greater ethnic diversity and sample sizes is necessary.
Collapse
Affiliation(s)
- Sireen Abdul Rahim Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Iman Sharaf Adeen
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Shawqi Alhazmi
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Saud Medical City, Riyadh, Saudi Arabia
| | - Haya Aljurayb
- Molecular Pathology Laboratory, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rana Saad Altokhais
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nourah Alhowaish
- Department of Prevention and Research, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Khawlah Essa Aldilaijan
- Health Sciences Research Center, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa Kamal
- Department of Life Science Application Support, Gulf Scientific Corporation, Riyadh, Saudi Arabia
| | - Anwar Mansour Alnakhli
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Shilbayeh SAR, Adeen IS, Ghanem EH, Aljurayb H, Aldilaijan KE, AlDosari F, Fadda A. Exploratory focused pharmacogenetic testing reveals novel markers associated with risperidone pharmacokinetics in Saudi children with autism. Front Pharmacol 2024; 15:1356763. [PMID: 38375040 PMCID: PMC10875102 DOI: 10.3389/fphar.2024.1356763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Autism spectrum disorders (ASDs) encompass a broad range of phenotypes characterized by diverse neurological alterations. Genomic studies have revealed considerable overlap between the molecular mechanisms implicated in the etiology of ASD and genes involved in the pharmacokinetic (PK) and pharmacodynamic (PD) pathways of antipsychotic drugs employed in ASD management. Given the conflicting data originating from candidate PK or PD gene association studies in diverse ethnogeographic ASD populations, dosage individualization based on "actionable" pharmacogenetic (PGx) markers has limited application in clinical practice. Additionally, off-label use of different antipsychotics is an ongoing practice, which is justified given the shortage of approved cures, despite the lack of satisfactory evidence for its safety according to precision medicine. This exploratory study aimed to identify PGx markers predictive of risperidone (RIS) exposure in autistic Saudi children. Methods: This prospective cohort study enrolled 89 Saudi children with ASD treated with RIS-based antipsychotic therapy. Plasma levels of RIS and 9-OH-RIS were measured using a liquid chromatography-tandem mass spectrometry system. To enable focused exploratory testing, genotyping was performed with the Axiom PharmacoFocus Array, which included a collection of probe sets targeting PK/PD genes. A total of 720 PGx markers were included in the association analysis. Results: A total of 27 PGx variants were found to have a prominent impact on various RIS PK parameters; most were not located within the genes involved in the classical RIS PK pathway. Specifically, 8 markers in 7 genes were identified as the PGx markers with the strongest impact on RIS levels (p < 0.01). Four PGx variants in 3 genes were strongly associated with 9-OH-RIS levels, while 5 markers in 5 different genes explained the interindividual variability in the total active moiety. Notably, 6 CYP2D6 variants exhibited strong linkage disequilibrium; however, they significantly influenced only the metabolic ratio and had no considerable effects on the individual estimates of RIS, 9-OH-RIS, or the total active moiety. After correction for multiple testing, rs78998153 in UGT2B17 (which is highly expressed in the brain) remained the most significant PGx marker positively adjusting the metabolic ratio. For the first time, certain human leukocyte antigen (HLA) markers were found to enhance various RIS exposure parameters, which reinforces the gut-brain axis theory of ASD etiology and its suggested inflammatory impacts on drug bioavailability through modulation of the brain, gastrointestinal tract and/or hepatic expression of metabolizing enzymes and transporters. Conclusion: Our hypothesis-generating approach identified a broad spectrum of PGx markers that interactively influence RIS exposure in ASD children, which indicated the need for further validation in population PK modeling studies to define polygenic scores for antipsychotic efficacy and safety, which could facilitate personalized therapeutic decision-making in this complex neurodevelopmental condition.
Collapse
Affiliation(s)
- Sireen Abdul Rahim Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Iman Sharaf Adeen
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ezzeldeen Hasan Ghanem
- Pharmaceutical Analysis Section, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Haya Aljurayb
- Molecular Pathology Laboratory, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Khawlah Essa Aldilaijan
- Health Sciences Research Center, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatimah AlDosari
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia
| | | |
Collapse
|
3
|
Scherf-Clavel M, Weber H, Wurst C, Stonawski S, Hommers L, Unterecker S, Wolf C, Domschke K, Rost N, Brückl T, Lucae S, Uhr M, Binder EB, Menke A, Deckert J. Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response. PHARMACOPSYCHIATRY 2022; 55:246-254. [PMID: 35839823 PMCID: PMC9458342 DOI: 10.1055/a-1872-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction
Pharmacogenetic testing is proposed to minimize adverse
effects when considered in combination with pharmacological knowledge of the
drug. As yet, limited studies in clinical settings have investigated the
predictive value of pharmacokinetic (pk) gene variation on therapeutic drug
levels as a probable mechanism of adverse effects, nor considered the combined
effect of pk gene variation and drug level on antidepressant treatment
response.
Methods
Two depression cohorts were investigated for the relationship
between pk gene variation and antidepressant serum concentrations of
amitriptyline, venlafaxine, mirtazapine and quetiapine, as well as treatment
response. For the analysis, 519 patients (49% females; 46.6±14.1
years) were included.
Results
Serum concentration of amitriptyline was associated with
CYP2D6
(higher concentrations in poor metabolizers compared to normal
metabolizers), of venlafaxine with
CYP2C19
(higher concentrations in
intermediate metabolizers compared to rapid/ultrarapid metabolizers) and
CYP2D6
(lower metabolite-to-parent ratio in poor compared to
intermediate and normal metabolizers, and intermediate compared to normal and
ultrarapid metabolizers). Pk gene variation did not affect treatment
response.
Discussion
The present data support previous recommendations to reduce
starting doses of amitriptyline and to guide dose-adjustments via therapeutic
drug monitoring in CYP2D6 poor metabolizers. In addition, we propose including
CYP2C19
in routine testing in venlafaxine-treated patients to improve
therapy by raising awareness of the risk of low serum concentrations in CYP2C19
rapid/ultrarapid metabolizers. In summary, pk gene variation can predict
serum concentrations, and thus the combination of pharmacogenetic testing and
therapeutic drug monitoring is a useful tool in a personalized therapy approach
for depression.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Catherina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Saskia Stonawski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolas Rost
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Tanja Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Manfred Uhr
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Bernau, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
De Pretis F, van Gils M, Forsberg MM. A smart hospital-driven approach to precision pharmacovigilance. Trends Pharmacol Sci 2022; 43:473-481. [PMID: 35490032 DOI: 10.1016/j.tips.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 01/03/2023]
Abstract
Researchers, regulatory agencies, and the pharmaceutical industry are moving towards precision pharmacovigilance as a comprehensive framework for drug safety assessment, at the service of the individual patient, by clustering specific risk groups in different databases. This article explores its implementation by focusing on: (i) designing a new data collection infrastructure, (ii) exploring new computational methods suitable for drug safety data, and (iii) providing a computer-aided framework for distributed clinical decisions with the aim of compiling a personalized information leaflet with specific reference to a drug's risks and adverse drug reactions. These goals can be achieved by using 'smart hospitals' as the principal data sources and by employing methods of precision medicine and medical statistics to supplement current public health decisions.
Collapse
Affiliation(s)
- Francesco De Pretis
- VTT Technical Research Centre of Finland Ltd, 70210 Kuopio, Finland; Department of Communication and Economics, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy.
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Markus M Forsberg
- VTT Technical Research Centre of Finland Ltd, 70210 Kuopio, Finland; School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
6
|
Direct Powder Extrusion of Paracetamol Loaded Mixtures for 3D Printed Pharmaceutics for Personalized Medicine via Low Temperature Thermal Processing. Pharmaceutics 2021; 13:pharmaceutics13060907. [PMID: 34205280 PMCID: PMC8234073 DOI: 10.3390/pharmaceutics13060907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/20/2023] Open
Abstract
Three-dimensional printed drug development is nowadays an active area in the pharmaceutical industry, where the search for an appropriate edible carrier that permits the thermal processing of the mixture at temperature levels that are safe for the drug is an important field of study. Here, potato starch and hydroxypropyl cellulose based mixtures loaded with paracetamol up to 50% in weight were processed by hot melt extrusion at 85 °C to test their suitability to be thermally processed. The extruded mixtures were tested by liquid chromatography to analyze their release curves and were thermally characterized. The drug recovery was observed to be highly dependent on the initial moisture level of the mixture, the samples being prepared with an addition of water at a ratio of 3% in weight proportional to the starch amount, highly soluble and easy to extrude. The release curves showed a slow and steady drug liberation compared to a commercially available paracetamol tablet, reaching the 100% of recovery at 60 min. The samples aged for 6 weeks showed slower drug release curves compared to fresh samples, this effect being attributable to the loss of moisture. The paracetamol loaded mixture in powder form was used to print pills with different sizes and geometries in a fused deposition modelling three-dimensional printer modified with a commercially available powder extrusion head, showing the potential of this formulation for use in personalized medicine.
Collapse
|
7
|
Javelot H, Dizet S, Straczek C, Langrée B, Michel B, Haffen E, Bertschy G. Enhancing the role played by clinical pharmacists in psychiatric settings to better integrate clinical psychopharmacology into the decision-making process. Therapie 2020; 76:149-156. [PMID: 33358640 DOI: 10.1016/j.therap.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 01/29/2023]
Abstract
The importance of clinical psychopharmacological knowledge for modern psychiatric care is both well-established and underdeveloped. Although psychiatric pharmacists are identified as experts in psychopharmacotherapy based on pharmacists' overall expertise in pharmacotherapy, in real-life health settings, such is not necessarily the case. As a matter of fact, (1) pharmacists' real expertise in pharmacotherapy is mainly seen as useful to patients (as part of therapeutic education), (2) pharmacists' practice methods are usually circumscribed to the framework of quality processes (e.g. comprehensive medication management) which are not particularly useful to clinicians who have a greater need for pharmacotherapeutic skills, (3) the difficulties in terms of collaboration between pharmacists and physicians are well-known. We describe here the implementation of an alternative system of pharmacotherapy counselling inspired by case by cases in which the remote expertise of pharmacists in psychopharmacology guided prescribers towards the implementation of recommendations from the literature. This shared decision-making process integrates both the clinical elements provided by the psychiatrist and the pharmacotherapeutic information provided by the clinical psychopharmacist, to promote evidence-based medicine (algorithmic data in recommendations) and tailor-made solutions (drug-drug and drug-disease interactions) for patients. In our experience, the success of such an initiative is likely to promote the development of clinical psychopharmacology in psychiatric settings. Importantly, within this framework, the pharmacovigilance unit and psychopharmacologist are useful resources to guide the decision-making process of the pharmacist-psychiatrist duo.
Collapse
Affiliation(s)
- Hervé Javelot
- Établissement public de santé Alsace Nord, Établissement public de Santé mentale Alsace Nord (EPSAN), 67170 Brumath, France; UR 7296 laboratoire de toxicologie et pharmacologie neuro cardiovasculaire, université de Strasbourg, 67000 Strasbourg, France.
| | - Sophie Dizet
- Centre de ressources et d'expertise en psychopharmacologie (CREPP) Bourgogne Franche-Comté et service pharmacie, CHS de Sevrey, 71100 Chalon sur Saône, France
| | - Céline Straczek
- Département de pharmacie, CHU Henri Mondor, 94000 Créteil, France; Institut Mondor de recherche biomédicale, Inserm U955, équipe 15 neuropsychiatrie translationnelle, 94000 Créteil, France
| | - Bastien Langrée
- Service pharmacie, centre hospitalier Guillaume Régnier, 35000 Rennes, France
| | - Bruno Michel
- Department of pharmacy, university hospital of Strasbourg, NHC, 67000 Strasbourg, France; Faculty of pharmacy, university of Strasbourg, 67000 Strasbourg, France; UR 7296 laboratory of neuro-cardiovascular pharmacology and toxicology, university of Strasbourg, 67000 Strasbourg, France
| | - Emmanuel Haffen
- Service de psychiatrie, CIC-1431 INSERM, CHU de Besançon, 25000 Besançon, France; Laboratoire de neurosciences, université de Franche-Comté, 25000 Besançon, France
| | - Gilles Bertschy
- Pôle de psychiatrie, santé mentale & addictologie des hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France; Inserm U1114, 67000 Strasbourg, France; Fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
8
|
Liko I, Lai E, Griffin RJ, Aquilante CL, Lee YM. Patients’ Perspectives on Psychiatric Pharmacogenetic
Testing. PHARMACOPSYCHIATRY 2020; 53:256-261. [DOI: 10.1055/a-1183-5029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Introduction There is growing interest to adopt pharmacogenetic (PGx)
testing in psychiatric medicine, despite mixed views regarding its clinical
utility. Nevertheless, providers are utilizing PGx testing among patients
with mental health disorders. This study sought to assess genotyped
patients’ perspectives and experiences with psychiatric PGx
testing.
Methods Individual semi-structured interviews were conducted among
patients with depression who had undergone psychiatric PGx testing. The
audio-recorded interviews were transcribed and analyzed inductively and
deductively for salient themes.
Results Twenty patients (100% Caucasian, 60% female,
mean age 39±18 years) were interviewed. The majority of the PGx
tests were provider-initiated for patients who failed multiple
pharmacotherapies (50%) and/or had medication intolerances
(45%). Patients’ pre-testing expectations ranged from
hopefulness to indifference to skepticism. Their post-testing experiences
varied from optimism to disappointment, with the perceived value of the test
influenced by the results and cost of the test.
Discussion Genotyped patients had mixed perspectives, expectations,
and experiences with psychiatric PGx testing. Their perceived value of the
test was influenced by the test outcomes and its cost.
Collapse
Affiliation(s)
- Ina Liko
- Department of Pharmaceutical Sciences, University of Colorado, Skaggs
School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado,
USA
| | - Erika Lai
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical
Sciences, Aurora, Colorado, USA
| | - Rachel J. Griffin
- University of Colorado Johnson Depression Center, Aurora, Colorado,
USA
| | - Christina L. Aquilante
- Department of Pharmaceutical Sciences, University of Colorado, Skaggs
School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado,
USA
| | - Yee Ming Lee
- Department of Clinical Pharmacy, University of Colorado, Skaggs School
of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| |
Collapse
|
9
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
10
|
|