1
|
Voinsky I, Goldenberg-Bogner O, Israel-Elgali I, Volkov H, Puzianowska-Kuźnicka M, Shomron N, Gurwitz D. RNA sequencing comparing centenarian and middle-aged women lymphoblastoid cell lines identifies age-related dysregulated expression of genes encoding selenoproteins, heat shock proteins, CD99, and BID. Drug Dev Res 2024; 85:e70011. [PMID: 39445501 DOI: 10.1002/ddr.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Women typically live longer than men, and constitute the majority of centenarians. We applied RNA-sequencing (RNA-seq) of blood-derived lymphoblastoid cell lines (LCLs) from women aged 60-80 years and centenarians (100-105 years), validated the RNA-seq findings by real-time PCR, and additionally measured the differentially expressed genes in LCLs from young women aged 20-35 years. Top RNA-seq genes with differential expression between the age groups included three selenoproteins (GPX1, SELENOW, SELENOH) and three heat shock proteins (HSPA6, HSPA1A, HSPA1B), with the highest expression in LCLs from young women, indicating that young women are better protected from oxidative stress. The expression of two additional genes, BID encoding BH3-interacting domain death agonist and CD99 encoding CD99 antigen, showed unique age dependence, with similar expression levels in young and centenarian women while exhibiting higher and lower expression levels, respectively, in LCLs from women aged 60-80 years compared with the two other age groups. This age-related differential expression of BID and CD99 suggests elevated inflammation susceptibility in middle-aged women compared with either young or centenarian women. Our findings, once validated with human peripheral blood mononuclear cells and further cell types, may lead to novel healthy aging diagnostics and therapeutics.
Collapse
Affiliation(s)
- Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ofir Goldenberg-Bogner
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ifat Israel-Elgali
- Department of Cell and Developmental Biology, Faculty of Health and Medical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hadas Volkov
- Department of Cell and Developmental Biology, Faculty of Health and Medical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, 02-106, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, 01-826, Poland
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Health and Medical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 69978, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
2
|
Morshed N, Rennie C, Deng W, Collins-Praino L, Care A. Serum-derived protein coronas affect nanoparticle interactions with brain cells. NANOTECHNOLOGY 2024; 35:495101. [PMID: 39284320 DOI: 10.1088/1361-6528/ad7b40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Neuronanomedicine is an emerging field bridging the gap between neuromedicine and novel nanotherapeutics. Despite promise, clinical translation of neuronanomedicine remains elusive, possibly due to a dearth of information regarding the effect of the protein corona on these neuronanomedicines. The protein corona, a layer of proteins adsorbed to nanoparticles following exposure to biological fluids, ultimately determines the fate of nanoparticles in biological systems, dictating nanoparticle-cell interactions. To date, few studies have investigated the effect of the protein corona on interactions with brain-derived cells, an important consideration for the development of neuronanomedicines. Here, two polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG), were used to obtain serum-derived protein coronas. Protein corona characterization and liquid chromatography mass spectrometry analysis revealed distinct differences in biophysical properties and protein composition. PLGA protein coronas contained high abundance of globins (60%) and apolipoproteins (21%), while PLGA-PEG protein coronas contained fewer globins (42%) and high abundance of protease inhibitors (28%). Corona coated PLGA nanoparticles were readily internalized into microglia and neuronal cells, but not into astrocytes. Internalization of nanoparticles was associated with pro-inflammatory cytokine release and decreased neuronal cell viability, however, viability was rescued in cells treated with corona coated nanoparticles. These results showcase the importance of the protein corona in mediating nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Nabila Morshed
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Claire Rennie
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Gadigal Country, Sydney, NSW 2007, Australia
| | - Lyndsey Collins-Praino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
- Biologics Innovation Facility, University of Technology Sydney, Gadigal Country, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Gurwitz D, Steeg R. Enriching iPSC research diversity: Harnessing human biobank collections for improved ethnic representation. Drug Dev Res 2024; 85:e22227. [PMID: 38943497 DOI: 10.1002/ddr.22227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Biobanks of human biosamples and cell lines are indispensable for biomedical research on human health and disease and for drug development projects. Many human cell line biobanks worldwide hold collections of lymphoblastoid cell lines (LCLs), representing thousands of affected and control donors from diverse ethnic/ancestry groups. In recent years, induced human pluripotent stem cells (iPSCs) and differentiated human cells derived from these iPSCs have become indispensable for applied biomedical research. Establishing iPSCs remains a laborious and costly step towards generating differentiated human cells. To address this research need, several non-profit and commercial biobanks have established iPSC collections for distribution to researchers, thereby serving as a resource for generating differentiated human cells. The most common starting materials for generation of iPSCs are a skin biopsy for harvesting fibroblasts, or a blood sample for collection of peripheral blood mononuclear cells. However untapped resources include the large established collections of biobanked human LCLs which can be reprogrammed to iPSCs using a variety of published protocols including the use of non-integrating episomal vectors. Many biobanks curate LCLs from diverse ethnic/ancestry populations, an aspect largely absent in most established iPSC biobanks which tend to primarily reflect populations from developed countries. Here, we call upon researchers across the breadth of iPSC research to tap the unique resource of existing and diverse human LCL collections for establishing biobanked iPSC panels that better represent the varied human ethnic (and hence genomic) diversity, thereby benefiting precision medicine and drug development research on a global scale.
Collapse
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Steeg
- European Bank for Induced Pluripotent Stem Cells, Fraunhofer UK Research Ltd, Glasgow, UK
| |
Collapse
|
4
|
Niemis W, Peterson SR, Javier C, Nguyen A, Subiah S, Palmer RHC. On the utilization of the induced pluripotent stem cell (iPSC) model to study substance use disorders: A scoping review protocol. PLoS One 2023; 18:e0292238. [PMID: 37824561 PMCID: PMC10569547 DOI: 10.1371/journal.pone.0292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Induced pluripotent stem cells (iPSCs) are cells derived from somatic cells via reprogramming techniques. The iPSC approach has been increasingly used in neuropsychiatric research in the last decade. Though substance use disorders (SUDs) are a commonly occurring psychiatric disorder, the application of iPSC model in addiction research has been limited. No comprehensive review has been reported. We conducted a scoping review to collate existing evidence on the iPSC technologies applied to SUD research. We aim to identify current knowledge gaps and limitations in order to advance the use of iPSCs in the SUD field. METHODS AND ANALYSIS We employed a scoping review using the methodological framework first created by Arksey and O'Malley and further updated by Levac et al. and the Joanna Briggs Institute (JBI). We adopted the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Protocols (PRISMA-P) to report items for the protocol. We searched evidence from four electronic databases: PubMed®, Embase®, Web of Science™, and Scopus®. Primary research, systematic reviews, and meta-analyses were included and limited to studies published in English, at the time from 2007 to March 2022. This is an "ongoing" scoping review. Searched studies will be independently screened, selected, and extracted by two reviewers. Disagreement will be solved by the third reviewer and discussion. Extracted data will be analyzed in descriptive and quantitative approaches, then summarized and presented in appropriate formats. Results will be reported following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline and disseminated through a peer-reviewed publication and conference presentations. CONCLUSION To our best knowledge, this is the first comprehensive scoping review of iPSC methods specifically applied to a broad range of addictive drugs/substances that lead to SUDs or misuse behavior. REGISTRATION This protocol is registered on Zenodo repository (https://zenodo.org/) with doi:10.5281/zenodo.7915252.
Collapse
Affiliation(s)
- Wasiri Niemis
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Shenita R. Peterson
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, United States of America
| | - Chrisabella Javier
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Amy Nguyen
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Sanchi Subiah
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
5
|
Mizrahi L, Choudhary A, Ofer P, Goldberg G, Milanesi E, Kelsoe JR, Gurwitz D, Alda M, Gage FH, Stern S. Immunoglobulin genes expressed in lymphoblastoid cell lines discern and predict lithium response in bipolar disorder patients. Mol Psychiatry 2023; 28:4280-4293. [PMID: 37488168 PMCID: PMC10827667 DOI: 10.1038/s41380-023-02183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.
Collapse
Affiliation(s)
- Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Polina Ofer
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Gabriela Goldberg
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 2E2, Canada
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
6
|
Voinsky I, Shapira E, Gurwitz D. High purity and integrity RNA from human cell lines stored in liquid nitrogen for over 20 years. Drug Dev Res 2023; 84:1320-1324. [PMID: 37381835 DOI: 10.1002/ddr.22090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Biobanks are a key resource for obtaining human cell lines for biomedical research, including for drug development projects. Such projects often include comparative RNA-sequencing of large panels of human cell lines from individuals affected by certain disorders and healthy controls, or from individuals with different drug response phenotypes. RNA extractions are typically done from growing cell cultures, a process that may take several weeks. However, maintaining large numbers of cell lines in parallel increases the project workload. Here, we show that extracting RNAs directly from frozen vials of human cell lines stored for over 20 years in a liquid nitrogen freezer yields RNAs with the high purity and integrity parameters that conform to those required for optimal RNA-sequencing and are closely similar to those obtained for RNAs extracted from growing human cell lines.
Collapse
Affiliation(s)
- Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Shapira
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Yde Ohki CM, Walter NM, Rickli M, Salazar Campos JM, Werling AM, Döring C, Walitza S, Grünblatt E. Protocol for a Wnt reporter assay to measure its activity in human neural stem cells derived from induced pluripotent stem cells. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100095. [PMID: 37426743 PMCID: PMC10329100 DOI: 10.1016/j.crneur.2023.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
The canonical Wnt signaling is an essential pathway that regulates cellular proliferation, maturation, and differentiation during neurodevelopment and maintenance of adult tissue homeostasis. This pathway has been implicated with the pathophysiology of neuropsychiatric disorders and was associated with cognitive processes, such as learning and memory. However, the molecular investigation of the Wnt signaling in functional human neural cell lines might be challenging since brain biopsies are not possible and animal models may not represent the polygenic profile of some neurological and neurodevelopmental disorders. In this context, using induced pluripotent stem cells (iPSCs) has become a powerful tool to model disorders that affect the Central Nervous System (CNS) in vitro, by maintaining patients' genetic backgrounds. In this method paper, we report the development of a virus-free Wnt reporter assay in neural stem cells (NSCs) derived from human iPSCs from two healthy individuals, by using a vector containing a reporter gene (luc2P) under the control of a TCF/LEF (T-cell factor/lymphoid enhancer factor) responsive element. Dose-response curve analysis from this luciferase-based method might be useful when testing the activity of the Wnt signaling pathway after agonists (e.g. Wnt3a) or antagonists (e.g. DKK1) administration, comparing activity between cases and controls in distinct disorders. Using such a reporter assay method may help to elucidate whether neurological or neurodevelopmental mental disorders show alterations in this pathway, and testing whether targeted treatment may reverse these. Therefore, our established assay aims to help researchers on the functional and molecular investigation of the Wnt pathway in patient-specific cell types comprising several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Biomedicine PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Natalie Monet Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Michelle Rickli
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - José Maria Salazar Campos
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Christian Döring
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| |
Collapse
|
8
|
Cattane N, Courtin C, Mombelli E, Maj C, Mora C, Etain B, Bellivier F, Marie-Claire C, Cattaneo A. Transcriptomics and miRNomics data integration in lymphoblastoid cells highlights the key role of immune-related functions in lithium treatment response in Bipolar disorder. BMC Psychiatry 2022; 22:665. [PMID: 36303132 PMCID: PMC9615157 DOI: 10.1186/s12888-022-04286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) is a complex mental disease characterized by recurrent episodes of mania and depression. Lithium (Li) represents the mainstay of BD pharmacotherapy, despite the narrow therapeutic index and the high variability in treatment response. However, although several studies have been conducted, the molecular mechanisms underlying Li therapeutic effects remain unclear. METHODS In order to identify molecular signatures and biological pathways associated with Li treatment response, we conducted transcriptome and miRNome microarray analyses on lymphoblastoid cell lines (LCLs) from 20 patients diagnosed with BD classified as Li responders (n = 11) or non-responders (n = 9). RESULTS We found 335 mRNAs and 77 microRNAs (miRNAs) significantly modulated in BD responders versus non-responders. Interestingly, pathway and network analyses on these differentially expressed molecules suggested a modulatory effect of Li on several immune-related functions. Indeed, among the functional molecular nodes, we found NF-κB and TNF. Moreover, networks related to these molecules resulted overall inhibited in BD responder patients, suggesting anti-inflammatory properties of Li. From the integrative analysis between transcriptomics and miRNomics data carried out using miRComb R package on the same samples from patients diagnosed with BD, we found 97 significantly and negatively correlated mRNA-miRNA pairs, mainly involved in inflammatory/immune response. CONCLUSIONS Our results highlight that Li exerts modulatory effects on immune-related functions and that epigenetic mechanisms, especially miRNAs, can influence the modulation of different genes and pathways involved in Li response. Moreover, our data suggest the potentiality to integrate data coming from different high-throughput approaches as a tool to prioritize genes and pathways.
Collapse
Affiliation(s)
- Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cindie Courtin
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Elisa Mombelli
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- grid.411097.a0000 0000 8852 305XInstitute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Cristina Mora
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bruno Etain
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Frank Bellivier
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Cynthia Marie-Claire
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells 2022; 11:cells11203235. [PMID: 36291103 PMCID: PMC9599997 DOI: 10.3390/cells11203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Modern society faces many biomedical challenges that require urgent solutions. Two of the most important include the elucidation of mechanisms of socially significant diseases and the development of prospective drug treatments for these diseases. Experimental cell models are a convenient tool for addressing many of these problems. The power of cell models is further enhanced when combined with gene technologies, which allows the examination of even more subtle changes within the structure of the genome and permits testing of proteins in a native environment. The list and possibilities of these recently emerging technologies are truly colossal, which requires a rethink of a number of approaches for obtaining experimental cell models. In this review, we analyze the possibilities and limitations of promising gene technologies for obtaining cell models, and also give recommendations on the development and creation of relevant models. In our opinion, this review will be useful for novice cell biologists, as it provides some reference points in the rapidly growing universe of gene and cell technologies.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
- Correspondence:
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vsevolod Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| |
Collapse
|
10
|
Hadar A, Voinsky I, Parkhomenko O, Puzianowska‐Kuźnicka M, Kuźnicki J, Gozes I, Gurwitz D. Higher ATM expression in lymphoblastoid cell lines from centenarian compared with younger women. Drug Dev Res 2022; 83:1419-1424. [PMID: 35774024 PMCID: PMC9545764 DOI: 10.1002/ddr.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
With increased life expectancies in developed countries, cancer rates are becoming more common among the elderly. Cancer is typically driven by a combination of germline and somatic mutations accumulating during an individual's lifetime. Yet, many centenarians reach exceptionally old age without experiencing cancer. It was suggested that centenarians have more robust DNA repair and mitochondrial function, allowing improved maintenance of DNA stability. In this study, we applied real-time quantitative PCR to examine the expression of ATM in lymphoblastoid cell lines (LCLs) from 15 healthy female centenarians and 24 younger female donors aged 21-88 years. We observed higher ATM mRNA expression of in LCLs from female centenarians compared with both women aged 21-48 years (FD = 2.0, p = .0016) and women aged 56-88 years (FD = 1.8, p = .0094. Positive correlation was found between ATM mRNA expression and donors age (p = .0028). Levels of hsa-miR-181a-5p, which targets ATM, were lower in LCLs from centenarians compared with younger women. Our findings suggest a role for ATM in protection from age-related diseases, possibly reflecting more effective DNA repair, thereby reducing somatic mutation accumulation during aging. Further studies are required for analyzing additional DNA repair pathways in biosamples from centenarians and younger age men and women.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Olga Parkhomenko
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Monika Puzianowska‐Kuźnicka
- Department of Human EpigeneticsMossakowski Medical Research InstituteWarsawPoland
- Department of Geriatrics and GerontologyMedical Centre of Postgraduate EducationWarsawPoland
| | - Jacek Kuźnicki
- The International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
11
|
De Palma A, Agresta AM, Viglio S, Rossi R, D’Amato M, Di Silvestre D, Mauri P, Iadarola P. A Shotgun Proteomic Platform for a Global Mapping of Lymphoblastoid Cells to Gain Insight into Nasu-Hakola Disease. Int J Mol Sci 2021; 22:9959. [PMID: 34576123 PMCID: PMC8472724 DOI: 10.3390/ijms22189959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nasu-Hakola Disease (NHD) is a recessively inherited systemic leukodystrophy disorder characterized by a combination of frontotemporal presenile dementia and lytic bone lesions. NHD is known to be genetically related to a structural defect of TREM2 and DAP12, two genes that encode for different subunits of the membrane receptor signaling complex expressed by microglia and osteoclast cells. Because of its rarity, molecular or proteomic studies on this disorder are absent or scarce, only case reports based on neuropsychological and genetic tests being reported. In light of this, the aim of this paper is to provide evidence on the potential of a label-free proteomic platform based on the Multidimensional Protein Identification Technology (MudPIT), combined with in-house software and on-line bioinformatics tools, to characterize the protein expression trends and the most involved pathways in NHD. The application of this approach on the Lymphoblastoid cells from a family composed of individuals affected by NHD, healthy carriers and control subjects allowed for the identification of about 3000 distinct proteins within the three analyzed groups, among which proteins anomalous to each category were identified. Of note, several differentially expressed proteins were associated with neurodegenerative processes. Moreover, the protein networks highlighted some molecular pathways that may be involved in the onset or progression of this rare frontotemporal disorder. Therefore, this fully automated MudPIT platform which allowed, for the first time, the generation of the whole protein profile of Lymphoblastoid cells from Nasu-Hakola subjects, could be a valid approach for the investigation of similar neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Anna Maria Agresta
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Simona Viglio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Maura D’Amato
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Paolo Iadarola
- Biochemistry Unit, Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
12
|
Grillault Laroche D, Curis E, Bellivier F, Nepost C, Gross G, Etain B, Marie-Claire C. Network of co-expressed circadian genes, childhood maltreatment and sleep quality in bipolar disorders. Chronobiol Int 2021; 38:986-993. [PMID: 33781139 DOI: 10.1080/07420528.2021.1903028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bipolar disorder (BD) is a chronic and burdensome psychiatric disease, characterized by variations in mood and energy. The literature has consistently demonstrated an association between BD and childhood maltreatment (CM), and genetic variants of circadian genes have been associated with an increased vulnerability to develop BD. In this context, environmental factors such as CM may also contribute to the susceptibility to BD through alterations in the functioning of the biological clock linked to modifications of expression of circadian genes. In this study, we explored the associations between childhood maltreatment, sleep quality, and the level of expression of a comprehensive set of circadian genes in lymphoblastoid cell lines from patients with BD. The sample consisted of 52 Caucasian euthymic patients with a diagnosis of BD type 1 or type 2. The exposure to CM was assessed with the Childhood Trauma Questionnaire (CTQ), and the sleep quality was assessed using the Pittsburgh Sleep Quality Index. We measured the expression of 18 circadian genes using quantitative RT-PCR: ARNTL2, BHLHE40, BHLHE41, CLOCK, CRY1, CRY2, CSNK1D, CSNK1E, DBP, GSK3B, NPAS2, NR1D1, PER1, PER2, PER3, PPARGC1A, RORA, and RORB. Gene expression networks were analyzed with the disjoint graphs method. Compared to the other investigated transcripts, PPARGC1A was the only one whose expression level was differentially affected in patients who have experienced CM and, more specifically, physical abuse. We observed no significant effects of the other CTQ subscores (emotional and sexual abuses, physical and emotional neglects), nor of the sleep quality on the network of circadian genes expression. Although requiring replication in larger cohorts, the result obtained here is consistent with the hypothesis of an influence of CM exposure on circadian systems and highlights the importance of PPARGC1A in these processes.
Collapse
Affiliation(s)
- D Grillault Laroche
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - E Curis
- Laboratoire de Biomathématiques, Université de Paris, Paris, France
- Service de Biostatistique et Information Médicale, Paris, France
| | - F Bellivier
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - C Nepost
- Université de Paris, INSERM UMR-S 1144, Paris, France
| | - G Gross
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - B Etain
- Université de Paris, INSERM UMR-S 1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | | |
Collapse
|
13
|
De Benedittis S, Gaspari M, Magariello A, Spadafora P, Citrigno L, Romeo N, Qualtieri A. LC-MALDI-TOF ISD MS analysis is an effective, simple and rapid method of investigation for histones characterization: Application to EBV lymphoblastoid cell lines. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4712. [PMID: 33851762 DOI: 10.1002/jms.4712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This contribution is the result of our progressive engagement to develop and to apply a top-down liquid chromatography (LC) matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) (LC-MALDI-TOF) analysis for the histone post-translational modifications (PTMs) and variants characterization, mainly in order to provide comprehensive and fast results. The histone post-translational modifications and the differential expression of the histone variants play an essential role both in the DNA packaging mechanism in chromosomes and in the regulation of gene expression in different cellular processes, also in response to molecular agents of environmental origin. This epigenetic mechanism is widely studied in different field such as cellular differentiation, development and in the understanding of mechanisms underlying diseases. The characterization of histone PTMs has traditionally performed by antibodies-based assay, but immunological methods have significant limits, and today systems that use mass spectrometry are increasingly employed. We evaluated an in-source decay (ISD) analysis for the histone investigation on human lymphoblastoid cells, and by this approach, we were able to identify and quantify several PTMs such as the di-methylation in the lysine 20 and the acetylation in the lysine 16 in H4 and the mono-methylation, di-methylation and trimethylations at K9 of the histone H3.1. Moreover, we detected and quantified in the same H2B spectrum the prevalent H2B 1C/2E type but also the minor H2B 1D, 1M and 1B/1L/1N, 1O/2F, 1J/1K variants. In this work, we show that MALDI-ISD represents an excellent methodology to obtain global information on histone PTMs and variants from cells in culture, with rapidity and simplicity of execution. Finally, this is a useful approach to get label-free relative quantitative data of histone variants and PTMs.
Collapse
Affiliation(s)
- Selene De Benedittis
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Angela Magariello
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Cosenza, Italy
| | - Patrizia Spadafora
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| | - Luigi Citrigno
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| | - Nelide Romeo
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Cosenza, Italy
| | - Antonio Qualtieri
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| |
Collapse
|
14
|
In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Arl14ep risk gene. Nat Commun 2019; 10:4112. [PMID: 31511512 PMCID: PMC6739341 DOI: 10.1038/s41467-019-12013-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Many neuropsychiatric risk genes contribute to epigenetic regulation but little is known about specific chromatin-associated mechanisms governing the formation of neuronal connectivity. Here we show that transcallosal connectivity is critically dependent on C11orf46, a nuclear protein encoded in the chromosome 11p13 WAGR risk locus. C11orf46 haploinsufficiency was associated with hypoplasia of the corpus callosum. C11orf46 knockdown disrupted transcallosal projections and was rescued by wild type C11orf46 but not the C11orf46R236H mutant associated with intellectual disability. Multiple genes encoding key regulators of axonal development, including Sema6a, were hyperexpressed in C11orf46-knockdown neurons. RNA-guided epigenetic editing of Sema6a gene promoters via a dCas9-SunTag system with C11orf46 binding normalized SEMA6A expression and rescued transcallosal dysconnectivity via repressive chromatin remodeling by the SETDB1 repressor complex. Our study demonstrates that interhemispheric communication is sensitive to locus-specific remodeling of neuronal chromatin, revealing the therapeutic potential for shaping the brain's connectome via gene-targeted designer activators and repressor proteins.
Collapse
|
15
|
Voinsky I, McCarthy MJ, Shekhtman T, Kelsoe JR, Gurwitz D. SCN11A mRNA levels in female bipolar disorder PBMCs as tentative biomarker for distinct patient sub-phenotypes. Drug Dev Res 2019; 80:1128-1135. [PMID: 31498915 DOI: 10.1002/ddr.21598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Bipolar disorder (BD) is a complex neuropsychiatric disorder characterized by recurrent mania and depression episodes and requiring lifelong treatment with mood stabilizing drugs. Several lines of evidence, including with BD patient iPSC-derived neurons, suggest that neuronal hyperexcitability may underlie the key clinical symptoms of BD. Indeed, higher mRNA levels of SCN11A, coding for the voltage-gated sodium channel NaV 1.9 implicated in nociception, were detected in iPSC-derived neurons from BD patients, and were normalized by in vitro lithium. Here we studied SCN11A expression in peripheral blood mononuclear cells (PBMCs) from well-phenotyped female BD patients and controls and evaluated their association with several clinical sub-phenotypes. We observed higher mRNA levels of SCN11A in PBMCs from female BD patients with no records of alcohol dependence (p = .0050), no records of psychosis (p = .0097), or no records of suicide attempts (p = .0409). A trend was observed for higher SCN11A expression (FD = 1.91; p = .052) in BD PBMCs compared with controls. Datamining of published postmortem gene expression datasets indicated higher SCN11A expression in dorsolateral prefrontal cortex and orbitofrontal cortex tissues from BD patients compared with controls. Higher phenotype-associated expression levels in PBMC from BD patients were also observed for ID2 (alcohol dependence, suicide attempts) and HDGFRP3 (seasonal BD pattern). Our findings suggest that higher PBMC SCN11A expression levels may be associated with certain behavioral BD sub-phenotypes, including lack of alcohol dependence and psychosis, among BD patients. The NaV 1.9 voltage-gated sodium channel thus deserves consideration as a tentative phenotype modifier in BD.
Collapse
Affiliation(s)
- Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, La Jolla, California.,VA San Diego Healthcare System, San Diego, California
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Single-cell RNA sequencing of a European and an African lymphoblastoid cell line. Sci Data 2019; 6:112. [PMID: 31273215 PMCID: PMC6609777 DOI: 10.1038/s41597-019-0116-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023] Open
Abstract
In biomedical research, lymphoblastoid cell lines (LCLs), often established by in vitro infection of resting B cells with Epstein-Barr virus, are commonly used as surrogates for peripheral blood lymphocytes. Genomic and transcriptomic information on LCLs has been used to study the impact of genetic variation on gene expression in humans. Here we present single-cell RNA sequencing (scRNA-seq) data on GM12878 and GM18502—two LCLs derived from the blood of female donors of European and African ancestry, respectively. Cells from three samples (the two LCLs and a 1:1 mixture of the two) were prepared separately using a 10x Genomics Chromium Controller and deeply sequenced. The final dataset contained 7,045 cells from GM12878, 5,189 from GM18502, and 5,820 from the mixture, offering valuable information on single-cell gene expression in highly homogenous cell populations. This dataset is a suitable reference for population differentiation in gene expression at the single-cell level. Data from the mixture provide additional valuable information facilitating the development of statistical methods for data normalization and batch effect correction. Design Type(s) | transcription profiling design • strain comparison design | Measurement Type(s) | transcription profiling assay | Technology Type(s) | RNA sequencing | Factor Type(s) | ancestry status • sex | Sample Characteristic(s) | GM12878 cell • GM18502 cell • immortal human peripheral vein-derived B cell line cell |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
17
|
Milanesi E, Voinsky I, Hadar A, Srouji A, Maj C, Shekhtman T, Gershovits M, Gilad S, Chillotti C, Squassina A, Potash JB, Schulze TG, Goes FS, Zandi P, Kelsoe JR, Gurwitz D. RNA sequencing of bipolar disorder lymphoblastoid cell lines implicates the neurotrophic factor HRP-3 in lithium's clinical efficacy. World J Biol Psychiatry 2019; 20:449-461. [PMID: 28854847 DOI: 10.1080/15622975.2017.1372629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: Lithium remains the oldest and most effective treatment for mood stabilisation in bipolar disorder (BD), even though at least half of patients are only partially responsive or do not respond. This study aimed to identify biomarkers associated with lithium response in BD, based on comparing RNA sequencing information derived from lymphoblastoid cell lines (LCLs) of lithium-responsive (LR) versus lithium non-responsive (LNR) BD patients, to assess gene expression variations that might bear on treatment outcome. Methods: RNA sequencing was carried out on 24 LCLs from female BD patients (12 LR and 12 LNR) followed by qPCR validation in two additional independent cohorts (41 and 17 BD patients, respectively). Results: Fifty-six genes showed nominal differential expression comparing LR and LNR (FC ≥ |1.3|, P ≤ 0.01). The differential expression of HDGFRP3 and ID2 was validated by qPCR in the independent cohorts. Conclusions: We observed higher expression levels of HDGFRP3 and ID2 in BD patients who favourably respond to lithium. Both of these genes are involved in neurogenesis, and HDGFRP3 has been suggested to be a neurotrophic factor. Additional studies in larger BD cohorts are needed to confirm the potential of HDGFRP3 and ID2 expression levels in blood cells as tentative favourable lithium response biomarkers.
Collapse
Affiliation(s)
- Elena Milanesi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel.,Genetics Unit, IRCCS, San Giovanni di Dio, Fatebenefratelli , Brescia , Italy
| | - Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Ala Srouji
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich , Munich , Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health , Mannheim , Germany
| | - Carlo Maj
- Genetics Unit, IRCCS, San Giovanni di Dio, Fatebenefratelli , Brescia , Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California , San Diego , CA , USA
| | - Michael Gershovits
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science , Rehovot , Israel
| | - Shlomit Gilad
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science , Rehovot , Israel
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari , Cagliari , Italy
| | - Alessio Squassina
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, School of Medicine, University of Cagliari , Cagliari , Italy
| | - James B Potash
- Department of Psychiatry, University of Iowa Carver College of Medicine , Iowa City , IA , USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich , Munich , Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health , Mannheim , Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Georg-August-University , Göttingen , Germany
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University , Baltimore , MD , USA
| | - Peter Zandi
- Department of Psychiatry, Johns Hopkins University , Baltimore , MD , USA
| | - John R Kelsoe
- Department of Psychiatry, University of California , San Diego , CA , USA
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
18
|
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019; 9:565-611. [PMID: 30873582 PMCID: PMC6705133 DOI: 10.1002/cphy.c180025] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological disorders have emerged as a predominant healthcare concern in recent years due to their severe consequences on quality of life and prevalence throughout the world. Understanding the underlying mechanisms of these diseases and the interactions between different brain cell types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs) are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and differentiation capacity. Mounting evidence shows: (i) various brain cells can be generated from iPSCs in two-dimensional (2D) monolayer cultures; and (ii) further advances in 3D culture systems have led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain regions. These 3D organoids have gained widespread attention as in vitro tools to recapitulate complex features of the brain, and (iii) complex interactions between iPSC-derived brain cell types can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs can be generated from diverse patient populations, researchers have effectively applied 2D, 3D, and BBB models to recapitulate genetically complex neurological disorders and reveal novel insights into molecular and genetic mechanisms of neurological disorders. In this review, we describe recent progress in the generation of 2D, 3D, and BBB models from iPSCs and further discuss their limitations, advantages, and future ventures. This review also covers the current status of applications of 2D, 3D, and BBB models in drug screening, precision medicine, and modeling a wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental disorders, brain injury, and neuropsychiatric disorders). © 2019 American Physiological Society. Compr Physiol 9:565-611, 2019.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott G. Canfield
- Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute, IN, USA
| | - Emily R. Seminary
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha L. Sison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
19
|
Monteggia LM, Heimer H, Nestler EJ. Meeting Report: Can We Make Animal Models of Human Mental Illness? Biol Psychiatry 2018; 84:542-545. [PMID: 29606372 PMCID: PMC6269650 DOI: 10.1016/j.biopsych.2018.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023]
Abstract
Modeling aspects of the human condition in animals has provided invaluable information on the physiology of all organ systems and has assisted in the development of virtually all new therapeutics. Research in cardiovascular disease, cancer, immunology, and other disciplines has benefited substantially from the availability of animal models that capture aspects of specific human diseases and that have been used effectively to advance new treatments. By comparison, animal models for neurological and psychiatric disorders have faced several unique obstacles. This paper highlights topics covered in a recent Cold Spring Harbor Laboratory meeting charged with examining the status of animal models for mental illness. The consensus of the conference is that despite the difficulties inherent with modeling brain disorders in animals, when used judiciously-fully cognizant that models of specific behavioral or biological aspects cannot completely recapitulate the human disorder-animal research is crucial for advancing our understanding of neuropsychiatric disease.
Collapse
Affiliation(s)
- Lisa M. Monteggia
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hakon Heimer
- Banbury Center, Cold Spring Harbor Laboratory, Cold Spring Harbor
| | - Eric J. Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, Niola P, Chillotti C, Attems J, Gozes I, Gurwitz D. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer's Disease. Sci Rep 2018; 8:8465. [PMID: 29855513 PMCID: PMC5981646 DOI: 10.1038/s41598-018-26547-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia in the elderly. Centenarians - reaching the age of >100 years while maintaining good cognitive skills - seemingly have unique biological features allowing healthy aging and protection from dementia. Here, we studied the expression of SIRT1 along with miR-132 and miR-212, two microRNAs known to regulate SIRT1, in lymphoblastoid cell lines (LCLs) from 45 healthy donors aged 21 to 105 years and 24 AD patients, and in postmortem olfactory bulb and hippocampus tissues from 14 AD patients and 20 age-matched non-demented individuals. We observed 4.0-fold (P = 0.001) lower expression of SIRT1, and correspondingly higher expression of miR-132 (1.7-fold; P = 0.014) and miR-212 (2.1-fold; P = 0.036), in LCLs from AD patients compared with age-matched healthy controls. Additionally, SIRT1 expression was 2.2-fold (P = 0.001) higher in centenarian LCLs compared with LCLs from individuals aged 56-82 years; while centenarian LCLs miR-132 and miR-212 indicated 7.6-fold and 4.1-fold lower expression, respectively. Correlations of SIRT1, miR-132 and miR-212 expression with cognitive scores were observed for AD patient-derived LCLs and postmortem AD olfactory bulb and hippocampus tissues, suggesting that higher SIRT1 expression, possibly mediated by lower miR-132 and miR-212, may protect aged individuals from dementia and is reflected in their peripheral tissues.
Collapse
Affiliation(s)
- A Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - E Milanesi
- Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - M Walczak
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Warsaw, Poland
| | - M Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - J Kuźnicki
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - A Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - P Niola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - C Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - J Attems
- Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - I Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - D Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Adams Super Center for Brain Studies, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
21
|
Induced Pluripotent Stem Cell Neuronal Models for the Study of Autophagy Pathways in Human Neurodegenerative Disease. Cells 2017; 6:cells6030024. [PMID: 28800101 PMCID: PMC5617970 DOI: 10.3390/cells6030024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are invaluable tools for research into the causes of diverse human diseases, and have enormous potential in the emerging field of regenerative medicine. Our ability to reprogramme patient cells to become hiPSCs, and to subsequently direct their differentiation towards those classes of neurons that are vulnerable to stress, is revealing how genetic mutations cause changes at the molecular level that drive the complex pathogeneses of human neurodegenerative diseases. Autophagy dysregulation is considered to be a major contributor in neural decline during the onset and progression of many human neurodegenerative diseases, meaning that a better understanding of the control of non-selective and selective autophagy pathways (including mitophagy) in disease-affected classes of neurons is needed. To achieve this, it is essential that the methodologies commonly used to study autophagy regulation under basal and stressed conditions in standard cell-line models are accurately applied when using hiPSC-derived neuronal cultures. Here, we discuss the roles and control of autophagy in human stem cells, and how autophagy contributes to neural differentiation in vitro. We also describe how autophagy-monitoring tools can be applied to hiPSC-derived neurons for the study of human neurodegenerative disease in vitro.
Collapse
|
22
|
Wing C, Komatsu M, Delaney SM, Krause M, Wheeler HE, Dolan ME. Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res 2017. [PMID: 28645005 DOI: 10.1016/j.scr.2017.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) and differentiation to cells composing major organs has opened up the possibility for a new model system to study adverse toxicities associated with chemotherapy. Therefore, we used human iPSC-derived neurons to study peripheral neuropathy, one of the most common adverse effects of chemotherapy and cause for dose reduction. To determine the utility of these neurons in investigating the effects of neurotoxic chemotherapy, we measured morphological differences in neurite outgrowth, cell viability as determined by ATP levels and apoptosis through measures of caspase 3/7 activation following treatment with clinically relevant concentrations of platinating agents (cisplatin, oxaliplatin and carboplatin), taxanes (paclitaxel, docetaxel and nab-paclitaxel), a targeted proteasome inhibitor (bortezomib), an antiangiogenic compound (thalidomide), and 5-fluorouracil, a chemotherapeutic that does not cause neuropathy. We demonstrate differential sensitivity of neurons to mechanistically distinct classes of chemotherapeutics. We also show a dose-dependent reduction of electrical activity as measured by mean firing rate of the neurons following treatment with paclitaxel. We compared neurite outgrowth and cell viability of iPSC-derived cortical (iCell® Neurons) and peripheral (Peri.4U) neurons to cisplatin, paclitaxel and vincristine. Goshajinkigan, a Japanese herbal neuroprotectant medicine, was protective against paclitaxel-induced neurotoxicity but not oxaliplatin as measured by morphological phenotypes. Thus, we have demonstrated the utility of human iPSC-derived neurons as a useful model to distinguish drug class differences and for studies of a potential neuroprotectant for the prevention of chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Masaaki Komatsu
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Matthew Krause
- Committee of Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather E Wheeler
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
23
|
Papadima EM, Niola P, Melis C, Pisanu C, Congiu D, Cruceanu C, Lopez JP, Turecki G, Ardau R, Severino G, Chillotti C, Del Zompo M, Squassina A. Evidence towards RNA Binding Motif (RNP1, RRM) Protein 3 (RBM3) as a Potential Biomarker of Lithium Response in Bipolar Disorder Patients. J Mol Neurosci 2017; 62:304-308. [PMID: 28616776 DOI: 10.1007/s12031-017-0938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023]
Abstract
Lithium has been used for more than six decades for the management of bipolar disorder (BD). In a previous transcriptomic study, we showed that patients affected by either BD or cluster headache, both disorders characterized by circadian disturbances and response to lithium in a subgroup of patients, have higher expression of the RNA binding motif (RNP1, RRM) protein 3 (RBM3) gene compared to controls. To investigate whether RBM3 could represent a biomarker of lithium response, we screened raw microarray expression data from lymphoblastoid cell lines (LCLs) derived from 20 BD patients, responders or non-responders to lithium. RBM3 was the most significantly differentially expressed gene in the list, being overexpressed in responders compared to non-responders (fold change = 2.0; p = 1.5 × 10-16). We therefore sought to validate the microarray finding by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and explore whether RBM3 expression was modulated by lithium treatment in vitro in LCLs as well as in human-derived neural progenitor cells (NPCs). Our findings confirmed the higher expression of RBM3 in responders compared to non-responders (fold change = 3.78; p = 0.0002). Lithium did not change RBM3 expression in LCLs in any of the groups, but it increased its expression in NPCs. While preliminary, our data suggest that higher levels of RBM3 might be required for better lithium response and that the expression of this gene could be modulated by lithium in a tissue-specific manner.
Collapse
Affiliation(s)
- Eleni Merkouri Papadima
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Paola Niola
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Carla Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Cristiana Cruceanu
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Juan Pablo Lopez
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Raffaella Ardau
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy.,Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy.
| |
Collapse
|