1
|
Burlingame GA, Bartrand TA. Laying the groundwork for a Legionella pneumophila risk management program for public drinking water systems. JOURNAL OF WATER AND HEALTH 2024; 22:2385-2397. [PMID: 39733363 DOI: 10.2166/wh.2024.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/10/2024] [Indexed: 12/31/2024]
Abstract
Legionella pneumophila is different from traditional drinking water contaminants because it presents a latent public health risk for public and private drinking water systems and for the building water systems they supply. This paper reviews information on the likelihood of occurrence of L. pneumophila in public water systems to lay a foundation for public water systems, as a stakeholder in public health risk management, to better manage L. pneumophila. Important to this approach is a literature review to identify conditions that could potentially promote L. pneumophila being present in drinking water systems at either an elevated abundance or at an increased frequency of occurrence, and/or water quality and supply conditions that would contribute to its amplification. The literature review allows the development of an inventory of hazardous conditions that a public water system could experience and, therefore, can be used by water systems to develop control and monitoring strategies. However, effective L. pneumophila risk management programs are hampered by significant data and knowledge gaps. Priority research to advance public water system's risk assessments and management of L. pneumophila is proposed.
Collapse
Affiliation(s)
- Gary A Burlingame
- Environmental Science, Policy and Research Institute, 3427 Decatur Street, Philadelphia, PA 19136, USA E-mail:
| | - Timothy A Bartrand
- Environmental Science, Policy and Research Institute, 144 Narberth Ave, Box 407, Narberth, PA 19072, USA
| |
Collapse
|
2
|
Kim T, Zhao X, Hozalski RM, LaPara TM. Residual disinfectant effectively suppresses Legionella species in drinking water distribution systems supplied by surface water in Minnesota, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173317. [PMID: 38788954 DOI: 10.1016/j.scitotenv.2024.173317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Seven public water systems in Minnesota, USA were analyzed from one to five times over a two-year period to assess temporal changes in the concentrations of total bacteria, Legionella spp., and Legionella pneumophila from source (i.e., raw water) through the water treatment process to the end water user. Bacterial biomass was collected by filtering large volumes of raw water (12 to 425 L, median: 38 L) or finished and tap water (27 to 1205 L, median: 448 L) using ultrafiltration membrane modules. Quantitative PCR (qPCR) was then used to enumerate all bacteria (16S rRNA gene fragments), all Legionella spp. (ssrA), and Legionella pneumophila (mip). Total coliforms, Escherichia coli, and L. pneumophila also were quantified in the water samples via cultivation. Median concentrations of total bacteria and Legionella spp. (ssrA) in raw water (8.5 and 4.3 log copies/L, respectively) decreased by about 2 log units during water treatment. The concentration of Legionella spp. (ssrA) in water collected from distribution systems inversely correlated with the total chlorine concentration for chloraminated systems significantly (p = 0.03). Although only 8 samples were collected from drinking water distribution systems using free chlorine as a residual disinfectant, these samples had significantly lower concentrations of Legionella spp. (ssrA) than samples collected from the chloraminated systems (p = 5 × 10-4). There was considerable incongruity between the results obtained via cultivation-independent (qPCR) and cultivation-dependent assays. Numerous samples were positive for L. pneumophila via cultivation, none of which tested positive for L. pneumophilia (mip) via qPCR. Conversely, a single sample tested positive for L. pneumophilia (mip) via qPCR, but this sample tested negative for L. pneumophilia via cultivation. Overall, the results suggest that conventional treatment is effective at reducing, but not eliminating, Legionella spp. from surface water supplies and that residual disinfection is effective at suppressing these organisms within drinking water distribution systems.
Collapse
Affiliation(s)
- Taegyu Kim
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA; Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Ave, St. Paul, MN, USA
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA; Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Ave, St. Paul, MN, USA.
| |
Collapse
|
3
|
Xi H, Ross KE, Hinds J, Molino PJ, Whiley H. Efficacy of chlorine-based disinfectants to control Legionella within premise plumbing systems. WATER RESEARCH 2024; 259:121794. [PMID: 38824796 DOI: 10.1016/j.watres.2024.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Legionella is an opportunistic waterborne pathogen that causes Legionnaires' disease. It poses a significant public health risk, especially to vulnerable populations in health care facilities. It is ubiquitous in manufactured water systems and is transmitted via inhalation or aspiration of aerosols/water droplets generated from water fixtures (e.g., showers and hand basins). As such, the effective management of premise plumbing systems (building water systems) in health care facilities is essential for reducing the risk of Legionnaires' disease. Chemical disinfection is a commonly used control method and chlorine-based disinfectants, including chlorine, chloramine, and chlorine dioxide, have been used for over a century. However, the effectiveness of these disinfectants in premise plumbing systems is affected by various interconnected factors that can make it challenging to maintain effective disinfection. This systematic literature review identifies all studies that have examined the factors impacting the efficacy and decay of chlorine-based disinfectant within premise plumbing systems. A total of 117 field and laboratory-based studies were identified and included in this review. A total of 20 studies directly compared the effectiveness of the different chlorine-based disinfectants. The findings from these studies ranked the typical effectiveness as follows: chloramine > chlorine dioxide > chlorine. A total of 26 factors were identified across 117 studies as influencing the efficacy and decay of disinfectants in premise plumbing systems. These factors were sorted into categories of operational factors that are changed by the operation of water devices and fixtures (such as stagnation, temperature, water velocity), evolving factors which are changed in-directly (such as disinfectant concentration, Legionella disinfectant resistance, Legionella growth, season, biofilm and microbe, protozoa, nitrification, total organic carbon(TOC), pH, dissolved oxygen(DO), hardness, ammonia, and sediment and pipe deposit) and stable factors that are not often changed(such as disinfectant type, pipe material, pipe size, pipe age, water recirculating, softener, corrosion inhibitor, automatic sensor tap, building floor, and construction activity). A factor-effect map of each of these factors and whether they have a positive or negative association with disinfection efficacy against Legionella in premise plumbing systems is presented. It was also found that evaluating the effectiveness of chlorine disinfection as a water risk management strategy is further complicated by varying disinfection resistance of Legionella species and the form of Legionella (culturable/viable but non culturable, free living/biofilm associated, intracellular replication within amoeba hosts). Future research is needed that utilises sensors and other approaches to measure these key factors (such as pH, temperature, stagnation, water age and disinfection residual) in real time throughout premise plumbing systems. This information will support the development of improved models to predict disinfection within premise plumbing systems. The findings from this study will inform the use of chlorine-based disinfection within premise plumbing systems to reduce the risk of Legionnaires disease.
Collapse
Affiliation(s)
- Hao Xi
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; Enware Pty Ltd, Caringbah, NSW, Australia.
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Jason Hinds
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia; Enware Pty Ltd, Caringbah, NSW, Australia
| | | | - Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
4
|
LeChevallier MW, Prosser T, Stevens M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024; 12:916. [PMID: 38792751 PMCID: PMC11124194 DOI: 10.3390/microorganisms12050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to "frank" pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, "opportunistic" pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility's opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Collapse
Affiliation(s)
| | - Toby Prosser
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| | - Melita Stevens
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| |
Collapse
|
5
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Brown C, Edwards MA, Pruden A. Premise Plumbing Pipe Materials and In-Building Disinfectants Shape the Potential for Proliferation of Pathogens and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21382-21394. [PMID: 38071676 DOI: 10.1021/acs.est.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Matheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Li J, Arnold WA, Hozalski RM. Spatiotemporal Variability in N-Nitrosodimethylamine Precursor Levels in a Watershed Impacted by Agricultural Activities and Municipal Wastewater Discharges and Effects of Lime Softening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13959-13969. [PMID: 37671798 DOI: 10.1021/acs.est.3c01767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The Crow River, a tributary of the Mississippi River in Minnesota, U.S.A., that is impacted by agricultural activities and municipal wastewater discharges, was sampled approximately monthly at 12 locations over 18 months to investigate temporal and spatial variations in N-nitrosodimethylamine (NDMA) precursor levels. NDMA precursors were quantified primarily by measuring NDMA formed under the low chloramine dose uniform formation conditions protocol (NDMAUFC) and occasionally using the high dose formation potential protocol (NDMAFP). Raw water NDMAUFC concentrations (2.2 to 128 ng/L) exhibited substantial temporal variation but relatively little spatial variation. An increase in NDMAUFC was observed for 126 of 169 water samples after lime-softening treatment. A kinetic model indicates that under chloramine-limited UFC test conditions, the increase in NDMAUFC can be attributed to a decrease in competition between precursors and natural organic matter (NOM) for chloramines and reduced interactions of precursors with NOM. NDMAUFC concentrations correlated positively with dissolved nitrogen concentration (ρ = 0.44, p < 0.01) when excluding the spring snowmelt period and negatively correlated with dissolved organic carbon concentration (ρ = -0.47, p < 0.01). Overall, NDMA precursor levels were highly dynamic and strongly affected by lime-softening treatment.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Farina C, Cacciabue E, Averara F, Ferri N, Vailati F, Del Castillo G, Serafini A, Fermi B, Doniselli N, Pezzoli F. Water Safety Plan, Monochloramine Disinfection and Extensive Environmental Sampling Effectively Control Legionella and Other Waterborne Pathogens in Nosocomial Settings: The Ten-Year Experience of an Italian Hospital. Microorganisms 2023; 11:1794. [PMID: 37512966 PMCID: PMC10384652 DOI: 10.3390/microorganisms11071794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Legionella contamination control is crucial in healthcare settings where patients suffer an increased risk of disease and fatal outcome. To ensure an effective management of this health hazard, the accurate application of a hospital-specific Water Safety Plan (WSP), the choice of a suitable water disinfection system and an extensive monitoring program are required. Here, the ten-year experience of an Italian hospital is reported: since its commissioning, Legionellosis risk management has been entrusted to a multi-disciplinary Working Group, applying the principles of the World Health Organization's WSP. The disinfection strategy to prevent Legionella and other waterborne pathogens relies on the treatment of domestic hot water with a system ensuring the in situ production and dosage of monochloramine. An average of 250 samples/year were collected and analyzed to allow an accurate assessment of the microbiological status of water network. With the aim of increasing the monitoring sensitivity, in addition to the standard culture method, an optimized MALDI-ToF MS-based strategy was applied, allowing the identification of Legionella species and other relevant opportunistic pathogens. Data collected so far confirmed the effectiveness of this multidisciplinary approach: the fraction of positive samples never overcame 1% on a yearly basis and Legionnaires' Disease cases never occurred.
Collapse
Affiliation(s)
- Claudio Farina
- Microbiology and Virology Laboratory, ASST "Papa Giovanni XXIII", 24127 Bergamo, Italy
| | - Eleonora Cacciabue
- Health Care Coordination Offices, ASST "Papa Giovanni XXIII", 24127 Bergamo, Italy
| | - Franca Averara
- Department of Health Care Professions, ASST "Papa Giovanni XXIII", 24127 Bergamo, Italy
| | - Nadia Ferri
- Microbiology and Virology Laboratory, ASST "Papa Giovanni XXIII", 24127 Bergamo, Italy
| | - Francesca Vailati
- Microbiology and Virology Laboratory, ASST "Papa Giovanni XXIII", 24127 Bergamo, Italy
| | | | | | - Beatrice Fermi
- Sanipur S.p.A., 25020 Flero, Italy
- ESCMID Study Group for Legionella Infections (ESGLI), 4001 Basel, Switzerland
| | - Nicola Doniselli
- Sanipur S.p.A., 25020 Flero, Italy
- ESCMID Study Group for Legionella Infections (ESGLI), 4001 Basel, Switzerland
| | - Fabio Pezzoli
- Health Care Coordination Offices, ASST "Papa Giovanni XXIII", 24127 Bergamo, Italy
| |
Collapse
|
8
|
Donohue MJ, Pham M, Brown S, Easwaran KM, Vesper S, Mistry JH. Water quality influences Legionella pneumophila determination. WATER RESEARCH 2023; 238:119989. [PMID: 37137207 PMCID: PMC10351031 DOI: 10.1016/j.watres.2023.119989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Legionellosis is a respiratory disease of public health concern. The bacterium Legionella pneumophila is the etiologic agent responsible for >90% of legionellosis cases in the United States. Legionellosis transmission primarily occurs through the inhalation or aspiration of contaminated water aerosols or droplets. Therefore, a thorough understanding of L. pneumophila detection methods and their performance in various water quality conditions is needed to develop preventive measures. Two hundred and nine potable water samples were collected from taps in buildings across the United States. L. pneumophila was determined using three culture methods: Buffered Charcoal Yeast Extract (BCYE) culture with Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) identification, Legiolert® 10- and 100-mL tests, and one molecular method: quantitative Polymerase Chain Reaction (qPCR) assay. Culture and molecular positive results were confirmed by secondary testing including MALDI-MS. Eight water quality variables were studied, including source water type, secondary disinfectant, total chlorine residual, heterotrophic bacteria, total organic carbon (TOC), pH, water hardness, cold- and hot-water lines. The eight water quality variables were segmented into 28 categories, based on scale and ranges, and method performance was evaluated in each of these categories. Additionally, a Legionella genus qPCR assay was used to determine the water quality variables that promote or hinder Legionella spp. occurrence. L. pneumophila detection frequency ranged from 2 to 22% across the methods tested. Method performance parameters of sensitivity, specificity, positive and negative predictive values, and accuracy were >94% for the qPCR method but ranged from 9 to 100% for the culture methods. Water quality influenced L. pneumophila determination by culture and qPCR methods. L. pneumophila qPCR detection frequencies positively correlated with TOC and heterotrophic bacterial counts. The source water-disinfectant combination influenced the proportion of Legionella spp. that is L. pneumophila. Water quality influences L. pneumophila determination. To accurately detect L. pneumophila, method selection should consider the water quality in addition to the purpose of testing (general environmental monitoring versus disease-associated investigations).
Collapse
Affiliation(s)
- Maura J Donohue
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Maily Pham
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Stephanie Brown
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | | | - Stephen Vesper
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, TX 75270, USA
| |
Collapse
|
9
|
Logan-Jackson AR, Batista MD, Healy W, Ullah T, Whelton AJ, Bartrand TA, Proctor C. A Critical Review on the Factors that Influence Opportunistic Premise Plumbing Pathogens: From Building Entry to Fixtures in Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6360-6372. [PMID: 37036108 DOI: 10.1021/acs.est.2c04277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Residential buildings provide unique conditions for opportunistic premise plumbing pathogen (OPPP) exposure via aerosolized water droplets produced by showerheads, faucets, and tubs. The objective of this review was to critically evaluate the existing literature that assessed the impact of potentially enhancing conditions to OPPP occurrence associated with residential plumbing and to point out knowledge gaps. Comprehensive studies on the topic were found to be lacking. Major knowledge gaps identified include the assessment of OPPP growth in the residential plumbing, from building entry to fixtures, and evaluation of the extent of the impact of typical residential plumbing design (e.g., trunk and branch and manifold), components (e.g., valves and fixtures), water heater types and temperature setting of operation, and common pipe materials (copper, PEX, and PVC/CPVC). In addition, impacts of the current plumbing code requirements on OPPP responses have not been assessed by any study and a lack of guidelines for OPPP risk management in residences was identified. Finally, the research required to expand knowledge on OPPP amplification in residences was discussed.
Collapse
Affiliation(s)
- Alshae' R Logan-Jackson
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marylia Duarte Batista
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - William Healy
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Tania Ullah
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy A Bartrand
- Environmental Science, Policy, and Research Institute, Bala Cynwyd, Pennsylvania 19004, United States
| | - Caitlin Proctor
- Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Gamage SD, Jinadatha C, Coppin JD, Kralovic SM, Bender A, Ambrose M, Decker BK, DeVries AS, Goto M, Kowalskyj O, Maistros AL, Rizzo V, Simbartl LA, Watson RJ, Roselle GA. Factors That Affect Legionella Positivity in Healthcare Building Water Systems from a Large, National Environmental Surveillance Initiative. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11363-11373. [PMID: 35929739 DOI: 10.1021/acs.est.2c02194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Legionella growth in healthcare building water systems can result in legionellosis, making water management programs (WMPs) important for patient safety. However, knowledge is limited on Legionella prevalence in healthcare buildings. A dataset of quarterly water testing in Veterans Health Administration (VHA) healthcare buildings was used to examine national environmental Legionella prevalence from 2015 to 2018. Bayesian hierarchical logistic regression modeling assessed factors influencing Legionella positivity. The master dataset included 201,146 water samples from 814 buildings at 168 VHA campuses. Overall Legionella positivity over the 4 years decreased from 7.2 to 5.1%, with the odds of a Legionella-positive sample being 0.94 (0.90-0.97) times the odds of a positive sample in the previous quarter for the 16 quarters of the 4 year period. Positivity varied considerably more at the medical center campus level compared to regional levels or to the building level where controls are typically applied. We found higher odds of Legionella detection in older buildings (OR 0.92 [0.86-0.98] for each more recent decade of construction), in taller buildings (OR 1.20 [1.13-1.27] for each additional floor), in hot water samples (O.R. 1.21 [1.16-1.27]), and in samples with lower residual biocide concentrations. This comprehensive healthcare building review showed reduced Legionella detection in the VHA healthcare system over time. Insights into factors associated with Legionella positivity provide information for healthcare systems implementing WMPs and for organizations setting standards and regulations.
Collapse
Affiliation(s)
- Shantini D Gamage
- National Infectious Diseases Service, Specialty Care Program Office, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, D.C. 20571, United States
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Chetan Jinadatha
- Department of Medicine, Central Texas Veterans Health Care System, Temple, Texas 76504, United States
- College of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| | - John D Coppin
- Department of Research, Central Texas Veterans Health Care System, Temple, Texas 76504, United States
| | - Stephen M Kralovic
- National Infectious Diseases Service, Specialty Care Program Office, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, D.C. 20571, United States
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Cincinnati VA Medical Center, Cincinnati, Ohio 45220, United States
| | - Alan Bender
- Booz Allen Hamilton, McLean, Virginia 22102, United States
| | - Meredith Ambrose
- National Infectious Diseases Service, Specialty Care Program Office, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, D.C. 20571, United States
| | - Brooke K Decker
- Division of Infectious Diseases, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, United States
| | - Aaron S DeVries
- Minneapolis VA Healthcare System, Minneapolis, Minnesota 55417, United States
| | - Michihiko Goto
- Iowa City VA Health Care System, Iowa City, Iowa 52246, United States
- University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | - Oleh Kowalskyj
- Office of Healthcare Engineering, Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, D.C. 20571, United States
| | - Angela L Maistros
- VA Capitol Health Care Network, Veterans Integrated Service Network (VISN) 5, Linthicum, Maryland 21090, United States
| | - Vincent Rizzo
- Office of Healthcare Engineering, Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, D.C. 20571, United States
| | - Loretta A Simbartl
- National Infectious Diseases Service, Specialty Care Program Office, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, D.C. 20571, United States
| | - Richard J Watson
- Occupational Health and Safety Program Office, Veterans Health Administration, VA, Washington, D.C. 20571, United States
| | - Gary A Roselle
- National Infectious Diseases Service, Specialty Care Program Office, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, D.C. 20571, United States
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Cincinnati VA Medical Center, Cincinnati, Ohio 45220, United States
| |
Collapse
|
11
|
Donohue MJ, Mistry JH, Tucker N, Vesper SJ. Hot water plumbing in residences and office buildings have distinctive risk of Legionella pneumophila contamination. Int J Hyg Environ Health 2022; 245:114023. [PMID: 36058110 PMCID: PMC9848435 DOI: 10.1016/j.ijheh.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/21/2023]
Abstract
AIM To observe how Legionella pneumophila, the causative agent for legionellosis, can transmit through the hot water plumbing of residences and office buildings. METHOD AND RESULTS Using qPCR, L. pneumophila and L. pneumophila Serogroup (Sg)1 were measured in hot water samples collected from 100 structures, consisting of 70 residences and 30 office buildings. The hot water samples collected from office buildings had a higher L. pneumophila detection frequency of 53% (16/30) than residences, with a 103 GU/L (median) concentration. An office building's age was not a statistically significant predictor of contamination, but its area (>100,000 sq. ft.) was, P = <0.001. Hot water samples collected at residences had a lower L. pneumophila detection frequency of 36% (25/70) than office buildings, with a 100 GU/L (median) concentration. A residence's age was a significant predictor of contamination, P = 0.009, but not its area. The water's secondary disinfectant type did not affect L. pneumophila detection frequency nor its concentration in residences, but the secondary disinfectant type did affect results in office buildings. Legionella pneumophila's highest detection frequencies were in samples collected in March-August for office buildings and in June-November for residences. CONCLUSION This study revealed that the built environment influences L. pneumophila transport and fate. Residential plumbing could be a potential "conduit" for L. pneumophila exposure from a source upstream of the hot water environment. Both old and newly built office buildings had an equal probability of L. pneumophila contamination. Legionella-related remediation efforts in office buildings (that contain commercial functions only) might not significantly improve a community's public health.
Collapse
Affiliation(s)
- Maura J Donohue
- United States Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, TX, 75270, USA
| | - Nicole Tucker
- United States Environmental Protection Agency, Washington, DC, 20464, USA
| | - Stephen J Vesper
- United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| |
Collapse
|
12
|
Holsinger H, Tucker N, Regli S, Studer K, Roberts VA, Collier S, Hannapel E, Edens C, Yoder JS, Rotert K. Characterization of reported legionellosis outbreaks associated with buildings served by public drinking water systems: United States, 2001-2017. JOURNAL OF WATER AND HEALTH 2022; 20:702-711. [PMID: 35482386 DOI: 10.2166/wh.2022.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study examined 184 legionellosis outbreaks in the United States reported to the Centers for Disease Control and Prevention's Waterborne Disease and Outbreak Surveillance System, from 2001 to 2017. Drinking water characteristics examined include source water type, disinfectant type, exposure setting, geographical distribution by U.S. Census Divisions, and the public water system size (population served). This study found that most of the reported drinking water-associated legionellosis outbreaks occurred in eastern United States, including 35% in the South Atlantic, 32% in the Middle Atlantic, and 16% in the East North Central Census Divisions were linked with building water systems in healthcare and hotel settings; and were associated with buildings receiving drinking water from public water systems serving >10,000 people. Targeted evaluations and interventions may be useful to further determine the combination of factors, such as disinfectant residual type and drinking water system size that may lead to legionellosis outbreaks.
Collapse
Affiliation(s)
- Hannah Holsinger
- United States Environmental Protection Agency (EPA), 1200 Pennsylvania Ave., NW, Washington, DC 20460, USA E-mail:
| | - Nicole Tucker
- United States Environmental Protection Agency (EPA), 1200 Pennsylvania Ave., NW, Washington, DC 20460, USA E-mail:
| | - Stig Regli
- United States Environmental Protection Agency (EPA), 1200 Pennsylvania Ave., NW, Washington, DC 20460, USA E-mail: ; Retired
| | - Kirsten Studer
- United States Environmental Protection Agency (EPA), 1200 Pennsylvania Ave., NW, Washington, DC 20460, USA E-mail:
| | - Virginia A Roberts
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., NE, Atlanta, GA 30329, USA
| | - Sarah Collier
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., NE, Atlanta, GA 30329, USA
| | - Elizabeth Hannapel
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., NE, Atlanta, GA 30329, USA
| | - Chris Edens
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., NE, Atlanta, GA 30329, USA
| | - Jonathan S Yoder
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., NE, Atlanta, GA 30329, USA
| | - Kenneth Rotert
- United States Environmental Protection Agency (EPA), 1200 Pennsylvania Ave., NW, Washington, DC 20460, USA E-mail:
| |
Collapse
|
13
|
Gleason JA, Cohn PD. A review of legionnaires' disease and public water systems - Scientific considerations, uncertainties and recommendations. Int J Hyg Environ Health 2021; 240:113906. [PMID: 34923288 DOI: 10.1016/j.ijheh.2021.113906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Legionella is an opportunistic premise plumbing pathogen and causative agent of a severe pneumonia called Legionnaires' Disease (LD). Cases of LD have been on the rise in the U.S. and globally. Although Legionella was first identified 45 years ago, it remains an 'emerging pathogen." Legionella is part of the normal ecology of a public water system and is frequently detected in regulatory-compliant drinking water. Drinking water utilities, regulators and public health alike are increasingly required to have a productive understanding of the evolving issues and complex discussions of the contribution of the public water utility to Legionella exposure and LD risk. This review provides a brief overview of scientific considerations important for understanding this complex topic, a review of findings from investigations of public water and LD, including data gaps, and recommendations for professionals interested in investigating public water utilities. Although the current literature is inconclusive in identifying a public water utility as a sole source of an LD outbreak, the evidence is clear that minimizing growth of Legionella in public water utilities through proper maintenance and sustained disinfectant residuals, throughout all sections of the water utility, will lead to a less conducive environment for growth of the bacteria in the system and the buildings they serve.
Collapse
Affiliation(s)
- Jessie A Gleason
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, 135 E. State Street, P.O. Box 369, Trenton, NJ, 08625, USA.
| | - Perry D Cohn
- Retired, Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, PO Box 369, Trenton, NJ, 08625, USA.
| |
Collapse
|
14
|
Vaccaro L, Gomes TS, Izquierdo F, Magnet A, Llorens Berzosa S, Ollero D, Salso S, Alhambra A, Gómez C, López Cano M, Pelaz C, Bellido Samaniego B, Del Aguila C, Fenoy S, Hurtado-Marcos C. Legionella feeleii: Ubiquitous Pathogen in the Environment and Causative Agent of Pneumonia. Front Microbiol 2021; 12:707187. [PMID: 34413841 PMCID: PMC8369763 DOI: 10.3389/fmicb.2021.707187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
L. feeleii is one of the most frequent Legionella species isolated from natural pools of the central region of Spain. This study aimed to evaluate its ecology and to identify this Legionella species as a respiratory pathogen. A PCR assay for detecting the L. feeleii mip gene was developed to identify it in clinical and environmental samples. Culture and PCR were performed in environmental samples from four drinking water treatment plants (DWTPs). Free L. feeleii was only detected in raw water samples (3.4%), while L. feeleii as an Acanthamoeba endosymbiont was found in 30.7% of raw water, 11.5% of decanter biofilm, and 32% of finished water samples. Therefore, Acanthamoeba spp. plays an essential role in the multiplication, persistence, and spread of Legionella species in the environment. The first case of Legionnaires’ disease caused by L. feeleii in Spain is described in this study. The case was diagnosed in an older woman through PCR and sequencing from urine and sputum samples. A respiratory infection could be linked with health care procedures, and the patient presented several risk factors (age, insulin-dependent diabetes, and heart disease). The detection of non-L. pneumophila, such as L. feeleii, is a factor that must be considered when establishing or reviewing measures for the control and prevention of legionellosis.
Collapse
Affiliation(s)
- Lucianna Vaccaro
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Thiago Santos Gomes
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Fernando Izquierdo
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Angela Magnet
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Sergio Llorens Berzosa
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Dolores Ollero
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Santiago Salso
- Hospital Universitario HM Monteprincipe y Sanchinarro, Madrid, Spain
| | - Almudena Alhambra
- Hospital Universitario HM Monteprincipe y Sanchinarro, Madrid, Spain
| | - Carmen Gómez
- Hospital Universitario HM Monteprincipe y Sanchinarro, Madrid, Spain
| | - María López Cano
- Hospital Universitario HM Monteprincipe y Sanchinarro, Madrid, Spain
| | - Carmen Pelaz
- Unidad de Legionella, Laboratorio de Referencia e Investigación en Infecciones Bacterianas Transmitidas por Agua y Alimentos, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Bellido Samaniego
- Unidad de Legionella, Laboratorio de Referencia e Investigación en Infecciones Bacterianas Transmitidas por Agua y Alimentos, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Del Aguila
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Soledad Fenoy
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Carolina Hurtado-Marcos
- Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
15
|
Lytle DA, Pfaller S, Muhlen C, Struewing I, Triantafyllidou S, White C, Hayes S, King D, Lu J. A comprehensive evaluation of monochloramine disinfection on water quality, Legionella and other important microorganisms in a hospital. WATER RESEARCH 2021; 189:116656. [PMID: 33249307 PMCID: PMC8133025 DOI: 10.1016/j.watres.2020.116656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 05/22/2023]
Abstract
Opportunistic pathogens such as Legionella are of significant public health concern in hospitals. Microbiological and water chemistry parameters in hot water throughout an Ohio hospital were monitored monthly before and after the installation of a monochloramine disinfection system over 16 months. Water samples from fifteen hot water sampling sites as well as the municipal water supply entering the hospital were analyzed using both culture and qPCR assays for specific microbial pathogens including Legionella, Pseudomonas spp., nontuberculous Mycobacteria [NTM], as well as for heterotrophic bacteria. Legionella culture assays decreased from 68% of all sites being positive prior to monochloramine addition to 6% positive after monochloramine addition, and these trends were parallel to qPCR results. Considering all samples, NTMs by culture were significantly reduced from 61% to 14% positivity (p<0.001) after monochloramine treatment. Mycobacterium genus-specific qPCR positivity was reduced from 92% to 65%, but the change was not significant. Heterotrophic bacteria (heterotrophic bacteria plate counts [HPCs]) exhibited large variability which skewed statistical results on a per room basis. However, when all samples were considered, a significant decrease in HPCs was observed after monochloramine addition. Lastly, Pseudomonas aeruginosa and Vermamoeba vermiformis demonstrated large and significant decrease of qPCR signals post-chloramination. General water chemistry parameters including monochloramine residual, nitrate, nitrite, pH, temperature, metals and total trihalomethanes (TTHMs) were also measured. Significant monochloramine residuals were consistently observed at all sampling sites with very little free ammonia present and no water quality indications of nitrification (e.g., pH decrease, elevated nitrite or nitrate). The addition of monochloramine had no obvious impact on metals (lead, copper and iron) and disinfection by-products.
Collapse
Affiliation(s)
- Darren A Lytle
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States.
| | - Stacy Pfaller
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Christy Muhlen
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Ian Struewing
- U.S. Environmental Protection Agency, ORD, Center for Environmental Measurement and Modelling (CEMM), 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Simoni Triantafyllidou
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Colin White
- Ohio Environmental Protection Agency, Emerging Contaminants Section, Division of Drinking and Ground Waters, 50 West Town Street, Suite 700 Columbus, OH 43215, United States
| | - Sam Hayes
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Dawn King
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Jingrang Lu
- U.S. Environmental Protection Agency, ORD, Center for Environmental Measurement and Modelling (CEMM), 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States
| |
Collapse
|
16
|
Hozalski RM, LaPara TM, Zhao X, Kim T, Waak MB, Burch T, McCarty M. Flushing of Stagnant Premise Water Systems after the COVID-19 Shutdown Can Reduce Infection Risk by Legionella and Mycobacterium spp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15914-15924. [PMID: 33232602 DOI: 10.1021/acs.est.0c06357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is concern about potential exposure to opportunistic pathogens when reopening buildings closed due to the COVID-19 pandemic. In this study, water samples were collected before, during, and after flushing showers in five unoccupied (i.e., for ∼2 months) university buildings with quantification of opportunists via a cultivation-based assay (Legionella pneumophila only) and quantitative PCR. L. pneumophila were not detected by either method; Legionella spp., nontuberculous mycobacteria (NTM), and Mycobacterium avium complex (MAC), however, were widespread. Using quantitative microbial risk assessment (QMRA), the estimated risks of illness from exposure to L. pneumophila and MAC via showering were generally low (i.e., less than a 10-7 daily risk threshold), with the exception of systemic infection risk from MAC exposure in some buildings. Flushing rapidly restored the total chlorine (as chloramine) residual and decreased bacterial gene targets to building inlet concentrations within 30 min. During the postflush stagnation period, the residual chlorine dissipated within a few days and bacteria rebounded, approaching preflush concentrations after 6-7 days. These results suggest that flushing can quickly improve water quality in unoccupied buildings, but the improvement may only last a few days.
Collapse
Affiliation(s)
- Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Taegyu Kim
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Michael B Waak
- Norwegian University of Science and Technology, Trondheim 7031, Norway
- Department of Infrastructure, SINTEF Community, Trondheim 7031, Norway
| | - Tucker Burch
- Agricultural Research Service, U.S. Department of Agriculture, Marshfield, Wisconsin 54449, United States
| | - Michael McCarty
- School of Public Health, University of Minnesota, Minneapolis 55455, Minnesota, United States
| |
Collapse
|
17
|
Cullom AC, Martin RL, Song Y, Williams K, Williams A, Pruden A, Edwards MA. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020; 9:E957. [PMID: 33212943 PMCID: PMC7698398 DOI: 10.3390/pathogens9110957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper's interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.
Collapse
Affiliation(s)
- Abraham C. Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Rebekah L. Martin
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
- Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA
| | - Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | | | - Amanda Williams
- c/o Marc Edwards, Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| |
Collapse
|
18
|
Hirsh MB, Baron JL, Mietzner SM, Rihs JD, Yassin MH, Stout JE. Evaluation of Recommended Water Sample Collection Methods and the Impact of Holding Time on Legionella Recovery and Variability from Healthcare Building Water Systems. Microorganisms 2020; 8:E1770. [PMID: 33187132 PMCID: PMC7696883 DOI: 10.3390/microorganisms8111770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/03/2022] Open
Abstract
Water safety and management programs (WSMP) utilize field measurements to evaluate control limits and monitor water quality parameters including Legionella presence. This monitoring is important to verify that the plan is being implemented properly. However, once it has been determined when and how to sample for Legionella, it is important to choose appropriate collection and processing methods. We sought to compare processing immediate and flushed samples, filtration of different volumes collected, and sample hold times. Hot water samples were collected immediately and after a 2-min flush. These samples were plated directly and after filtration of either 100 mL, 200 mL, or 1 L. Additionally, unflushed samples were collected and processed immediately and after 1, 24, and 48 h of hold time. We found that flushed samples had significant reductions in Legionella counts compared to immediate samples. Processing 100 mL of that immediate sample both directly and after filter concentration yielded the highest concentration and percent sample positivity, respectively. We also show that there was no difference in culture values from time 0 compared to hold times of 1 h and 24 h. At 48 h, there were slightly fewer Legionella recovered than at time 0. However, Legionella counts were so variable based on sampling location and date that this hold time effect was minimal. The interpretation of Legionella culture results depends on the sample collection and processing methods used, as these can have a huge impact on the success of sampling and the validation of control measures.
Collapse
Affiliation(s)
- Marisa B. Hirsh
- Special Pathogens Laboratory, Pittsburgh, PA 15219, USA; (M.B.H.); (J.L.B.); (S.M.M.); (J.D.R.)
| | - Julianne L. Baron
- Special Pathogens Laboratory, Pittsburgh, PA 15219, USA; (M.B.H.); (J.L.B.); (S.M.M.); (J.D.R.)
| | - Sue M. Mietzner
- Special Pathogens Laboratory, Pittsburgh, PA 15219, USA; (M.B.H.); (J.L.B.); (S.M.M.); (J.D.R.)
| | - John D. Rihs
- Special Pathogens Laboratory, Pittsburgh, PA 15219, USA; (M.B.H.); (J.L.B.); (S.M.M.); (J.D.R.)
| | - Mohamed H. Yassin
- Department of Infection Control, UPMC Mercy Hospital, Pittsburgh, PA 15219, USA;
| | - Janet E. Stout
- Special Pathogens Laboratory, Pittsburgh, PA 15219, USA; (M.B.H.); (J.L.B.); (S.M.M.); (J.D.R.)
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
19
|
Marchesi I, Paduano S, Frezza G, Sircana L, Vecchi E, Zuccarello P, Oliveri Conti G, Ferrante M, Borella P, Bargellini A. Safety and Effectiveness of Monochloramine Treatment for Disinfecting Hospital Water Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176116. [PMID: 32842654 PMCID: PMC7503937 DOI: 10.3390/ijerph17176116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022]
Abstract
The formation of potentially carcinogenic N-nitrosamines, associated with monochloramine, requires further research due to the growing interest in using this biocide for the secondary disinfection of water in public and private buildings. The aim of our study was to evaluate the possible formation of N-nitrosamines and other toxic disinfection by-products (DBPs) in hospital hot water networks treated with monochloramine. The effectiveness of this biocide in controlling Legionella spp. contamination was also verified. For this purpose, four different monochloramine-treated networks, in terms of the duration of treatment and method of biocide injection, were investigated. Untreated hot water, municipal cold water and, limited to N-nitrosamines analysis, hot water treated with chlorine dioxide were analyzed for comparison. Legionella spp. contamination was successfully controlled without any formation of N-nitrosamines. No nitrification or formation of the regulated DBPs, such as chlorites and trihalomethanes, occurred in monochloramine-treated water networks. However, a stable formulation of hypochlorite, its frequent replacement with a fresh product, and the routine monitoring of free ammonia are recommended to ensure a proper disinfection. Our study confirms that monochloramine may be proposed as an effective and safe strategy for the continuous disinfection of building plumbing systems, preventing vulnerable individuals from being exposed to legionellae and dangerous DBPs.
Collapse
Affiliation(s)
- Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
- Correspondence: ; Tel.: +39-059-2055460
| | - Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| | - Luca Sircana
- University Hospital Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (L.S.); (E.V.)
| | - Elena Vecchi
- University Hospital Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (L.S.); (E.V.)
| | - Pietro Zuccarello
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.Z.); (G.O.C.); (M.F.)
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.Z.); (G.O.C.); (M.F.)
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.Z.); (G.O.C.); (M.F.)
| | - Paola Borella
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| |
Collapse
|
20
|
Buse HY, Morris BJ, Gomez-Alvarez V, Szabo JG, Hall JS. Legionella Diversity and Spatiotemporal Variation in The Occurrence of Opportunistic Pathogens within a Large Building Water System. Pathogens 2020; 9:E567. [PMID: 32668779 PMCID: PMC7400177 DOI: 10.3390/pathogens9070567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
Understanding Legionella survival mechanisms within building water systems (BWSs) is challenging due to varying engineering, operational, and water quality characteristics unique to each system. This study aimed to evaluate Legionella, mycobacteria, and free-living amoebae occurrence within a BWS over 18-28 months at six locations differing in plumbing material and potable water age, quality, and usage. A total of 114 bulk water and 57 biofilm samples were analyzed. Legionella culturability fluctuated seasonally with most culture-positive samples being collected during the winter compared to the spring, summer, and fall months. Positive and negative correlations between Legionella and L. pneumophila occurrence and other physiochemical and microbial water quality parameters varied between location and sample types. Whole genome sequencing of 19 presumptive Legionella isolates, from four locations across three time points, identified nine isolates as L. pneumophila serogroup (sg) 1 sequence-type (ST) 1; three as L. pneumophila sg5 ST1950 and ST2037; six as L. feeleii; and one as Ochrobactrum. Results showed the presence of a diverse Legionella population with consistent and sporadic occurrence at four and two locations, respectively. Viewed collectively with similar studies, this information will enable a better understanding of the engineering, operational, and water quality parameters supporting Legionella growth within BWSs.
Collapse
Affiliation(s)
- Helen Y. Buse
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| | - Brian J. Morris
- Pegasus Technical Services, Inc c/o US EPA, Cincinnati, OH 45268, USA;
| | - Vicente Gomez-Alvarez
- Water Infrastructure Division, Center for Environmental Solutions & Emergency Response (CESER), US Environmental Protection Agency (USEPA), Office of Research and Development (ORD), Cincinnati, OH 45268, USA;
| | - Jeffrey G. Szabo
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| | - John S. Hall
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| |
Collapse
|
21
|
Julien R, Dreelin E, Whelton AJ, Lee J, Aw TG, Dean K, Mitchell J. Knowledge gaps and risks associated with premise plumbing drinking water quality. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/aws2.1177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ryan Julien
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| | - Erin Dreelin
- Department of Fisheries and WildlifeMichigan State University East Lansing Michigan
| | - Andrew J. Whelton
- Lyles School of Civil Engineering and Environmental and Ecological EngineeringPurdue University West Lafayette Indiana
| | - Juneseok Lee
- Department of Civil and Environmental EngineeringManhattan College Riverdale New York
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical MedicineTulane University New Orleans Louisiana
| | - Kara Dean
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| | - Jade Mitchell
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| |
Collapse
|
22
|
Abstract
Nitrification is a major issue that utilities must address if they utilize chloramines as a secondary disinfectant. Nitrification is the oxidation of free ammonia to nitrite which is then further oxidized to nitrate. Free ammonia is found in drinking water systems as a result of overfeeding at the water treatment plant (WTP) or as a result of the decomposition of monochloramine. Premise plumbing systems (i.e., the plumbing systems within buildings and homes) are characterized by irregular usage patterns, high water age, high temperature, and high surface-to-volume ratios. These characteristics create ideal conditions for increased chloramine decay, bacterial growth, and nitrification. This review discusses factors within premise plumbing that are likely to influence nitrification, and vice versa. Factors influencing, or influenced by, nitrification include the rate at which chloramine residual decays, microbial regrowth, corrosion of pipe materials, and water conservation practices. From a regulatory standpoint, the greatest impact of nitrification within premise plumbing is likely to be a result of increased lead levels during Lead and Copper Rule (LCR) sampling. Other drinking water regulations related to nitrifying parameters are monitored in a manner to reduce premise plumbing impacts. One way to potentially control nitrification in premise plumbing systems is through the development of building management plans.
Collapse
|
23
|
Water Quality as a Predictor of Legionella Positivity of Building Water Systems. Pathogens 2019; 8:pathogens8040295. [PMID: 31847120 PMCID: PMC6963558 DOI: 10.3390/pathogens8040295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Testing drinking water systems for the presence of Legionella colonization is a proactive approach to assess and reduce the risk of Legionnaires’ disease. Previous studies suggest that there may be a link between Legionella positivity in the hot water return line or certain water quality parameters (temperature, free chlorine residual, etc.) with distal site Legionella positivity. It has been suggested that these measurements could be used as a surrogate for testing for Legionella in building water systems. We evaluated the relationship between hot water return line Legionella positivity and other water quality parameters and Legionella colonization in premise plumbing systems by testing 269 samples from domestic cold and hot water samples in 28 buildings. The hot water return line Legionella positivity and distal site positivity only demonstrated a 77.8% concordance rate. Hot water return line Legionella positivity compared to distal site positivity had a sensitivity of 55% and a specificity of 96%. There was poor correlation and a low positive predictive value between the hot water return line and distal outlet positivity. There was no correlation between Legionella distal site positivity and total bacteria (heterotrophic plate count), pH, free chlorine, calcium, magnesium, zinc, manganese, copper, temperature, total organic carbon, or incoming cold-water chlorine concentration. These findings suggest that hot water return line Legionella positivity and other water quality parameters are not predictive of distal site positivity and should not be used alone to determine the building’s Legionella colonization rate and effectiveness of water management programs.
Collapse
|
24
|
Impact of Chlorine and Chloramine on the Detection and Quantification of Legionella pneumophila and Mycobacterium Species. Appl Environ Microbiol 2019; 85:AEM.01942-19. [PMID: 31604766 DOI: 10.1128/aem.01942-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Potable water can be a source of transmission for legionellosis and nontuberculous mycobacterium (NTM) infections and diseases. Legionellosis is caused largely by Legionella pneumophila, specifically serogroup 1 (Sg1). Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium abscessus are three leading species associated with pulmonary NTM disease. The estimated rates of these diseases are increasing in the United States, and the cost of treatment is high. Therefore, a national assessment of water disinfection efficacy for these pathogens was needed. The disinfectant type and total chlorine residual (TClR) were investigated to understand their influence on the detection and concentrations of the five pathogens in potable water. Samples (n = 358) were collected from point-of-use taps (cold or hot) from locations across the United States served by public water utilities that disinfected with chlorine or chloramine. The bacteria were detected and quantified using specific primer and probe quantitative-PCR (qPCR) methods. The total chlorine residual was measured spectrophotometrically. Chlorine was the more potent disinfectant for controlling the three mycobacterial species. Chloramine was effective at controlling L. pneumophila and Sg1. Plotting the TClR associated with positive microbial detection showed that an upward TClR adjustment could reduce the bacterial count in chlorinated water but was not as effective for chloramine. Each species of bacteria responded differently to the disinfection type, concentration, and temperature. There was no unifying condition among the water characteristics studied that achieved microbial control for all. This information will help guide disinfectant decisions aimed at reducing occurrences of these pathogens at consumer taps and as related to the disinfectant type and TClR.IMPORTANCE The primary purpose of tap water disinfection is to control the presence of microbes. This study evaluated the role of disinfectant choice on the presence at the tap of L. pneumophila, its Sg1 serogroup, and three species of mycobacteria in tap water samples collected at points of human exposure at locations across the United States. The study demonstrates that microbial survival varies based on the microbial species, disinfectant, and TClR.
Collapse
|
25
|
Waak MB, LaPara TM, Hallé C, Hozalski RM. Nontuberculous Mycobacteria in Two Drinking Water Distribution Systems and the Role of Residual Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8563-8573. [PMID: 31287948 DOI: 10.1021/acs.est.9b01945] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nontuberculous mycobacteria (NTM) are frequently found in chloraminated drinking water distribution systems (DWDSs) due to their chloramine tolerance. NTM were investigated in the water-main biofilms and drinking water of a chloraminated DWDS in the United States (initial chloramine residual = 3.8 ± 0.1 mg L-1) and a DWDS in Norway with minimal residual disinfectant (0.08 ± 0.01 mg L-1). Total mycobacteria and Mycobacterium avium complex (MAC) were quantified by qPCR targeting, respectively, atpE genes and the internal transcribed spacer region. Mycobacteria concentrations in drinking water did not differ between the two systems (P = 0.09; up to 6 × 104 copies L-1) but were higher in the biofilms from the chloraminated DWDS (P = 5 × 10-9; up to 5 × 106 copies cm-2). MAC were not detected in either system. Sequencing of mycobacterial hsp65 genes indicated that the chloraminated DWDS lacked diversity and consisted almost exclusively of M. gordonae. In contrast, there were various novel mycobacteria in the no-residual DWDS. Finally, Mycobacterium- and Methylobacterium-like 16S rRNA genes were often detected simultaneously, though without correlation as previously observed. We conclude that, though residual chloramine may increase mycobacterial biomass in a DWDS, it may also decrease mycobacterial diversity.
Collapse
Affiliation(s)
- Michael B Waak
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Dr. SE , Minneapolis , Minnesota 55455 , United States
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , S.P. Andersens veg 5 , 7491 Trondheim , Norway
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Dr. SE , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , 1479 Gortner Ave. , St. Paul , Minnesota 55108 , United States
| | - Cynthia Hallé
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , S.P. Andersens veg 5 , 7491 Trondheim , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Dr. SE , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , 1479 Gortner Ave. , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
26
|
Detection of pathogenic bacteria in hot tap water using the qPCR method: preliminary research. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0533-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
27
|
LeChevallier MW. Occurrence of culturable
Legionella pneumophila
in drinking water distribution systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/aws2.1139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Cassell K, Gacek P, Warren JL, Raymond PA, Cartter M, Weinberger DM. Association Between Sporadic Legionellosis and River Systems in Connecticut. J Infect Dis 2019; 217:179-187. [PMID: 29211873 DOI: 10.1093/infdis/jix531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Background There has been a dramatic increase in the incidence of sporadic legionnaires' disease in Connecticut since 1999, but the exact reasons for this are unknown. Therefore, there is a growing need to understand the drivers of legionnaires' disease in the community. In this study, we explored the relationship between the natural environment and the spatial and temporal distribution of legionellosis cases in Connecticut. Methods We used spatial models and time series methods to evaluate factors associated with the increase and clustering of legionellosis in Connecticut. Stream flow, proximity to rivers, and residence in regional watersheds were explored as novel predictors of disease, while controlling for testing intensity and correlates of urbanization. Results In Connecticut, legionellosis incidence exhibited a strong pattern of spatial clustering. Proximity to several rivers and residence in the corresponding watersheds were associated with increased incidence of the disease. Elevated rainfall and stream flow rate were associated with increases in incidence 2 weeks later. Conclusions We identified a novel relationship between the natural aquatic environment and the spatial distribution of sporadic cases of legionellosis. These results suggest that natural environmental reservoirs may have a greater influence on the spatial distribution of sporadic legionellosis cases than previously thought.
Collapse
Affiliation(s)
- Kelsie Cassell
- Departments of Epidemiology of Microbial Diseases, New Haven, Connecticut
| | - Paul Gacek
- Connecticut Department of Public Health, Hartford
| | - Joshua L Warren
- Departments of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Peter A Raymond
- Yale School of Forestry and Environmental Studies, New Haven, Connecticut
| | | | | |
Collapse
|
29
|
Donohue MJ, King D, Pfaller S, Mistry JH. The sporadic nature of Legionella pneumophila, Legionella pneumophila Sg1 and Mycobacterium avium occurrence within residences and office buildings across 36 states in the United States. J Appl Microbiol 2019; 126:1568-1579. [PMID: 30891905 PMCID: PMC6850209 DOI: 10.1111/jam.14196] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Aim Premise plumbing may disseminate the bacteria Legionella pneumophila and Mycobacterium avium, the causative agents for legionellosis and pulmonary nontuberculous mycobacterium disease respectively. Methods and Results Using quantitative PCR, the occurrence and persistence of L. pneumophila, L. pneumophila serogroup (Sg)1 and M. avium were evaluated in drinking water samples from 108 cold water taps (residences: n = 43) and (office buildings: n = 65). Mycobacterium avium, L. pneumophila and L. pneumophila Sg1 were detected 45, 41 and 25% of all structures respectively. Two occurrence patterns were evaluated: sporadic (a single detection from the three samplings) and persistent (detections in two or more of the three samples). Conclusions The micro‐organism's occurrence was largely sporadic. Office buildings were prone to microbial persistence independent of building age and square footage. Microbial persistence at residences was observed in those older than 40 years for L. pneumophila and was rarely observed for M. avium. The microbial occurrence was evenly distributed between structure types but there were differences in density and persistence. Significance of and Impact of the Study The study is important because residences are often suspected to be the source when a case of disease is reported. These data demonstrate that this may not be the case for a sporadic incidence.
Collapse
Affiliation(s)
- M J Donohue
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - D King
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - S Pfaller
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - J H Mistry
- Region 6, United States Environmental Protection Agency, Dallas, TX, USA
| |
Collapse
|
30
|
Antibacterial Properties of Polysulfone Membranes Blended with Arabic Gum. MEMBRANES 2019; 9:membranes9020029. [PMID: 30769800 PMCID: PMC6410181 DOI: 10.3390/membranes9020029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
Polysulfone (PS) membranes blended with different loadings of arabic gum (AG) were synthesized using phase inversion method and the antibacterial properties of the synthesized membranes were tested using a number Gram-negative (Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) and Gram-positive (Staphylococcusaureus) bacterial species. It was shown that AG addition to the dope polymer solutions essentially changed porous structure, hydrophilicity and zeta potential of the cast PS/AG membranes. These changes were due to the amphiphilic properties of AG macromolecules that contained negatively charged hydrophilic residues. A pronounced decrease in bacterial attachment was seen in the field emission scanning electron microscopy (FESEM) images for PS/AG membrane samples compared to both commercial (Microdyn-Nadir) and bare PS (without AG) membranes. AG loading dependent trend was observed where the prevention of bacterial colonization on the membrane surface was strongest at the highest (7 wt. %) AG loading in the casting solution. Possible mechanisms for the prevention of bacterial colonization were discussed. Significantly, the inhibition of bacterial attachment and growth on PS/AG membranes was observed for both Gram-positive and Gram-negative bacterial models, rendering these novel membranes with strong biofouling resistance attractive for water treatment applications.
Collapse
|
31
|
LeChevallier MW. Monitoring distribution systems for
Legionella pneumophila
using Legiolert. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/aws2.1122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Waak MB, LaPara TM, Hallé C, Hozalski RM. Occurrence of Legionella spp. in Water-Main Biofilms from Two Drinking Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7630-7639. [PMID: 29902377 DOI: 10.1021/acs.est.8b01170] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The maintenance of a chlorine or chloramine residual to suppress waterborne pathogens in drinking water distribution systems is common practice in the United States but less common in Europe. In this study, we investigated the occurrence of Bacteria and Legionella spp. in water-main biofilms and tap water from a chloraminated distribution system in the United States and a system in Norway with no residual using real-time quantitative polymerase chain reaction (qPCR). Despite generally higher temperatures and assimilable organic carbon levels in the chloraminated system, total Bacteria and Legionella spp. were significantly lower in water-main biofilms and tap water of that system ( p < 0.05). Legionella spp. were not detected in the biofilms of the chloraminated system (0 of 35 samples) but were frequently detected in biofilms from the no-residual system (10 of 23 samples; maximum concentration = 7.8 × 104 gene copies cm-2). This investigation suggests water-main biofilms may serve as a source of Legionella for tap water and premise plumbing systems, and residual chloramine may aid in reducing their abundance.
Collapse
Affiliation(s)
- Michael B Waak
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive Southeast , Minneapolis , Minnesota 55455 , United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive Southeast , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , 1479 Gortner Avenue , Saint Paul , Minnesota 55108 , United States
| | - Cynthia Hallé
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , S.P. Andersens veg 5 , Trondheim NO-7491 , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive Southeast , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , 1479 Gortner Avenue , Saint Paul , Minnesota 55108 , United States
| |
Collapse
|
33
|
Rhoads WJ, Pruden A, Edwards MA. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7065-7075. [PMID: 28513143 DOI: 10.1021/acs.est.6b05616] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complexities associated with drinking water plumbing systems can result in undesirable interactions among plumbing components that undermine engineering controls for opportunistic pathogens (OPs). In this study, we examine the effects of plumbing system materials and two commonly applied disinfectants, copper and chloramines, on water chemistry and the growth of Legionella and mycobacteria across a transect of bench- and pilot-scale hot water experiments carried out with the same municipal water supply. We discovered that copper released from corrosion of plumbing materials can initiate evolution of >1100 times more hydrogen (H2) from water heater sacrificial anode rods than does presence of copper dosed as soluble cupric ions. H2 is a favorable electron donor for autotrophs and causes fixation of organic carbon that could serve as a nutrient for OPs. Dosed cupric ions acted as a disinfectant in stratified stagnant pipes, inhibiting culturable Legionella and biofilm formation, but promoted Legionella growth in pipes subject to convective mixing. This difference was presumably due to continuous delivery of nutrients to biofilm on the pipes under convective mixing conditions. Chloramines eliminated culturable Legionella and prevented L. pneumophila from recolonizing biofilms, but M. avium gene numbers increased by 0.14-0.76 logs in the bulk water and were unaffected in the biofilm. This study provides practical confirmation of past discrepancies in the literature regarding the variable effects of copper on Legionella growth, and confirms prior reports of trade-offs between Legionella and mycobacteria if chloramines are applied as secondary disinfectant residual.
Collapse
Affiliation(s)
- William J Rhoads
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
34
|
Wang H, Bédard E, Prévost M, Camper AK, Hill VR, Pruden A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. WATER RESEARCH 2017; 117:68-86. [PMID: 28390237 PMCID: PMC5693313 DOI: 10.1016/j.watres.2017.03.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 05/06/2023]
Abstract
Opportunistic premise (i.e., building) plumbing pathogens (OPPPs, e.g., Legionella pneumophila, Mycobacterium avium complex, Pseudomonas aeruginosa, Acanthamoeba, and Naegleria fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a major challenge to standard drinking water monitoring practices. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating an impediment to their parallel detection. The aim of this critical review is to evaluate the state of the science of monitoring OPPPs and identify a path forward for their parallel detection and quantification in a manner commensurate with the need for reliable data that is informative to risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs towards standardized approaches are identified.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Emilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Anne K Camper
- Center for Biofilm Engineering and Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Vincent R Hill
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
35
|
Hull NM, Holinger EP, Ross KA, Robertson CE, Harris JK, Stevens MJ, Pace NR. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4220-4229. [PMID: 28296394 DOI: 10.1021/acs.est.6b06064] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The two municipal drinking water systems of New Orleans, LA, U.S.A. were sampled to compare the microbiology of independent systems that treat the same surface water from the Mississippi River. To better understand temporal trends and sources of microbiology delivered to taps, these treatment plants and distribution systems were subjected to source-to-tap sampling over four years. Both plants employ traditional treatment by chloramination, applied during or after settling, followed by filtration before distribution in a warm, low water age system. Longitudinal samples indicated microbiology to have stability both spatially and temporally, and between treatment plants and distribution systems. Disinfection had the greatest impact on microbial composition, which was further refined by filtration and influenced by distribution and premise plumbing. Actinobacteria spp. exhibited trends with treatment. In particular, Mycobacterium spp., very low in finished waters, occurred idiosyncratically at high levels in some tap waters, indicating distribution and/or premise plumbing as main contributors of mycobacteria. Legionella spp., another genus containing potential opportunistic pathogens, also occurred ubiquitously. Source water microbiology was most divergent from tap water, and each step of treatment brought samples more closely similar to tap waters.
Collapse
Affiliation(s)
- Natalie M Hull
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Eric P Holinger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Kimberly A Ross
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Charles E Robertson
- Division of Infectious Disease, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Norman R Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Springston JP, Yocavitch L. Existence and control of Legionella bacteria in building water systems: A review. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:124-134. [PMID: 27624495 DOI: 10.1080/15459624.2016.1229481] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Legionellae are waterborne bacteria which are capable of causing potentially fatal Legionnaires' disease (LD), as well as Pontiac Fever. Public concern about Legionella exploded following the 1976 outbreak at the American Legion conference in Philadelphia, where 221 attendees contracted pneumonia and 34 died. Since that time, a variety of different control methods and strategies have been developed and implemented in an effort to eradicate Legionella from building water systems. Despite these efforts, the incidence of LD has been steadily increasing in the U.S. for more than a decade. Public health and occupational hygiene professionals have maintained an active debate regarding best practices for management and control of Legionella. Professional opinion remains divided with respect to the relative merits of performing routine sampling for Legionella, vs. the passive, reactive approach that has been largely embraced by public health officials and facility owners. Given the potential risks and ramifications associated with waiting to assess systems for Legionella until after disease has been identified and confirmed, a proactive approach of periodic testing for Legionella, along with proper water treatment, is the best approach to avoiding large-scale disease outbreaks.
Collapse
|
37
|
King DN, Donohue MJ, Vesper SJ, Villegas EN, Ware MW, Vogel ME, Furlong EF, Kolpin DW, Glassmeyer ST, Pfaller S. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:987-995. [PMID: 27260619 DOI: 10.1016/j.scitotenv.2016.03.214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters.
Collapse
Affiliation(s)
- Dawn N King
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Maura J Donohue
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Stephen J Vesper
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Eric N Villegas
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Michael W Ware
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Megan E Vogel
- Department of Internal Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45229, United States
| | - Edward F Furlong
- U.S. Geological Survey, Denver Federal Center, P.O. Box 25585, Denver, CO 80225, United States
| | - Dana W Kolpin
- U.S. Geological Survey, 400 S. Clinton Street, Iowa City, IA 52240, United States
| | - Susan T Glassmeyer
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Stacy Pfaller
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Dr., Cincinnati, OH 45268, United States.
| |
Collapse
|
38
|
Völker S, Schreiber C, Kistemann T. Modelling characteristics to predict Legionella contamination risk - Surveillance of drinking water plumbing systems and identification of risk areas. Int J Hyg Environ Health 2015; 219:101-9. [PMID: 26481275 DOI: 10.1016/j.ijheh.2015.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
For the surveillance of drinking water plumbing systems (DWPS) and the identification of risk factors, there is a need for an early estimation of the risk of Legionella contamination within a building, using efficient and assessable parameters to estimate hazards and to prioritize risks. The precision, accuracy and effectiveness of ways of estimating the risk of higher Legionella numbers (temperature, stagnation, pipe materials, etc.) have only rarely been empirically assessed in practice, although there is a broad consensus about the impact of these risk factors. We collected n = 807 drinking water samples from 9 buildings which had had Legionella spp. occurrences of >100 CFU/100mL within the last 12 months, and tested for Legionella spp., L. pneumophila, HPC 20°C and 36°C (culture-based). Each building was sampled for 6 months under standard operating conditions in the DWPS. We discovered high variability (up to 4 log(10) steps) in the presence of Legionella spp. (CFU/100 mL) within all buildings over a half year period as well as over the course of a day. Occurrences were significantly correlated with temperature, pipe length measures, and stagnation. Logistic regression modelling revealed three parameters (temperature after flushing until no significant changes in temperatures can be obtained, stagnation (low withdrawal, qualitatively assessed), pipe length proportion) to be the best predictors of Legionella contamination (>100 CFU/100 mL) at single outlets (precision = 66.7%; accuracy = 72.1%; F(0.5) score = 0.59).
Collapse
Affiliation(s)
- Sebastian Völker
- Institute for Hygiene and Public Health, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | - Thomas Kistemann
- Institute for Hygiene and Public Health, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| |
Collapse
|
39
|
Wang H, Masters S, Falkinham JO, Edwards MA, Pruden A. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8416-24. [PMID: 26121595 DOI: 10.1021/acs.est.5b01538] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Illustrative distribution system operation and management practices shaped the occurrence and persistence of Legionella spp., nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa, and two amoebae host (Acanthamoeba spp., Vermamoeba vermiformis) gene markers in the effluent of standardized simulated household water heaters (SWHs). The interplay between disinfectant type (chlorine or chloramine), water age (2.3-5.7 days) and materials (polyvinyl chloride (PVC), cement or iron) in upstream simulated distribution systems (SDSs) profoundly influenced levels of pathogen gene markers in corresponding SWH bulk waters. For example, Legionella spp. were 3-4 log higher in SWHs receiving water from chloraminated vs chlorinated SDSs, because of disinfectant decay from nitrification. By contrast, SWHs fed with chlorinated PVC SDS water not only harbored the lowest levels of all pathogen markers, but effluent from the chlorinated SWHs were even lower than influent levels in several instances (e.g., 2 log less Legionella spp. and NTM for PVC and 3-5 log less P. aeruginosa for cement). However, pathogen gene marker influent levels correlated positively to effluent levels in the SWHs (P < 0.05). Likewise, microbial community structures were similar between SWHs and the corresponding SDS feed waters. This study highlights the importance and challenges of distribution system management/operation to help control opportunistic pathogens.
Collapse
Affiliation(s)
- Hong Wang
- †State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheldon Masters
- ‡Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- ‡Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- ‡Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
40
|
Jjemba PK, Johnson W, Bukhari Z, LeChevallier MW. Occurrence and Control of Legionella in Recycled Water Systems. Pathogens 2015; 4:470-502. [PMID: 26140674 PMCID: PMC4584268 DOI: 10.3390/pathogens4030470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila is on the United States Environmental Protection Agency (USEPA) Candidate Contaminant list (CCL) as an important pathogen. It is commonly encountered in recycled water and is typically associated with amoeba, notably Naegleria fowleri (also on the CCL) and Acanthamoeba sp. No legionellosis outbreak has been linked to recycled water and it is important for the industry to proactively keep things that way. A review was conducted examine the occurrence of Legionella and its protozoa symbionts in recycled water with the aim of developing a risk management strategy. The review considered the intricate ecological relationships between Legionella and protozoa, methods for detecting both symbionts, and the efficacy of various disinfectants.
Collapse
Affiliation(s)
- Patrick K Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - Zia Bukhari
- American Water, 1025 Laurel Oak Road, Voorhees, NJ 08043, USA.
| | | |
Collapse
|
41
|
Mancini B, Scurti M, Dormi A, Grottola A, Zanotti A, Cristino S. Effect of monochloramine treatment on colonization of a hospital water distribution system by Legionella spp.: a 1 year experience study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4551-4558. [PMID: 25723867 DOI: 10.1021/es506118e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Contamination of hot water distribution systems by Legionella represents a great challenge due to difficulties associated with inactivating microorganisms, preserving the water characteristics. The aim of this study was to examine over the course of 1 year in 11 fixed sites, the impact of monochloramine disinfection on Legionella, heterotrophic bacteria (36 °C), Pseudomonas aeruginosa contamination, and chemical parameters of a plumbing system in an Italian hospital. Three days after installation (T0), in the presence of monochloramine concentration between 1.5 and 2 mg/L, 10/11 sites (91%) were contaminated by L. pneumophila serogroups 3 and 10. After these results, the disinfectant dosage was increased to between 6 and 10 mg/L, reducing the level of Legionella by three logarithmic unit by 2 months postinstallation (T2) until 6 months later (T3). One year later (T4), there was a significant reduction (p = 0.0002) at 8/11 (73%) sites. Our data showed also a significant reduction of heterotrophic bacteria (36 °C) in 6/11 (55%) sites at T4 (p = 0.0004), by contrast the contamination of P. aeruginosa found at T0 in two sites persisted up until T4. The results of the present study show that monochloramine is a promising disinfectant that can prevent Legionella contamination of hospital water supplies.
Collapse
Affiliation(s)
| | | | | | - Antonella Grottola
- §Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Unit of Microbiology and Virology, Modena University Hospital, via del Pozzo 71, 41124, Modena, Italy
| | - Andrea Zanotti
- ⊥ITACA srl ITACA s.r.l., via Remigia, 19, 40068, San Lazzaro di Savena (BO), Italy
| | | |
Collapse
|
42
|
Duda S, Kandiah S, Stout JE, Baron JL, Yassin M, Fabrizio M, Ferrelli J, Hariri R, Wagener MM, Goepfert J, Bond J, Hannigan J, Rogers D. Evaluation of a new monochloramine generation system for controlling Legionella in building hot water systems. Infect Control Hosp Epidemiol 2014; 35:1356-63. [PMID: 25333430 DOI: 10.1086/678418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the efficacy of a new monochloramine generation system for control of Legionella in a hospital hot water distribution system. SETTING A 495-bed tertiary care hospital in Pittsburgh, Pennsylvania. The hospital has 12 floors covering approximately 78,000 m(2). METHODS The hospital hot water system was monitored for a total of 29 months, including a 5-month baseline sampling period prior to installation of the monochloramine system and 24 months of surveillance after system installation (postdisinfection period). Water samples were collected for microbiological analysis (Legionella species, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter species, nitrifying bacteria, heterotrophic plate count [HPC] bacteria, and nontuberculous mycobacteria). Chemical parameters monitored during the investigation included monochloramine, chlorine (free and total), nitrate, nitrite, total ammonia, copper, silver, lead, and pH. RESULTS A significant reduction in Legionella distal site positivity was observed between the pre- and postdisinfection periods, with positivity decreasing from an average of 53% (baseline) to an average of 9% after monochloramine application (P<0.5]). Although geometric mean HPC concentrations decreased by approximately 2 log colony-forming units per milliliter during monochloramine treatment, we did not observe significant changes in other microbial populations. CONCLUSIONS This is the first evaluation in the United States of a commercially available monochloramine system installed on a hospital hot water system for Legionella disinfection, and it demonstrated a significant reduction in Legionella colonization. Significant increases in microbial populations or other negative effects previously associated with monochloramine use in large municipal cold water systems were not observed.
Collapse
Affiliation(s)
- Scott Duda
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Community outbreak of legionellosis and an environmental investigation into a community water system. Epidemiol Infect 2014; 143:1322-31. [PMID: 25083716 DOI: 10.1017/s0950268814001964] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During two legionellosis outbreak investigations, one at a geriatric centre and the other in high-rise housing for seniors, it was observed that additional cases of legionellosis occurred in nearby smaller residential settings. This apparent geographical cluster of legionellosis occurred in the same general area of a community water storage tank. No potential airborne sources in or near the area could be identified, but a community water system storage tank that was centrally located among case residences spurred an investigation of water-quality factors in the identified investigation area. Conditions conducive for Legionella growth, particularly low chlorine residuals, were found. The rate of legionellosis among residents aged ⩾50 years in the investigation areas (61·0 and 64·1/100 000) was eight times higher than in the rest of the service area (9·0/100 000) and almost 20 times higher than the statewide annual average incidence rate (3·2/100 000). A water mains flushing programme in the area was launched by the water utility, and water samples taken before and during flushing found L. pneumophila.
Collapse
|
44
|
Baron JL, Vikram A, Duda S, Stout JE, Bibby K. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system. PLoS One 2014; 9:e102679. [PMID: 25033448 PMCID: PMC4102543 DOI: 10.1371/journal.pone.0102679] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/22/2014] [Indexed: 01/14/2023] Open
Abstract
Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.
Collapse
Affiliation(s)
- Julianne L. Baron
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Scott Duda
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
| | - Janet E. Stout
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
45
|
Donohue MJ, O'Connell K, Vesper SJ, Mistry JH, King D, Kostich M, Pfaller S. Widespread molecular detection of Legionella pneumophila Serogroup 1 in cold water taps across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3145-3152. [PMID: 24548208 DOI: 10.1021/es4055115] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the United States, 6,868 cases of legionellosis were reported to the Center for Disease Control and Prevention in 2009-2010. Of these reports, it is estimated that 84% are caused by the microorganism Legionella pneumophila Serogroup (Sg) 1. Legionella spp. have been isolated and recovered from a variety of natural freshwater environments. Human exposure to L. pneumophila Sg1 may occur from aerosolization and subsequent inhalation of household and facility water. In this study, two primer/probe sets (one able to detect L. pneumophila and the other L. pneumophila Sg1) were determined to be highly sensitive and selective for their respective targets. Over 272 water samples, collected in 2009 and 2010 from 68 public and private water taps across the United States, were analyzed using the two qPCR assays to evaluate the incidence of L. pneumophila Sg1. Nearly half of the taps showed the presence of L. pneumophila Sg1 in one sampling event, and 16% of taps were positive in more than one sampling event. This study is the first United States survey to document the occurrence and colonization of L. pneumophila Sg1 in cold water delivered from point of use taps.
Collapse
Affiliation(s)
- Maura J Donohue
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency , 26 West Martin Luther King Drive, Mail Stop 593, Cincinnati, Ohio 45268, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Casini B, Buzzigoli A, Cristina ML, Spagnolo AM, Del Giudice P, Brusaferro S, Poscia A, Moscato U, Valentini P, Baggiani A, Privitera G. Long-term effects of hospital water network disinfection on Legionella and other waterborne bacteria in an Italian university hospital. Infect Control Hosp Epidemiol 2014; 35:293-9. [PMID: 24521596 DOI: 10.1086/675280] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE AND DESIGN Legionella control still remains a critical issue in healthcare settings where the preferred approach to health risk assessment and management is to develop a water safety plan. We report the experience of a university hospital, where a water safety plan has been applied since 2002, and the results obtained with the application of different methods for disinfecting hot water distribution systems in order to provide guidance for the management of water risk. INTERVENTIONS The disinfection procedures included continuous chlorination with chlorine dioxide (0.4-0.6 mg/L in recirculation loops) reinforced by endpoint filtration in critical areas and a water treatment based on monochloramine (2-3 mg/L). Real-time polymerase chain reaction and a new immunoseparation and adenosine triphosphate bioluminescence analysis were applied in environmental monitoring. RESULTS After 9 years, the integrated disinfection-filtration strategy significantly reduced positive sites by 55% and the mean count by 78% (P < .05); however, the high costs and the occurrence of a chlorine-tolerant clone belonging to Legionella pneumophila ST269 prompted us to test a new disinfectant. The shift to monochloramine allowed us to eliminate planktonic Legionella and did not require additional endpoint filtration; however, nontuberculous mycobacteria were isolated more frequently as long as the monochloramine concentration was 2 mg/L; their cultivability was never regained by increasing the concentration up to 3 mg/L. CONCLUSIONS Any disinfection method needs to be adjusted/fine-tuned in individual hospitals in order to maintain satisfactory results over time, and only a locally adapted evidence-based approach allows assessment of the efficacy and disadvantages of the control measures.
Collapse
Affiliation(s)
- Beatrice Casini
- Department of Translational Research, New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Kozak-Muiznieks NA, Lucas CE, Brown E, Pondo T, Taylor TH, Frace M, Miskowski D, Winchell JM. Prevalence of sequence types among clinical and environmental isolates of Legionella pneumophila serogroup 1 in the United States from 1982 to 2012. J Clin Microbiol 2014; 52:201-11. [PMID: 24197883 PMCID: PMC3911437 DOI: 10.1128/jcm.01973-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022] Open
Abstract
Since the establishment of sequence-based typing as the gold standard for DNA-based typing of Legionella pneumophila, the Legionella laboratory at the Centers for Disease Control and Prevention (CDC) has conducted routine sequence-based typing (SBT) analysis of all incoming L. pneumophila serogroup 1 (Lp1) isolates to identify potential links between cases and to better understand genetic diversity and clonal expansion among L. pneumophila bacteria. Retrospective genotyping of Lp1 isolates from sporadic cases and Legionnaires' disease (LD) outbreaks deposited into the CDC reference collection since 1982 has been completed. For this study, we compared the distribution of sequence types (STs) among Lp1 isolates implicated in 26 outbreaks in the United States, 571 clinical isolates from sporadic cases of LD in the United States, and 149 environmental isolates with no known association with LD. The Lp1 isolates under study had been deposited into our collection between 1982 and 2012. We identified 17 outbreak-associated STs, 153 sporadic STs, and 49 environmental STs. We observed that Lp1 STs from outbreaks and sporadic cases are more similar to each other than either group is to environmental STs. The most frequent ST for both sporadic and environmental isolates was ST1, accounting for 25% and 49% of the total number of isolates, respectively. The STs shared by both outbreak-associated and sporadic Lp1 included ST1, ST35, ST36, ST37, and ST222. The STs most commonly found in sporadic and outbreak-associated Lp1 populations may have an increased ability to cause disease and thus may require special attention when detected.
Collapse
Affiliation(s)
- Natalia A. Kozak-Muiznieks
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claressa E. Lucas
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ellen Brown
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracy Pondo
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Thomas H. Taylor
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael Frace
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jonas M. Winchell
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
49
|
Alleron L, Khemiri A, Koubar M, Lacombe C, Coquet L, Cosette P, Jouenne T, Frere J. VBNC Legionella pneumophila cells are still able to produce virulence proteins. WATER RESEARCH 2013; 47:6606-17. [PMID: 24064547 DOI: 10.1016/j.watres.2013.08.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/24/2013] [Accepted: 08/27/2013] [Indexed: 05/22/2023]
Abstract
Legionella pneumophila is the agent responsible for legionellosis. Numerous bacteria, including L. pneumophila, can enter into a viable but not culturable (VBNC) state under unfavorable environmental conditions. In this state, cells are unable to form colonies on standard medium but are still alive. Here we show that VBNC L. pneumophila cells, obtained by monochloramine treatment, were still able to synthesize proteins, some of which are involved in virulence. Protein synthesis was measured using (35)S-labeling and the proteomes of VBNC and culturable cells then compared. This analysis allowed the identification of nine proteins that were accumulated in the VBNC state. Among them, four were involved in virulence, i.e., the macrophage infectivity potentiator protein, the hypothetical protein lpl2247, the ClpP protease proteolytic subunit and the 27 kDa outer membrane protein. Others, i.e., the enoyl reductase, the electron transfer flavoprotein (alpha and beta subunits), the 50S ribosomal proteins (L1 and L25) are involved in metabolic and energy production pathways. However, resuscitation experiments performed with Acanthamoeba castellanii failed, suggesting that the accumulation of virulence factors by VBNC cells is not sufficient to maintain their virulence.
Collapse
Affiliation(s)
- Laëtitia Alleron
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, B36, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang S, Huang J, Yang Y, Hui Y, Ge Y, Larssen T, Yu G, Deng S, Wang B, Harman C. First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10117-28. [PMID: 23952109 DOI: 10.1021/es402455r] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This is the first report on the environmental occurrence of a chlorinated polyfluorinated ether sulfonate (locally called F-53B, C8ClF16O4SK). It has been widely applied as a mist suppressant by the chrome plating industry in China for decades but has evaded the attention of environmental research and regulation. In this study, F-53B was found in high concentrations (43-78 and 65-112 μg/L for the effluent and influent, respectively) in wastewater from the chrome plating industry in the city of Wenzhou, China. F-53B was not successfully removed by the wastewater treatments in place. Consequently, it was detected in surface water that receives the treated wastewater at similar levels to PFOS (ca. 10-50 ng/L) and the concentration decreased with the increasing distance from the wastewater discharge point along the river. Initial data presented here suggest that F-53B is moderately toxic (Zebrafish LC50-96 h 15.5 mg/L) and is as resistant to degradation as PFOS. While current usage is limited to the chrome plating industry, the increasing demand for PFOS alternatives in other sectors may result in expanded usage. Collectively, the results of this work call for future assessments on the effects of this overlooked contaminant and its presence and fate in the environment.
Collapse
Affiliation(s)
- Siwen Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Centre, Tsinghua University , Beijing 100084, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|