1
|
Smits WK, Garey KW, Riley TV, Johnson S. Clostridioides difficile is a bacterial priority pathogen. Anaerobe 2025; 93:102965. [PMID: 40288746 DOI: 10.1016/j.anaerobe.2025.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Wiep Klaas Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia and Department of Microbiology, PathWest Laboratory Medicine (EA), Queen Elizabeth II Medical Centre, Nedlands, 6009, Western Australia, Australia
| | - Stuart Johnson
- Loyola University Chicago (Emeritus), Hines VA Hospital Research Service, Chicago, IL, USA
| |
Collapse
|
2
|
Maojin T, Zheng Z, Ying H, Yanyan H, Liang Z. Bacterial Spore Inactivation Technology in Solid Foods: A Review. J Food Prot 2025; 88:100479. [PMID: 40081811 DOI: 10.1016/j.jfp.2025.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
In response to physiological stress, some bacterial strains have the ability to produce spores that are able to resist conventional food heating processes and even more extreme environmental factors. Dormant spores can germinate and return to their vegetative state during food preservation, leading to food spoilage, or safety issues that pose a risk to human health. Thus, spore inactivation technology is gaining more and more attention. Several techniques have been used in liquid foods to efficiently inactivate spores, including novel thermal and nonthermal treatments. However, solid foods have unique characteristics that make it challenging to achieve the same spore inactivation effect as in previous liquid food studies. Therefore, exploring the effectiveness of spore inactivation techniques in solid foods is of great significance, and clarifying the mechanism for deactivating spore through related techniques is informative in enhancing the effectiveness of spore deactivation in solid foods. This article reviews the practical applications of spore inactivation technology in solid foods.
Collapse
Affiliation(s)
- Tian Maojin
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhou Zheng
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Hu Ying
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Han Yanyan
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Zhou Liang
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China.
| |
Collapse
|
3
|
Redding LE, Daniel SG, Smith A, Keenan O, Barnhart D, Zackular JP. Comparison of Anaerobic Culture Methods for Detecting Clostridioides difficile in Bovine Faeces. Vet Med Sci 2025; 11:e70085. [PMID: 39611384 PMCID: PMC11605475 DOI: 10.1002/vms3.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The study of the epidemiology of Clostridioides difficile in populations is greatly facilitated by the ability to isolate and further characterize individual organisms, which requires effective culture protocols. In cattle, where little is known about the epidemiology of C. difficile, no studies have assessed or compared the performance of different assays for detecting C. difficile. OBJECTIVES This study compared two culture protocols for detecting C. difficile in bovine faeces from 121 gestating cows and 70 of their neonatal calves, while situating results obtained with each protocol relative to those obtained with shotgun metagenomic sequencing. METHODS Protocol 1 involved direct plating enrichment onto taurocholine-cycloserine-cefoxitin-fructose agar (TCCFA), while Protocol 2 included an ethanol shock step before plating on CCFA/ChromID agar. For both protocols, one aliquot underwent broth enrichment prior to plating, while the other aliquot did not. RESULTS Clostridioides difficile was detected following broth enrichment in two of the same calf samples using both protocols, and an additional cow sample was found to be positive with Protocol 2, though the difference in detection rates was not statistically significant (p = 1.0). CONCLUSIONS The detection of C. difficile in a much high number of these samples by shotgun metagenomics, albeit at low levels of relative abundance, suggests that neither of these culture protocols is sensitive when levels of abundance are low.
Collapse
Affiliation(s)
- Laurel E. Redding
- Clinical Studies – New Bolton CenterSchool of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Scott G. Daniel
- Roberts Center for Pediatric ResearchChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Alexander Smith
- Department of Pathology and Laboratory MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Orlaith Keenan
- Department of Pathology and Laboratory MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Denise Barnhart
- Clinical Studies – New Bolton CenterSchool of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
- Division of Protective ImmunityChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Joseph P. Zackular
- Department of Pathology and Laboratory MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Protective ImmunityChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Andino-Molina M, Dost I, Abdel-Glil M, Pletz MW, Neubauer H, Seyboldt C. Antimicrobial resistance of Clostridioides difficile in veterinary medicine around the world: A scoping review of minimum inhibitory concentrations. One Health 2024; 19:100860. [PMID: 39157654 PMCID: PMC11327573 DOI: 10.1016/j.onehlt.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Objective To provide a comprehensive characterization of Clostridioides difficile antimicrobial resistance (AMR) data in veterinary medicine based on the minimum inhibitory concentrations (MICs) of all antimicrobial agents tested in relation to the techniques used. Methods A systematic scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews (PRISMA-ScR) and its associated checklist. The objective was to provide a synthesis of the evidence in a summarized and analyzed format.To this end, three scientific databases were consulted: Scopus, PubMed, and Web of Science, up until December 2021. Subsequently, all identified literature was subjected to screening and classification in accordance with the established study criteria, with the objective of subsequent evaluation. Study selection and data extraction A comprehensive analysis was conducted on studies regarding Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine across various animal species and related sources. The analysis included studies that presented data on antimicrobial susceptibility testing using the E-test, agar dilution, or broth microdilution techniques. The extracted data included minimum inhibitory concentration (MIC) values and a comprehensive characterization analysis. Results A total of 1582 studies were identified in scientific databases, of which only 80 were subjected to analysis. The research on Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine is most prolific in Europe and North America. The majority of isolates originate from production animals (55%) and pets (15%), with pigs, horses, and cattle being the most commonly studied species. The tested agents' minimum inhibitory concentrations (MICs) and resulting putative antimicrobial resistance profiles exhibited considerable diversity across animal species and sources of isolation. Additionally, AMR characterization has been conducted at the gene and genomic level in animal strains. The E-test was the most frequently utilized method for antimicrobial susceptibility testing (AST). Furthermore, the breakpoints for interpreting the MICs were found to be highly heterogeneous and frequently observed regardless of the geographical origin of the publication. Conclusions Antimicrobial susceptibility testing techniques and results were found to be diverse and heterogeneous. There is no evidence of an exclusive antimicrobial resistance pattern in any animal species. Despite the phenotypic and genomic data collected over the years, further interdisciplinary studies are necessary. Our findings underscore the necessity for international collaboration to establish uniform standards for C. difficile antimicrobial susceptibility testing (AST) methods and reporting. Such collaboration would facilitate a "One Health" approach to surveillance and control, which is of paramount importance.
Collapse
Affiliation(s)
- Mauricio Andino-Molina
- Grupo de Investigación en Enfermedades de Etiología Microbiana (GIEEM) & Observatorio Universitario de Genómica y Resistencia Antimicrobiana (OUGRAM), Instituto de Investigaciones en Microbiología (IIM), Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Honduras
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Ines Dost
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany
| | - Mostafa Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
5
|
Filippova VA, Ilina LA, Yildirim EA, Ponomareva ES, Kluchnikova IA, Dubrovin AV, Kalitkina KA, Zaikin VA, Laptev GY. Assessing the Risk of Spreading Clostridioides difficile and Its Toxins Within the Dairy Farm. Animals (Basel) 2024; 14:3148. [PMID: 39518870 PMCID: PMC11545040 DOI: 10.3390/ani14213148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Clostridioides difficile currently constitutes a major pathogen of the gastrointestinal tract, which poses a significant growing burden on medicine and veterinary medicine in many regions. A farm was assessed (feed table, silage pit, and feces (healthy animals, emaciated animals, and animals with mastitis)) for the presence of C. difficile toxins using the PCR method and for the microbiome in cow feed and feces using NGS technology, one month apart. C. difficile toxin A and binary toxin were detected in feed samples. C. difficile toxin genes were found in the feces of sick animals two to three times more often than in healthy animals. Analysis of the microbial community of cow feces revealed that, during the month, the animals experienced major changes in the community structure associated with the accumulation of pathogenic bacteria, in particular Paeniclostridium sp., as well as with the development of methanogenic archaea of the Methanobacteriaceae and associated microorganisms (Lachnospiraceae and Anaerovoracaceae), which may speak of a decrease in feed efficiency and, subsequently, animal productivity. Thus, it seems likely that C. difficile enters the gastrointestinal tract of animals through feed, while animals weakened by diseases are more sensitive to the reproduction of pathogens in the GIT due to a weakened organism.
Collapse
Affiliation(s)
- Valentina A. Filippova
- Department of Large Livestock Husbandry, St. Petersburg State Agrarian University, St. Petersburg-Pushkin 196605, Russia; (E.A.Y.); (A.V.D.); (K.A.K.); (G.Y.L.)
- BIOTROF LLC, St. Petersburg 196602, Russia; (E.S.P.); (I.A.K.); (V.A.Z.)
| | - Larisa A. Ilina
- Department of Large Livestock Husbandry, St. Petersburg State Agrarian University, St. Petersburg-Pushkin 196605, Russia; (E.A.Y.); (A.V.D.); (K.A.K.); (G.Y.L.)
- BIOTROF LLC, St. Petersburg 196602, Russia; (E.S.P.); (I.A.K.); (V.A.Z.)
| | - Elena A. Yildirim
- Department of Large Livestock Husbandry, St. Petersburg State Agrarian University, St. Petersburg-Pushkin 196605, Russia; (E.A.Y.); (A.V.D.); (K.A.K.); (G.Y.L.)
- BIOTROF LLC, St. Petersburg 196602, Russia; (E.S.P.); (I.A.K.); (V.A.Z.)
| | | | | | - Andrey V. Dubrovin
- Department of Large Livestock Husbandry, St. Petersburg State Agrarian University, St. Petersburg-Pushkin 196605, Russia; (E.A.Y.); (A.V.D.); (K.A.K.); (G.Y.L.)
- BIOTROF LLC, St. Petersburg 196602, Russia; (E.S.P.); (I.A.K.); (V.A.Z.)
- Faculty of Biotechnologies, ITMO University, St. Petersburg 197101, Russia
| | - Ksenia A. Kalitkina
- Department of Large Livestock Husbandry, St. Petersburg State Agrarian University, St. Petersburg-Pushkin 196605, Russia; (E.A.Y.); (A.V.D.); (K.A.K.); (G.Y.L.)
- BIOTROF LLC, St. Petersburg 196602, Russia; (E.S.P.); (I.A.K.); (V.A.Z.)
| | - Vasiliy A. Zaikin
- BIOTROF LLC, St. Petersburg 196602, Russia; (E.S.P.); (I.A.K.); (V.A.Z.)
| | - Georgy Y. Laptev
- Department of Large Livestock Husbandry, St. Petersburg State Agrarian University, St. Petersburg-Pushkin 196605, Russia; (E.A.Y.); (A.V.D.); (K.A.K.); (G.Y.L.)
- BIOTROF LLC, St. Petersburg 196602, Russia; (E.S.P.); (I.A.K.); (V.A.Z.)
| |
Collapse
|
6
|
Cerri FM, Basso RM, Pereira WAB, Silveira JMDS, Ferreira EDO, Haisi A, Araújo Júnior JP, Arroyo LG, de Castro YG, Silva ROS, Oliveira-Filho JPD, Borges AS. Fecal shedding of Clostridioides difficile in calves in Sao Paulo state, Brazil. Anaerobe 2024; 88:102861. [PMID: 38729514 DOI: 10.1016/j.anaerobe.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE This study aimed to evaluate the fecal shedding of C. difficile in calves on farms in Sao Paulo State, Brazil. MATERIALS AND METHODS Fecal samples (n = 300) were collected from diarrheic (n = 78) and nondiarrheic (n = 222) calves less than 60 days of age from 20 farms. Fecal samples were inoculated into enrichment broth supplemented with taurocholate and cultured under anaerobic conditions. Colonies suspected to be C. difficile were harvested for DNA extraction and then multiplex PCR for the detection of genes encoding toxins A and B and binary toxins. All toxigenic isolates were ribotyped and tested for antimicrobial susceptibility, and five selected strains were subjected to whole-genome sequencing to determine their sequence type. RESULTS AND DISCUSSION C. difficile was isolated from 29.3 % (88/300) of the samples. All toxigenic isolates (17/88, 19.3 %) were classified as ribotypes RT046 (13/17-79.47 %, A+B+ CDT-) and RT126 (4/17 = 20.53 %, A+B+ CDT+). The sequenced strains from RT046 were classified as ST35 (Clade 1), while those from RT126 were classified as ST11 (Clade 5). No associations between the epidemiological factors in any of the groups and C. difficile isolation were observed. Most of the toxigenic isolates (16/17 = 94.41 %) were classified as multidrug-resistant. Calves can be an important source of toxigenic C. difficile strains, including multidrug-resistant isolates from ribotypes commonly observed in humans.
Collapse
Affiliation(s)
- Fabrício Moreira Cerri
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - Roberta Martins Basso
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | | | - Júlia Meireles da Silva Silveira
- Federal University of Rio de Janeiro (UFRJ), Paulo de Góes Institute of Microbiology (IMPG), Department of Medical Microbiology, UFRJ, Rio de Janeiro, Rio Janeiro, Brazil
| | - Eliane de Oliveira Ferreira
- Federal University of Rio de Janeiro (UFRJ), Paulo de Góes Institute of Microbiology (IMPG), Department of Medical Microbiology, UFRJ, Rio de Janeiro, Rio Janeiro, Brazil
| | - Amanda Haisi
- Sao Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Botucatu, Sao Paulo, Brazil
| | | | - Luis G Arroyo
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada
| | - Yasmin Gonçalves de Castro
- Federal University of Minas Gerais (UFMG), School of Veterinary Medicine (EV), Belo Horizonte, Minas Gerais, Brazil
| | | | - José Paes de Oliveira-Filho
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - Alexandre Secorun Borges
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
7
|
Spigaglia P, Barbanti F, Faccini S, Vescovi M, Criscuolo EM, Ceruti R, Gaspano C, Rosignoli C. Clostridioides difficile in Pigs and Dairy Cattle in Northern Italy: Prevalence, Characterization and Comparison between Animal and Human Strains. Microorganisms 2023; 11:1738. [PMID: 37512910 PMCID: PMC10383565 DOI: 10.3390/microorganisms11071738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
It has been observed that novel strains of Clostridioides difficile can rapidly emerge and move between animal and human hosts. The aim of this study was to investigate the prevalence of C. difficile in pigs and dairy cattle in northern Italy and to characterize and compare C. difficile animal strains with those from patients from the same geographical area. The C. difficile strains were isolated from animals from farms and slaughterhouses (cross-sectional studies) and from neonatal animals with enteric disorders in routine diagnostic investigations (passive surveillance). Samples positive for C. difficile were found in 87% of the pig farms and in 40% of the cattle farms involved in the cross-sectional studies, with a 20% prevalence among suckling piglets and 6.7% prevalence in neonatal calves, with no significant difference between animals with and without diarrheal symptoms. The prevalence of C. difficile in older animal categories was significantly lower. This result suggests that young age is an important risk factor for C. difficile colonization. In cross-sectional studies at slaughterhouses, in both the heavy pigs and dairy cows examined, only 2% of the intestinal content samples were positive for C. difficile and no contamination was found on the surface of the carcasses. Considering passive surveillance, the prevalence rates of positive samples were 29% in piglets and 1.4% in calves. Overall, 267 strains of animal origin and 97 from humans were collected. In total, 39 ribotypes (RTs) were identified, with RT 078 and RT 018 being predominant among animals and humans, respectively. Several RTs overlapped between animals and patients. In particular, RT 569 was identified as an emergent type in our country. Resistance to erythromycin and moxifloxacin was widely diffused among C. difficile strains, regardless of origin. This study supports C. difficile as a pathogen of one-health importance and highlights the need for a collaborative approach between physicians and veterinarians to control and prevent infections that are able to cross species and geographical barriers.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Fabrizio Barbanti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | - Mariella Vescovi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | | | - Rossella Ceruti
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Clara Gaspano
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Carlo Rosignoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| |
Collapse
|
8
|
Williamson CHD, Roe CC, Terriquez J, Hornstra H, Lucero S, Nunnally AE, Vazquez AJ, Vinocur J, Plude C, Nienstadt L, Stone NE, Celona KR, Wagner DM, Keim P, Sahl JW. A local-scale One Health genomic surveillance of Clostridioides difficile demonstrates highly related strains from humans, canines, and the environment. Microb Genom 2023; 9. [PMID: 37347682 DOI: 10.1099/mgen.0.001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Although infections caused by Clostridioides difficile have historically been attributed to hospital acquisition, growing evidence supports the role of community acquisition in C. difficile infection (CDI). Symptoms of CDI can range from mild, self-resolving diarrhoea to toxic megacolon, pseudomembranous colitis, and death. In this study, we sampled C. difficile from clinical, environmental, and canine reservoirs in Flagstaff, Arizona, USA, to understand the distribution and transmission of the pathogen in a One Health framework; Flagstaff is a medium-sized, geographically isolated city with a single hospital system, making it an ideal site to characterize genomic overlap between sequenced C. difficile isolates across reservoirs. An analysis of 562 genomes from Flagstaff isolates identified 65 sequence types (STs), with eight STs being found across all three reservoirs and another nine found across two reservoirs. A screen of toxin genes in the pathogenicity locus identified nine STs where all isolates lost the toxin genes needed for CDI manifestation (tcdB, tcdA), demonstrating the widespread distribution of non-toxigenic C. difficile (NTCD) isolates in all three reservoirs; 15 NTCD genomes were sequenced from symptomatic, clinical samples, including two from mixed infections that contained both tcdB+ and tcdB- isolates. A comparative single nucleotide polymorphism (SNP) analysis of clinically derived isolates identified 78 genomes falling within clusters separated by ≤2 SNPs, indicating that ~19 % of clinical isolates are associated with potential healthcare-associated transmission clusters; only symptomatic cases were sampled in this study, and we did not sample asymptomatic transmission. Using this same SNP threshold, we identified genomic overlap between canine and soil isolates, as well as putative transmission between environmental and human reservoirs. The core genome of isolates sequenced in this study plus a representative set of public C. difficile genomes (n=136), was 2690 coding region sequences, which constitutes ~70 % of an individual C. difficile genome; this number is significantly higher than has been published in some other studies, suggesting that genome data quality is important in understanding the minimal number of genes needed by C. difficile. This study demonstrates the close genomic overlap among isolates sampled across reservoirs, which was facilitated by maximizing the genomic search space used for comprehensive identification of potential transmission events. Understanding the distribution of toxigenic and non-toxigenic C. difficile across reservoirs has implications for surveillance sampling strategies, characterizing routes of infections, and implementing mitigation measures to limit human infection.
Collapse
Affiliation(s)
| | - Chandler C Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Samantha Lucero
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Amalee E Nunnally
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam J Vazquez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | - Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
9
|
Clostridioides difficile in Food-Producing Animals in Romania: First Study on the Prevalence and Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11091194. [PMID: 36139973 PMCID: PMC9495095 DOI: 10.3390/antibiotics11091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
At present, the epidemiology of the gastrointestinal disease caused by Clostridioides difficile (C. difficile) is starting to be slowly elucidated internationally, although information about the bacteria in the food supply chain is insufficient and, in many countries, even absent. The study was conducted in order to investigate the prevalence of C. difficile isolated from animal feces, as well as to determine the antimicrobial susceptibility of such isolates. The presence of antibiotic resistance determinants has also been evaluated. Overall, a total of 24 (12.5%) C. difficile isolates were recovered (out of the 192 samples collected), the highest percentage of positive isolates being detected in the fecal samples collected from piglets (25%). The majority of the isolates recovered in the current study proved to be toxigenic. Moreover, all C. difficile isolates were susceptible to vancomycin, although a large proportion of the porcine isolates (50%) were resistant to levofloxacin. The tetW and erm(B) genes have also been identified in the porcine isolates. In conclusion, this is the first analysis of the prevalence of C. difficile in food-producing animals in Romania, and it adds further evidence about the possible role of animals as a source of resistant C. difficile strains and a reservoir of antimicrobial resistance determinants.
Collapse
|
10
|
Abay S, Ahmed EF, Aydin F, Karakaya E, Müştak HK. Presence of Clostridioides difficile in cattle feces, carcasses, and slaughterhouses: Molecular characterization and antibacterial susceptibility of the recovered isolates. Anaerobe 2022; 75:102575. [PMID: 35477095 DOI: 10.1016/j.anaerobe.2022.102575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
The aims of this study were to isolate and identify Clostridioides difficile from cattle feces and carcasses, and slaughterhouse samples, and to determine the molecular characteristics and antibacterial susceptibility of the recovered isolates. A total of 220 samples, including 100 cattle fecal samples, 100 cattle carcass surface samples, and 20 slaughterhouse samples were used as the study material. In total, 12 (5.45%) samples, including 11 (11%) cattle fecal samples and 1 (5%) slaughterhouse sample, were found to be positive for C. difficile. On the other hand, all of the carcass samples were negative for C. difficile. A total of 11 (91.66%) isolates, including 10 fecal isolates and 1 slaughterhouse wastewater isolate, were found to be positive for the presence of the toxin genes tcdA and tcdB, whilst 1 fecal isolate was found to be negative for both genes. In addition, 3 different ERIC-PCR profiles were identified in the 11 fecal isolates. The ERIC-PCR profile of the slaughterhouse wastewater isolate was found to be similar to one of the ERIC-PCR profiles obtained from the fecal isolates. All of the isolates were resistant to ciprofloxacin and levofloxacin. Considering that the agent is a spore-forming bacterium shed in feces, the detection of C. difficile isolates of different genotypes, some carrying toxin genes, suggests that feces and slaughterhouse wastewater carrying this bacterium may pose a risk for the contamination of carcasses. The current study revealed that hygiene conditions should be performed to the maximum extent in slaughterhouses.
Collapse
Affiliation(s)
- Seçil Abay
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology Kayseri, Turkey.
| | | | - Fuat Aydin
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology Kayseri, Turkey
| | - Emre Karakaya
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology Kayseri, Turkey
| | - Hamit Kaan Müştak
- Ankara University, Faculty of Veterinary Medicine, Department of Microbiology, Ankara, Turkey
| |
Collapse
|
11
|
Imwattana K, Putsathit P, Collins DA, Leepattarakit T, Kiratisin P, Riley TV, Knight DR. Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017. Microb Genom 2022; 8:000792. [PMID: 35316173 PMCID: PMC9176289 DOI: 10.1099/mgen.0.000792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile PCR ribotype (RT) 017 ranks among the most successful strains of C. difficile in the world. In the past three decades, it has caused outbreaks on four continents, more than other ‘epidemic’ strains, but our understanding of the genomic epidemiology underpinning the spread of C. difficile RT 017 is limited. Here, we performed high-resolution phylogenomic and Bayesian evolutionary analyses on an updated and more representative dataset of 282 non-clonal C. difficile RT 017 isolates collected worldwide between 1981 and 2019. These analyses place an estimated time of global dissemination between 1953 and 1983 and identified the acquisition of the ermB-positive transposon Tn6194 as a key factor behind global emergence. This coincided with the introduction of clindamycin, a key inciter of C. difficile infection, into clinical practice in the 1960s. Based on the genomic data alone, the origin of C. difficile RT 017 could not be determined; however, geographical data and records of population movement suggest that C. difficile RT 017 had been moving between Asia and Europe since the Middle Ages and was later transported to North America around 1860 (95 % confidence interval: 1622–1954). A focused epidemiological study of 45 clinical C. difficile RT 017 genomes from a cluster in a tertiary hospital in Thailand revealed that the population consisted of two groups of multidrug-resistant (MDR) C. difficile RT 017 and a group of early, non-MDR C. difficile RT 017. The significant genomic diversity within each MDR group suggests that although they were all isolated from hospitalized patients, there was probably a reservoir of C. difficile RT 017 in the community that contributed to the spread of this pathogen.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Australia
- Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Deirdre A. Collins
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | | | | | - Thomas V. Riley
- School of Biomedical Sciences, The University of Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Australia
| | - Daniel R. Knight
- School of Biomedical Sciences, The University of Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Australia
- *Correspondence: Daniel R. Knight,
| |
Collapse
|
12
|
Bacterial Causes of Intestinal Disease in Dairy Calves: Acceptable Control Measures. Vet Clin North Am Food Anim Pract 2022; 38:107-119. [PMID: 35219479 DOI: 10.1016/j.cvfa.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although diarrhea in dairy calves is common, it is not always due to bacteria. Escherichia coli, Salmonella, and Clostridium perfringens are the most commonly implicated bacteria, but an etiologic diagnosis should be sought before specific treatment is instituted. Nonspecific treatment such as fluid, electrolyte, and nutritional support should be accomplished while diagnostics are pending. Antimicrobials should not be a first-line therapy for calf diarrhea. Control measures are discussed.
Collapse
|
13
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|
14
|
Prevalence, Molecular Characterization and Antimicrobial Susceptibility of Clostridioides difficile Isolated from Pig Carcasses and Pork Products in Central Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111368. [PMID: 34769888 PMCID: PMC8583557 DOI: 10.3390/ijerph182111368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
In the last decade, the incidence and severity of Clostridioides difficile infections (CDIs) in humans have been increasing and community-associated infections have been described. For these reasons, the interest in C. difficile in food and in food animals has increased, suggesting other possible sources of C. difficile acquisition. This study evaluated the presence of C. difficile on pig carcasses at the slaughterhouse and in pork products in Central Italy. The contamination rate on pig carcasses was 4/179 (2.3%). Regarding food samples, a total of 216 pork products were tested (74 raw meat preparations and 142 ready-to-eat food samples made by cured raw meat). The real-time PCR screening was positive for 1/74 raw meat preparation (1.35%) and for 1/142 ready-to-eat food samples (0.7%) C. difficile was isolated only from the raw meat preparation (pork sausage). All the isolated strains were toxigenic and susceptible to all the tested antibiotics. Strains isolated from carcass samples displayed A+B+CDTa+CDTb+ profile, were toxinotype IV and belonged to the same ribotype arbitrary named TV93, while the one isolated from food samples displayed A+B+CDTa-CDTb- profile and it was not possible to determine ribotype and toxinotype, because it was lost after freeze storage. It was concluded that the prevalence of C. difficile in the pork supply chain is very low.
Collapse
|
15
|
Tsai CS, Hung YP, Lee JC, Syue LS, Hsueh PR, Ko WC. Clostridioides difficile infection: an emerging zoonosis? Expert Rev Anti Infect Ther 2021; 19:1543-1552. [PMID: 34383624 DOI: 10.1080/14787210.2021.1967746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Clostridioides difficile (C. difficile) infection (CDI) is the most common cause of antibiotic-associated diarrhea and one of the common infections in healthcare facilities. In recent decades, there has been an emerging threat of community-acquired CDI (CA-CDI). Environmental transmission of C. difficile in the community setting has become a major concern, and animals are an important reservoir for C. difficile causing human diseases. AREAS COVERED In this article, the molecular epidemiology of C. difficile in animals and recent evidences of zoonotic transfer to humans are reviewed based on an electronic search in the databases of PubMed and Google Scholar. EXPERT OPINION C. difficile can be found in stool from diarrheal dogs and cats; therefore, household pets could be a potential source. C. difficile will threaten human health because hypervirulent C. difficile ribotype 078 strains have been found in retail chickens, pig farms, and slaughterhouses. Risk factors for fecal C. difficile carriage in animals include young age, dietary changes, and antibiotic abuse in domestic animals. With the advent of whole genome sequencing techniques, there will be more solid evidence indicating zoonotic transfer of C. difficile from animals to humans.
Collapse
Affiliation(s)
- Chin-Shiang Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Sitovs A, Sartini I, Giorgi M. Levofloxacin in veterinary medicine: a literature review. Res Vet Sci 2021; 137:111-126. [PMID: 33964616 DOI: 10.1016/j.rvsc.2021.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
A potent third-generation antimicrobial fluoroquinolone drug, levofloxacin was introduced into human clinical practice in 1993. Levofloxacin is also used in veterinary medicine, however its use is limited: it is completely banned for veterinary use in the EU, and used extralabel in only companion animals in the USA. Since its introduction to clinical practice, many studies have been published on levofloxacin in animal species, including pharmacokinetic studies, tissue drug depletion, efficacy, and animal microbial isolate susceptibility to levofloxacin. This literature overview highlights the most clinically relevant and scientifically important levofloxacin studies linked to the field of veterinary medicine.
Collapse
Affiliation(s)
- Andrejs Sitovs
- Department of Pharmacology, Rīga Stradiņš University, Riga, Latvia.
| | - Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, Italy
| |
Collapse
|
17
|
Redding L, Huang E, Ryave J, Webb T, Barnhart D, Baker L, Bender J, Kristula M, Kelly D. Clostridioides difficile on dairy farms and potential risk to dairy farm workers. Anaerobe 2021; 69:102353. [PMID: 33639290 DOI: 10.1016/j.anaerobe.2021.102353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 11/15/2022]
Abstract
Clostridioides difficile causes severe colitis in people and is a significant enteric pathogen in many species of animals, including swine, horses, and potentially cattle. C. difficile is shed in feces, and transmission occurs horizontally via the fecal-oral route. Livestock has been suggested as a potential reservoir for C. difficile, and while studies have shown that swine and farm workers can be colonized with identical clones of C. difficile, the zoonotic transmission of C. difficile from livestock to people has not been definitively demonstrated. The goal of this study was to determine whether dairy calves and dairy farm workers harbored genetically similar isolates of C. difficile. First, we validated a glove juice protocol for detecting C. difficile on farm workers' hands. We then visited 23 farms and collected 1) fecal samples from 92 dairy calves, 2) hand rinsates from 38 dairy farm workers, and 3) fecal samples from five of the dairy farm workers who were willing to submit them. All samples underwent anaerobic culture and qPCR to detect C. difficile. C. difficile was detected on 15 of the farms (65.2%, 95% confidence interval (CI) 42.7%-83.6%) and in 28 calves (30.4%, 95% CI 21.2-40.9%) but in none of the hand rinsates or human fecal samples. Thus, the zoonotic transmission of C. difficile on dairy farms could not be demonstrated, and dairy farmers did not appear to be at increased risk of acquiring C. difficile via the fecal-oral route.
Collapse
Affiliation(s)
- Laurel Redding
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA.
| | - Elizabeth Huang
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob Ryave
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| | - Terry Webb
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| | - Denise Barnhart
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| | - Linda Baker
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| | - Joseph Bender
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| | - Michaela Kristula
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| | - Donna Kelly
- University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, USA
| |
Collapse
|
18
|
Heise J, Witt P, Maneck C, Wichmann-Schauer H, Maurischat S. Prevalence and phylogenetic relationship of Clostridioides difficile strains in fresh poultry meat samples processed in different cutting plants. Int J Food Microbiol 2020; 339:109032. [PMID: 33388709 DOI: 10.1016/j.ijfoodmicro.2020.109032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023]
Abstract
Clostridioides difficile is one of the most frequent causes of nosocomial infections in humans leading to (antibiotic-associated) diarrhea and severe pseudomembranous colitis. With an increasing frequency, C. difficile infections (CDI) are also observed independently of hospitalization and the age of the patients in an ambulant setting. One potential source of so-called community-acquired CDI is a zoonotic transmission to humans based on direct contact with animals or the consumption of food. To estimate the exposure of humans with C. difficile via food, we screened 364 different retail fresh poultry meat products purchased in Berlin and Brandenburg, Germany and further characterized the isolates. None of the 42 turkey or chicken meat samples without skin was contaminated. However, 51 (15.8%) of 322 tested fresh chicken meat samples with skin were C. difficile-positive. The vast majority (84.3%) of all isolates exhibited toxin genes tcdA and tcdB, whereas the binary toxin cdtA/B was absent. Most of the isolates (50/51) were susceptible to all six investigated antimicrobials. However, one non-toxigenic strain was multidrug resistant to the antimicrobials clindamycin and erythromycin. The isolates were mainly represented by PCR-ribotypes (RT) 001, RT002, RT005, and RT014, which were already associated with human CDI cases in Germany and were partially detected in poultry. The relatively high contamination rate of fresh retail chicken meat with skin purchased in Germany indicates chicken meat as a potential source of human infections. Moreover, we identified cutting plants with a higher rate of a C. difficile-contamination (21.4-32.8%). To compare the phylogenetic relationship of the isolated strains from certain cutting plants over several months in 2018 and 2019, we analyzed them using NGS followed by core genome MLST. Interestingly, highly related strains (0-3 alleles distance) of common clinical RT001 and RT002 isolates, as well as of the non-toxigenic RT205 isolates were detectable in same cutting plants over a period of three and 16 months, respectively.The continuous contamination with the same strain could be explained by the longterm persistence of this strain within the cutting plant (e.g., within the scalder), or with a recurring entry e.g. from the same fattening farm.
Collapse
Affiliation(s)
- Janine Heise
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Pascal Witt
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Corinna Maneck
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Heidi Wichmann-Schauer
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Sven Maurischat
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
19
|
Usui M. One Health approach to Clostridioides difficile in Japan. J Infect Chemother 2020; 26:643-650. [PMID: 32334949 DOI: 10.1016/j.jiac.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Clostridioides difficile infections (CDIs) are predominantly a healthcare-associated illness in developed countries, with the majority of cases being elderly and hospitalize patients who used antibiotic therapy. Recently, the incidence of community-associated CDIs (CA-CDIs) in younger patients without a previous history of hospitalization or antibiotic treatment has been increasing globally. C. difficile is sometimes found in the intestine of many animals, such as pigs, calves, and dogs. Food products such as retail meat products and vegetables sometimes contain C. difficile. C. difficile has also been isolated from several environments such as compost manure, rivers, and soils. Yet, direct transmission of C. difficile from animals, food products, and environments to humans has not been proven, although these strains have similar molecular characteristics. Therefore, it has been suggested that there is a relationship between CA-CDIs and C. difficile from animals, food products, and the environment. To clarify the importance of the presence of C. difficile in several sources, characterization of C. difficile in these sources is required. However, the epidemiology of C. difficile in animals, food products, and the environment is not well studied in Japan. This review summarizes recent trends of CDIs and compares the molecular characteristics of C. difficile in Japanese animals, food products, and the environment. The prevalence trends of C. difficile in Japan are similar to those in the rest of the world. Therefore, I recommend using a One Health approach to CDI surveillance, monitoring, and control.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido, 069-8501, Japan.
| |
Collapse
|
20
|
Zhang WZ, Li WG, Liu YQ, Gu WP, Zhang Q, Li H, Liu ZJ, Zhang X, Wu Y, Lu JX. The molecular characters and antibiotic resistance of Clostridioides difficile from economic animals in China. BMC Microbiol 2020; 20:70. [PMID: 32228454 PMCID: PMC7106571 DOI: 10.1186/s12866-020-01757-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It has been performed worldwidely to explore the potential of animals that might be a reservoir for community associated human infections of Clostridioides difficile. Several genetically undistinguished PCR ribotypes of C. difficile from animals and human have been reported, illustrating potential transmission of C. difficile between them. Pig and calf were considered as the main origins of C. difficile with predominant RT078 and RT033, respectively. As more investigations involved, great diversity of molecular types from pig and calf were reported in Europe, North American and Australia. However, there were quite limited research on C. difficile isolates from meat animals in China, leading to non-comprehensive understanding of molecular epidemiology of C. difficile in China. RESULTS A total of 55 C. difficile were isolated from 953 animal stool samples, within which 51 strains were from newborn dairy calf less than 7 days in Shandong Province. These isolates were divided into 3 STs and 6 RTs, of which ST11/RT126 was predominant type, and responsible for majority antibiotic resistance isolates. All the isolates were resistant to at least one tested antibiotics, however, only two multidrug resistant (MDR) isolates were identified. Furthermore, erythromycin (ERY) and clindamycin (CLI) were the two main resistant antibiotics. None of the isolates were resistant to vancomycin (VAN), metronidazole (MTZ), tetracycline (TET), and rifampin (RIF). CONCLUSIONS In this study, we analyzed the prevalence, molecular characters and antibiotic resistance of C. difficile from calf, sheep, chicken, and pig in China. Some unique features were found here: first, RT126 not RT078 were the dominant type from baby calf, and none isolates were got from pig; second, on the whole, isolates from animals display relative lower resistant rate to these 11 tested antibiotics, compared with isolates from human in China in our previous report. Our study helps to deep understanding the situation of C. difficile from economic animals in China, and to further study the potential transmission of C. difficile between meat animals and human.
Collapse
Affiliation(s)
- Wen-Zhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Wen-Ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Yu-Qing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong academy of agricultural Sciences, Jinan, China
| | - Wen-Peng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong academy of agricultural Sciences, Jinan, China
| | - Hu Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China.,Regional Center for Disease Prevention and Control, Aksu, Xinjiang, China
| | - Zheng-Jie Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| | - Jin-Xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
21
|
Lee SH, Kim HY, Choi EW, Kim D. Causative agents and epidemiology of diarrhea in Korean native calves. J Vet Sci 2020; 20:e64. [PMID: 31775191 PMCID: PMC6883198 DOI: 10.4142/jvs.2019.20.e64] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 12/24/2022] Open
Abstract
Calf diarrhea caused by infectious agents is associated with economic losses in the cattle industry. The purpose of this study was to identify the causative agents and epidemiological characteristics of diarrhea in Korean native calves (KNC). In total, 207 diarrheal KNC aged less than 7 months were investigated. Fecal samples collected from the rectum were examined for causative agents using polymerase chain reaction (PCR) or real-time PCR and the number of oocysts were counted. Fourteen causative agents were detected from 164 of the 207 diarrheal KNC. Rotavirus was the most common agent (34.8%), followed by Eimeria spp. (31.7%), Escherichia coli (22.0%), Giardia spp. (14.0%), Clostridium difficile (9.8%), bovine viral diarrhea virus (8.5%), coronavirus (7.9%), Cryptosporidium spp. (7.3%), torovirus (6.7%), parvovirus (5.5%), norovirus (4.9%), kobuvirus (1.8%), adenovirus (1.2%), and Salmonella spp. (0.6%). About 95 (57.9%) of 164 calves were infected with a single causative agent and 42.1% were infected by multiple agents. No significant difference was observed in mortality between calves infected with a single agent and multiple agents. The occurrence of diarrhea caused by rotavirus, Eimeria spp., kobuvirus, and Giardia spp. was significantly different based on onset age, and the prevalence of diarrhea caused by rotavirus or C. difficile was significantly different between seasons. This study help the understanding of KNC diarrhea for the development of an effective strategy for disease prevention and control, especially in Eastern provinces of South Korea.
Collapse
Affiliation(s)
- Sung Hwan Lee
- Laboratory of Large Animal Medicine, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ha Young Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun Wha Choi
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| | - Doo Kim
- Laboratory of Large Animal Medicine, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
22
|
Rodriguez-Palacios A, Mo KQ, Shah BU, Msuya J, Bijedic N, Deshpande A, Ilic S. Global and Historical Distribution of Clostridioides difficile in the Human Diet (1981-2019): Systematic Review and Meta-Analysis of 21886 Samples Reveal Sources of Heterogeneity, High-Risk Foods, and Unexpected Higher Prevalence Toward the Tropic. Front Med (Lausanne) 2020; 7:9. [PMID: 32175321 PMCID: PMC7056907 DOI: 10.3389/fmed.2020.00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Clostridioides difficile (CD) is a spore-forming bacterium that causes life-threatening intestinal infections in humans. Although formerly regarded as exclusively nosocomial, there is increasing genomic evidence that person-to-person transmission accounts for only <25% of cases, supporting the culture-based hypothesis that foods may be routine sources of CD-spore ingestion in humans. To synthesize the evidence on the risk of CD exposure via foods, we conducted a systematic review and meta-analysis of studies reporting the culture prevalence of CD in foods between January 1981 and November 2019. Meta-analyses, risk-ratio estimates, and meta-regression were used to estimate weighed-prevalence across studies and food types to identify laboratory and geographical sources of heterogeneity. In total, 21886 food samples were tested for CD between 1981 and 2019 (96.4%, n = 21084, 2007–2019; 232 food-sample-sets; 79 studies; 25 countries). Culture methodology, sample size and type, region, and latitude were sources of heterogeneity (p < 0.05). Although non-strictly-anaerobic methods were reported in some studies, and we confirmed experimentally that improper anaerobiosis of media/sample-handling affects CD recovery in agar (Fisher, p < 0.01), most studies (>72%) employed the same (one-of-six) culture strategy. Because the prevalence was also meta-analytically similar across six culture strategies reported, all studies were integrated using three meta-analytical methods. At the study level (n = 79), the four-decade global cumulative-prevalence of CD in the human diet was 4.1% (95%CI = −3.71, 11.91). At the food-set level (n = 232, mean 12.9 g/sample, similar across regions p > 0.2; 95%CI = 9.7–16.2), the weighted prevalence ranged between 4.5% (95%CI = 3–6%; all studies) and 8% (95%CI = 7–8%; only CD-positive-studies). Risk-ratio ranking and meta-regression showed that milk was the least likely source of CD, while seafood, leafy green vegetables, pork, and poultry carried higher risks (p < 0.05). Across regions, the risk of CD in foods for foodborne exposure reproducibly decreased with Earth latitude (p < 0.001). In conclusion, CD in the human diet is a global non-random-source of foodborne exposure that occurs independently of laboratory culture methods, across regions, and at a variable level depending on food type and latitude. The latitudinal trend (high CD-food-prevalence toward tropic) is unexpectedly inverse to the epidemiological observations of CD-infections in humans (frequent in temperate regions). Findings suggest the plausible hypothesis that ecologically-richer microbiomes in the tropic might protect against intestinal CD colonization/infections despite CD ingestion.
Collapse
Affiliation(s)
- Alexander Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kevin Q Mo
- Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, United States.,College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Bhavan U Shah
- Informatics and Assessment Division, Lorain County General Health District, Elyria, OH, United States.,Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Joan Msuya
- Department of Health and Nutrition, World Vision, Arusha, Tanzania
| | - Nina Bijedic
- Department of Applied Mathematics and Formal Methods, Information Technologies, University Dzemal Bijedic, Mostar, Bosnia and Herzegovina.,Department of Mathematics, University of North Carolina, Charlotte, NC, United States
| | - Abhishek Deshpande
- Medicine Institute Center for Value-Based Care Research, Cleveland Clinic, Cleveland, OH, United States
| | - Sanja Ilic
- Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Abstract
Clostridium (Clostridioides) difficile is a gram-positive, spore-forming bacterium that is an important cause of disease in people, a variably important cause of disease in some animal species, and an apparently harmless commensal in others. Regardless of whether it is a known pathogen in a particular species, it can also be found in healthy individuals, sometimes at high prevalences and typically with higher rates of carriage in young individuals. As it is investigated in more animal species, it is apparent that this bacterium is widely disseminated in a diverse range of domestic and wild animal species. Although it can be found in most species in which investigations have been performed, there are pronounced intra- and inter-species differences in prevalence and clinical relevance. A wide range of strains can be identified, some that appear to be animal associated and others that are found in humans and animals. A large percentage of strains that cause disease in people can at least sporadically be found in animals. It is a potentially important zoonotic pathogen, but there is limited direct evidence of animal-human transmission. Although C. difficile has been studied extensively over the past few decades, it remains an enigmatic organism in many ways.
Collapse
Affiliation(s)
- J Scott Weese
- Department of Pathobiology and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada (Weese)
| |
Collapse
|
24
|
Muñoz-Price LS, Hanson R, Singh S, Nattinger AB, Penlesky A, Buchan BW, Ledeboer NA, Beyer K, Namin S, Zhou Y, Pezzin LE. Association Between Environmental Factors and Toxigenic Clostridioides difficile Carriage at Hospital Admission. JAMA Netw Open 2020; 3:e1919132. [PMID: 31922563 PMCID: PMC6991319 DOI: 10.1001/jamanetworkopen.2019.19132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
IMPORTANCE Clostridioides difficile infection is the most frequent health care-associated infection in the United States. However, exposure to this organism might occur outside the health care setting. OBJECTIVE To examine whether exposure to environmental factors, such as livestock farms, is associated with a higher probability of being colonized with C difficile at hospital admission. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted from May 1, 2017, to June 30, 2018, at a teaching-affiliated hospital in Milwaukee, Wisconsin. All consecutive patients underwent C difficile screening using a nucleic acid amplification test at hospital admission. Data analyses were performed from July 2018 to October 2019. EXPOSURES The distances from patient residence to the nearest livestock farms, meat processing plants, raw materials services, and sewage facilities were measured in addition to risk factors previously evaluated in other studies. MAIN OUTCOMES AND MEASURES The main outcome was a positive result on C difficile screening tests performed within 72 hours of hospital admission. RESULTS A total of 3043 patients admitted to the hospital were included in the final analysis. Of those, 1564 (51.4%) were women and 2074 (68.9%) were white, with a mean (SD) age of 62.0 (15.9) years; 978 patients (32.1%) were admitted to hematology-oncology units. At first admission, 318 patients (10.4%) were detected through testing as C difficile carriers. Multivariable logistic regression analyses were performed on a stratified sample of patients based on hematology-oncology admission status. These analyses indicated that although patients admitted to hematology-oncology units were 35% more likely to be colonized with C difficile, no significant association existed between their sociodemographic and economic characteristics or health care and environmental exposures and the likelihood of a positive C difficile test result. In contrast, among patients admitted to non-hematology-oncology units, comorbidities increased the likelihood for colonization by more than 4 times; women had 60% greater colonization than men, and a history of recent hospitalization (ie, within the preceding 6 months) increased the likelihood of colonization by 70%. Residential proximity to livestock farms were all significantly associated with a higher likelihood of a positive C difficile test result. Residential proximity to livestock farms more than doubled the probability of C difficile colonization in patients admitted to non-hematology-oncology units. CONCLUSIONS AND RELEVANCE A shorter distance between residence and livestock farms was associated with C difficile colonization. Knowledge of the epidemiology of C difficile in the community surrounding the hospital is important, as it has potential implications for the incidence of hospital-onset C difficile infection.
Collapse
Affiliation(s)
- L. Silvia Muñoz-Price
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee
| | - Ryan Hanson
- Collaborative for Healthcare Delivery Science, Medical College of Wisconsin, Milwaukee
| | - Siddhartha Singh
- Collaborative for Healthcare Delivery Science, Medical College of Wisconsin, Milwaukee
- Division of General Internal Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee
| | - Ann B. Nattinger
- Collaborative for Healthcare Delivery Science, Medical College of Wisconsin, Milwaukee
- Division of General Internal Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee
| | - Annie Penlesky
- Collaborative for Healthcare Delivery Science, Medical College of Wisconsin, Milwaukee
| | - Blake W. Buchan
- Department of Pathology, Medical College of Wisconsin, Milwaukee
| | | | - Kirsten Beyer
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee
| | - Sima Namin
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee
| | - Yuhong Zhou
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee
| | - Liliana E. Pezzin
- Collaborative for Healthcare Delivery Science, Medical College of Wisconsin, Milwaukee
- Division of General Internal Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
25
|
Clostridioides (Clostridium) Difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms 2019; 7:microorganisms7120667. [PMID: 31835413 PMCID: PMC6955671 DOI: 10.3390/microorganisms7120667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridioides (Clostridium) difficile is ubiquitous in the environment and is also considered as a bacterium of great importance in diarrhea-associated disease for humans and different animal species. Food animals and household pets are frequently found positive for toxigenic C. difficile without exposing clinical signs of infection. Humans and animals share common C. difficile ribotypes (RTs) suggesting potential zoonotic transmission. However, the role of animals for the development of human infection due to C. difficile remains unclear. One major public health issue is the existence of asymptomatic animals that carry and shed the bacterium to the environment, and infect individuals or populations, directly or through the food chain. C. difficile ribotype 078 is frequently isolated from food animals and household pets as well as from their environment. Nevertheless, direct evidence for the transmission of this particular ribotype from animals to humans has never been established. This review will summarize the current available data on epidemiology, clinical presentations, risk factors and laboratory diagnosis of C. difficile infection in food animals and household pets, outline potential prevention and control strategies, and also describe the current evidence towards a zoonotic potential of C. difficile infection.
Collapse
|
26
|
Usui M, Maruko A, Harada M, Kawabata F, Sudo T, Noto S, Sato T, Shinagawa M, Takahashi S, Tamura Y. Prevalence and characterization of Clostridioides difficile isolates from retail food products (vegetables and meats) in Japan. Anaerobe 2019; 61:102132. [PMID: 31778810 DOI: 10.1016/j.anaerobe.2019.102132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
The present study aimed to elucidate the prevalence of Clostridioides difficile in Japanese retail food products. For this purpose, retail food samples (242 fresh vegetables and 266 retail meat samples: 89 chicken meat; 28 chicken liver; 200 pork meat; 24 pig liver; 127 beef meat) were collected from 14 supermarkets between 2015 and 2019. C. difficile was isolated from eight (3.3%) fresh vegetable, six (6.7%) chicken meat, one (3.6%) chicken liver, one (0.5%) pork meat, and two (1.6%) beef meat samples; it was not isolated from pig liver. Of these isolates, 35% were toxigenic. All isolates were typable by PCR ribotyping and were resolved into 12 PCR ribotypes. Among these isolates, ribotype 014, which is distributed worldwide including in Japanese clinical cases, was detected among vegetable isolates. Therefore, although the C. difficile contamination rate in Japanese retail foods was low, these sources can be contaminated and could transmit these bacteria to humans.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Aika Maruko
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Michiko Harada
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Fumi Kawabata
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Tsubasa Sudo
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Sayo Noto
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaaki Shinagawa
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan; Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
27
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Clostridium difficile ribotype 017 - characterization, evolution and epidemiology of the dominant strain in Asia. Emerg Microbes Infect 2019; 8:796-807. [PMID: 31138041 PMCID: PMC6542179 DOI: 10.1080/22221751.2019.1621670] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile ribotype (RT) 017 is an important toxigenic C. difficile RT which, due to a deletion in the repetitive region of the tcdA gene, only produces functional toxin B. Strains belonging to this RT were initially dismissed as nonpathogenic and circulated largely undetected for almost two decades until they rose to prominence following a series of outbreaks in the early 2000s. Despite lacking a functional toxin A, C. difficile RT 017 strains have been shown subsequently to be capable of causing disease as severe as that caused by strains producing both toxins A and B. While C. difficile RT 017 strains can be found in almost every continent today, epidemiological studies suggest that the RT is endemic in Asia and that the global spread of this MLST clade 4 lineage member is a relatively recent event. C. difficile RT 017 transmission appears to be mostly from human to human with only a handful of reports of isolations from animals. An important feature of C. difficile RT 017 strains is their resistance to several antimicrobials and this has been documented as a possible factor driving multiple outbreaks in different parts of the world. This review summarizes what is currently known regarding the emergence and evolution of strains belonging to C. difficile RT 017 as well as features that have allowed it to become an RT of global importance.
Collapse
Affiliation(s)
- Korakrit Imwattana
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Daniel R Knight
- c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia
| | - Brian Kullin
- d Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| | - Deirdre A Collins
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Papanin Putsathit
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Pattarachai Kiratisin
- b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Thomas V Riley
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia.,e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia.,f PathWest Laboratory Medicine , Queen Elizabeth II Medical Centre , Nedlands , Australia
| |
Collapse
|
28
|
Hygienemaßnahmen bei Clostridioides difficile-Infektion (CDI). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:906-923. [PMID: 31236653 DOI: 10.1007/s00103-019-02959-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
30
|
Bandelj P, Knapič T, Rousseau J, Podgorelec M, Presetnik P, Vengust M, Scott Weese J. Clostridioides difficile in bat guano. Comp Immunol Microbiol Infect Dis 2019; 65:144-147. [PMID: 31300105 DOI: 10.1016/j.cimid.2019.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023]
Abstract
Bats are associated with the emergence of several mammalian diseases. Their sessional migration, and tendency to form large colonies in close proximity to human habitats enables effective intra- and inter-species transmission of pathogens. Clostridioides difficile is an important enteric pathogen in humans and animals; however, the source of its dissemination in the population is unknown. The purpose of this study was to determine the prevalence of C. difficile in bats, and to characterize C. difficile isolates. Feces (n = 93) was sampled from bats during their migration across Europe. Eighteen samples (19.4%) were positive for C. difficile; ribotypes 078, 056, and a new ribotype CDB3 were identified. Clostridioides difficile ribotypes 078 and 056 are associated with human and animal diseases. The C. difficile prevalence and ribotypes in this study do not necessarily identify bats as a significant source, but more likely as an indicator of C. difficile perpetuation in the environment.
Collapse
Affiliation(s)
- Petra Bandelj
- Veterinary Faculty, University of Ljubljana, Ljubljana, SI-1115, Slovenia.
| | - Tea Knapič
- Slovenian Museum of Natural History, Ljubljana, SI-1000, Slovenia.
| | - Joyce Rousseau
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Monika Podgorelec
- Slovenian Association for Bat Research and Conservation, Ljubljana, SI-1000, Slovenia.
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Miklavž na Dravskem polju, SI-2204, Slovenia.
| | - Modest Vengust
- Veterinary Faculty, University of Ljubljana, Ljubljana, SI-1115, Slovenia.
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
31
|
Shoaei P, Shojaei H, Jalali M, Khorvash F, Hosseini SM, Ataei B, Vakili B, Ebrahimi F, Tavakoli H, Esfandiari Z, Weese JS. Clostridium difficile isolated from faecal samples in patients with ulcerative colitis. BMC Infect Dis 2019; 19:361. [PMID: 31039738 PMCID: PMC6492486 DOI: 10.1186/s12879-019-3965-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is widely identified worldwide. This study aimed to investigate the phenotypic characterization and molecular typing of Clostridium difficile isolates among patients with UC at an inflammatory bowel disease clinic in Iran. METHODS In this cross-sectional study, conducted from April 2015 to December 2015, 85 UC patients were assessed for C.difficile infection (CDI). C. difficile isolates were characterized based on their toxin profile and antimicrobial resistance pattern. Multi-locus sequence typing analysis (MLST) and PCR ribotyping were performed to define the genetic relationships between different lineages of toxigenic strains. RESULTS The prevalence of C. difficile isolates was 31.8% (27/85) in patients, of those 15 patients (17.6%) had CDI. Three different sequence types (STs) identified based on MLST among the toxigenic isolates, that is ST54 (33.3%), ST2 (53.3%), and ST37 (13.6%). C. difficile strains were divided into four different PCR-ribotypes (012, 014, 017 and IR1). The most common ribotype was 014 accounting for 48.3% (7/15) of all strains. The strains isolated during the first episode and recurrence of CDI usually belonged to PCR ribotype 014 (ST2). A high rate of CDI recurrence (14.1%, 12/85) experienced in UC patients. Colonization of the gastrointestinal tract with non-toxigenic C. difficile strains was frequent among patients with mild disease. All C. difficile isolates were susceptible to metronidazole, and vancomycin, 86 and 67% of isolates were resistant to clindamycin and erythromycin respectively. There was no correlation between the toxin type and antibiotic resistance (p > 0.05). CONCLUSION Overall CDI is rather prevalent in UC patients. All patients with CDI experienced moderate to severe disease and exposed to different antimicrobial and anti-inflammatory agents. Close monitoring and appropriate management including early detection and fast treatment of CDI will improve UC outcomes.
Collapse
Affiliation(s)
- Parisa Shoaei
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hasan Shojaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jalali
- School of Food Science and Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Khorvash
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sayed Mohsen Hosseini
- Epidemiology and biostatics department, Isfahan University of Medical sciences, Isfahan, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Vakili
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ebrahimi
- Department of Microbiology, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Hossein Tavakoli
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Esfandiari
- Department of Research and Development, Vice Chancellory for food and drug, Isfahan, Iran
| | - J Scott Weese
- Department of Pathobiology and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
32
|
Candel-Pérez C, Ros-Berruezo G, Martínez-Graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol 2019; 77:118-129. [DOI: 10.1016/j.fm.2018.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
|
33
|
Shaughnessy MK, Snider T, Sepulveda R, Boxrud D, Cebelinski E, Jawahir S, Holzbauer S, Johnston BD, Smith K, Bender JB, Thuras P, Diez-Gonzalez F, Johnson JR. Prevalence and Molecular Characteristics of Clostridium difficile in Retail Meats, Food-Producing and Companion Animals, and Humans in Minnesota. J Food Prot 2018; 81:1635-1642. [PMID: 30198756 DOI: 10.4315/0362-028x.jfp-18-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Community-associated Clostridium difficile infection (CA-CDI) now accounts for approximately 50% of CDI cases in central Minnesota; animals and meat products are potential sources. From November 2011 to July 2013, we cultured retail meat products and fecal samples from food-producing and companion animals in central Minnesota for C. difficile by using standard methods. The resulting 51 C. difficile isolates, plus 30 archived local veterinary C. difficile isolates and 208 human CA-CDI case isolates from central Minnesota (from 2012) from the Minnesota Department of Health, were characterized molecularly, and source groups were compared using discriminant analysis. C. difficile was recovered from 0 (0%) of 342 retail meat samples and 51 (9%) of 559 animal fecal samples. Overall, the 81 animal source isolates and 208 human source isolates were highly diverse genetically. Molecular traits segregated extensively in relation to animal versus human origin. Discriminant analysis classified 95% of isolates correctly by source group; only five (2.5%) human source isolates were classified as animal source. These data do not support meat products or food-producing and companion animals as important sources of CA-CDI in the central Minnesota study region.
Collapse
Affiliation(s)
- Megan K Shaughnessy
- 1 University of Minnesota, Minneapolis, Minnesota 55455.,2 Minneapolis Veterans Affairs Health Care System, 1 Veterans Drive, Minneapolis, Minnesota 55417 (ORCID: http://orcid.org/0000-0002-9588-5045 [J.R.J.])
| | - Tim Snider
- 2 Minneapolis Veterans Affairs Health Care System, 1 Veterans Drive, Minneapolis, Minnesota 55417 (ORCID: http://orcid.org/0000-0002-9588-5045 [J.R.J.])
| | | | - David Boxrud
- 4 Minnesota Department of Health, 625 Robert Street North, St. Paul, Minnesota 55164-0975
| | - Elizabeth Cebelinski
- 4 Minnesota Department of Health, 625 Robert Street North, St. Paul, Minnesota 55164-0975
| | - Selina Jawahir
- 4 Minnesota Department of Health, 625 Robert Street North, St. Paul, Minnesota 55164-0975
| | - Stacy Holzbauer
- 4 Minnesota Department of Health, 625 Robert Street North, St. Paul, Minnesota 55164-0975.,5 Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329-4027, USA
| | - Brian D Johnston
- 1 University of Minnesota, Minneapolis, Minnesota 55455.,2 Minneapolis Veterans Affairs Health Care System, 1 Veterans Drive, Minneapolis, Minnesota 55417 (ORCID: http://orcid.org/0000-0002-9588-5045 [J.R.J.])
| | - Kirk Smith
- 4 Minnesota Department of Health, 625 Robert Street North, St. Paul, Minnesota 55164-0975
| | - Jeff B Bender
- 3 University of Minnesota, St. Paul, Minnesota 55108
| | - Paul Thuras
- 1 University of Minnesota, Minneapolis, Minnesota 55455.,2 Minneapolis Veterans Affairs Health Care System, 1 Veterans Drive, Minneapolis, Minnesota 55417 (ORCID: http://orcid.org/0000-0002-9588-5045 [J.R.J.])
| | | | - James R Johnson
- 1 University of Minnesota, Minneapolis, Minnesota 55455.,2 Minneapolis Veterans Affairs Health Care System, 1 Veterans Drive, Minneapolis, Minnesota 55417 (ORCID: http://orcid.org/0000-0002-9588-5045 [J.R.J.])
| |
Collapse
|
34
|
Bandelj P, Harmanus C, Blagus R, Cotman M, Kuijper EJ, Ocepek M, Vengust M. Quantification of Clostridioides (Clostridium) difficile in feces of calves of different age and determination of predominant Clostridioides difficile ribotype 033 relatedness and transmission between family dairy farms using multilocus variable-number tandem-repeat analysis. BMC Vet Res 2018; 14:298. [PMID: 30285751 PMCID: PMC6167908 DOI: 10.1186/s12917-018-1616-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/16/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Community acquired Clostridioides (Clostridium) difficile infection (CA-CDI) is a significant health problem in human and veterinary medicine. Animals are often considered as potential reservoirs for CA-CDI. In Europe, family farming is the most predominant farming operation, with a complex interaction between animals and the community. Therefore, it is pertinent to evaluate transmission patterns of C. difficile on such prominent European farming model. Fecal samples from calves (n = 2442) were collected biweekly over a period of one year on 20 mid-size family dairy farms. Environmental samples (n = 475) were collected in a three month interval. Clostridioides difficile was detected using qPCR in 243 fecal samples (243/2442); positive samples were then quantified. Association between prevalence/load of C. difficile and age of the calves was estimated with logistic regression model. Most common C. difficile isolate from calves (n = 76) and the environment (n = 14) was C. difficile ribotype 033, which was further analyzed using multilocus variable-number tandem-repeat analysis (MLVA) to assess intra- and between-farm relatedness. RESULTS Clostridioides difficile was detected in feces of calves less than 24 h old. Results showed a non-linear statistically significant decrease in shedding load of C. difficile with age (P < 0.0001). A nonlinear relationship was also established between the number of calves and the farm C. difficile prevalence, whereas the prevalence of C. difficile ribotype 033 increased linearly with the number of calves. MLVA revealed close intra-farm relatedness among C. difficile ribotypes 033. It also revealed that the between-farms close relatedness of C. difficile ribotypes 033 can be a direct result of farm to farm trade of calves. CONCLUSIONS Implementation of better hygiene and management measures on farms may help decrease the risk of spreading CA-CDI between animals and the community. Trading calves older than 3 weeks would decrease the possibility C. difficile dissemination in the community because of lower prevalence and lower load of C. difficile in feces.
Collapse
Affiliation(s)
- Petra Bandelj
- 0000 0001 0721 6013grid.8954.0Veterinary faculty, University of Ljubljana, Cesta v Mestni log 47, SI-1115 Ljubljana, Slovenia
| | - Céline Harmanus
- 0000000089452978grid.10419.3dDepartment of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Rok Blagus
- 0000 0001 0721 6013grid.8954.0Institute for biostatistics and Medical informatics, University of Ljubljana, Vrazov trg 2, SI-1104 Ljubljana, Slovenia
| | - Marko Cotman
- 0000 0001 0721 6013grid.8954.0Veterinary faculty, University of Ljubljana, Cesta v Mestni log 47, SI-1115 Ljubljana, Slovenia
| | - Ed J. Kuijper
- 0000000089452978grid.10419.3dDepartment of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Matjaz Ocepek
- 0000 0001 0721 6013grid.8954.0Veterinary faculty, University of Ljubljana, Cesta v Mestni log 47, SI-1115 Ljubljana, Slovenia
| | - Modest Vengust
- 0000 0001 0721 6013grid.8954.0Veterinary faculty, University of Ljubljana, Cesta v Mestni log 47, SI-1115 Ljubljana, Slovenia
| |
Collapse
|
35
|
Complete Genome Sequences of Historic Clostridioides difficile Food-Dwelling Ribotype 078 Strains in Canada Identical to That of the Historic Human Clinical Strain M120 in the United Kingdom. Microbiol Resour Announc 2018; 7:MRA00853-18. [PMID: 30533668 PMCID: PMC6256691 DOI: 10.1128/mra.00853-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides (Clostridium) difficile is a spore-forming anaerobic bacterium that causes severe intestinal diseases in humans. Here, we report the complete genome sequence of the first C. difficile foodborne type strain (PCR ribotype 078) isolated from food animals in Canada in 2004, which has 100% similarity to the genome sequence of the historic human clinical strain M120. Clostridioides (Clostridium) difficile is a spore-forming anaerobic bacterium that causes severe intestinal diseases in humans. Here, we report the complete genome sequence of the first C. difficile foodborne type strain (PCR ribotype 078) isolated from food animals in Canada in 2004, which has 100% similarity to the genome sequence of the historic human clinical strain M120.
Collapse
|
36
|
Affiliation(s)
- Katharine M Simpson
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA.
| | - Robert J Callan
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA
| | - David C Van Metre
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA
| |
Collapse
|
37
|
Biasizzo M, Vadnjal S, Henigman U, Krizman M, Kirbis A, Jamnikar-Ciglenecki U. Development and Validation of a New Protocol for Detecting and Recovering Clostridium difficile from Meat Samples. J Food Prot 2018; 81:561-568. [PMID: 29517350 DOI: 10.4315/0362-028x.jfp-17-354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is no recommended protocol for detecting and isolating Clostridium difficile present in food samples. Here, we have evaluated the recovery of C. difficile in meat samples after incubating them in various enrichment broths. The media were as follows: cycloserine-cefoxitin fructose broth supplemented with taurocholic acid, d-cycloserine, cefoxitin, and lysozyme; cycloserine-cefoxitin mannitol broth with taurocholate and lysozyme; and cycloserine-cefoxitin fructose broth supplemented with taurocholic acid, C. difficile moxalactam norfloxacin selective supplement, and lysozyme. Samples were inoculated with various strains and quantities of C. difficile and then enriched in the different broths for 1, 4, and 7 days. C. difficile was isolated on agar plates and detected with quantitative real-time PCR (qPCR). The procedure using enrichment in cycloserine-cefoxitin fructose broth supplemented with taurocholic acid, d-cycloserine, cefoxitin, and lysozyme and incubation for 4 days for qPCR detection and 7 days for isolation (plating on C. difficile agar base with added C. difficile selective supplement and 7% [v/v] defibrinated horse blood after alcoholic shock and centrifugation) was validated. Samples of different kinds of meat and meat preparation were contaminated and used for validation of the chosen protocol. The sensitivity of detection with qPCR was 100%, and the sensitivity of the isolation method was 96%.
Collapse
Affiliation(s)
- Majda Biasizzo
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Stanka Vadnjal
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Urska Henigman
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Manja Krizman
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Andrej Kirbis
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Urska Jamnikar-Ciglenecki
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Clostridium difficile Exposures, Colonization, and the Microbiome: Implications for Prevention. Infect Control Hosp Epidemiol 2018; 39:596-602. [PMID: 29553000 DOI: 10.1017/ice.2018.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New studies have been published regarding the epidemiology of Clostridium difficile in topics such as asymptomatic C. difficile colonization, community-associated C. difficile infection, environmental contamination outside healthcare settings, animal colonization, and the interactions between C. difficile and the gut microbiome. In addition to summarizing these findings, this review offers a perspective on the potential impact of high-throughput sequencing and other potential techniques on the prevention of C. difficile.Infect Control Hosp Epidemiol 2018;39:596-602.
Collapse
|
39
|
Identification of novel risk factors for community-acquired Clostridium difficile infection using spatial statistics and geographic information system analyses. PLoS One 2017; 12:e0176285. [PMID: 28510584 PMCID: PMC5433765 DOI: 10.1371/journal.pone.0176285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/07/2017] [Indexed: 02/04/2023] Open
Abstract
Background The rate of community-acquired Clostridium difficile infection (CA-CDI) is increasing. While receipt of antibiotics remains an important risk factor for CDI, studies related to acquisition of C. difficile outside of hospitals are lacking. As a result, risk factors for exposure to C. difficile in community settings have been inadequately studied. Main objective To identify novel environmental risk factors for CA-CDI Methods We performed a population-based retrospective cohort study of patients with CA-CDI from 1/1/2007 through 12/31/2014 in a 10-county area in central North Carolina. 360 Census Tracts in these 10 counties were used as the demographic Geographic Information System (GIS) base-map. Longitude and latitude (X, Y) coordinates were generated from patient home addresses and overlaid to Census Tracts polygons using ArcGIS; ArcView was used to assess “hot-spots” or clusters of CA-CDI. We then constructed a mixed hierarchical model to identify environmental variables independently associated with increased rates of CA-CDI. Results A total of 1,895 unique patients met our criteria for CA-CDI. The mean patient age was 54.5 years; 62% were female and 70% were Caucasian. 402 (21%) patient addresses were located in “hot spots” or clusters of CA-CDI (p<0.001). “Hot spot” census tracts were scattered throughout the 10 counties. After adjusting for clustering and population density, age ≥ 60 years (p = 0.03), race (<0.001), proximity to a livestock farm (0.01), proximity to farming raw materials services (0.02), and proximity to a nursing home (0.04) were independently associated with increased rates of CA-CDI. Conclusions Our study is the first to use spatial statistics and mixed models to identify important environmental risk factors for acquisition of C. difficile and adds to the growing evidence that farm practices may put patients at risk for important drug-resistant infections.
Collapse
|
40
|
Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolates from two Korean hospitals. PLoS One 2017; 12:e0174716. [PMID: 28355266 PMCID: PMC5371380 DOI: 10.1371/journal.pone.0174716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/14/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is one of the main etiological agents causing antibiotic-associated diarrhea. This study investigated the genetic diversity of 70 toxigenic C. difficile isolates from two Korean hospitals by employing toxinotyping, ribotyping, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Toxin gene amplification resulted in 68 A⁺B⁺ and two A-B+ isolates. Most isolates (95.7-100%) were susceptible to daptomycin, metronidazole, and vancomycin. Seventy C. difficile isolates were classified into five toxinotypes, 19 ribotypes, 16 sequence types (STs), and 33 arbitrary pulsotypes. All C. difficile isolates of ribotype 018 (n = 38) were classified into ST17, which was the most prevalent ST in both hospitals. However, C. difficile isolates of ST17 (ribotype 018) exhibited pulsotypes that differed by hospital. ST2 (ribotype 014/020), 8 (ribotypes 002), 17 (ribotype 018), and 35 (ribotypes 015) were detected in both hospitals, whereas other STs were unique to each hospital. Statistical comparison of the different typing methods revealed that ribotyping and PFGE were highly predictive of STs. In conclusion, our epidemiological study indicates that C. difficile infections in both hospitals are associated with the persistence of endemic clones coupled with the emergence of many unique clones. A combination of MLST with PFGE or ribotyping could be useful for monitoring epidemic C. difficile strains and the emergence of new clones in hospitals.
Collapse
|
41
|
Food Indwelling Clostridium difficile in Naturally Contaminated Household Meals: Data for Expanded Risk Mathematical Predictions. Infect Control Hosp Epidemiol 2017; 38:509-510. [PMID: 28166846 DOI: 10.1017/ice.2016.332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Survival and prevalence of Clostridium difficile in manure compost derived from pigs. Anaerobe 2017; 43:15-20. [DOI: 10.1016/j.anaerobe.2016.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/05/2023]
|
43
|
Comparative Genome Analysis and Global Phylogeny of the Toxin Variant Clostridium difficile PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages. J Clin Microbiol 2016; 55:865-876. [PMID: 28031436 PMCID: PMC5328454 DOI: 10.1128/jcm.01296-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
The diarrheal pathogen Clostridium difficile consists of at least six distinct evolutionary lineages. The RT017 lineage is anomalous, as strains only express toxin B, compared to strains from other lineages that produce toxins A and B and, occasionally, binary toxin. Historically, RT017 initially was reported in Asia but now has been reported worldwide. We used whole-genome sequencing and phylogenetic analysis to investigate the patterns of global spread and population structure of 277 RT017 isolates from animal and human origins from six continents, isolated between 1990 and 2013. We reveal two distinct evenly split sublineages (SL1 and SL2) of C. difficile RT017 that contain multiple independent clonal expansions. All 24 animal isolates were contained within SL1 along with human isolates, suggesting potential transmission between animals and humans. Genetic analyses revealed an overrepresentation of antibiotic resistance genes. Phylogeographic analyses show a North American origin for RT017, as has been found for the recently emerged epidemic RT027 lineage. Despite having only one toxin, RT017 strains have evolved in parallel from at least two independent sources and can readily transmit between continents.
Collapse
|
44
|
Hussain I, Borah P, Sharma R, Rajkhowa S, Rupnik M, Saikia D, Hasin D, Hussain I, Deka N, Barkalita L, Nishikawa Y, Ramamurthy T. Molecular characteristics of Clostridium difficile isolates from human and animals in the North Eastern region of India. Mol Cell Probes 2016; 30:306-311. [DOI: 10.1016/j.mcp.2016.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022]
|
45
|
Moono P, Foster NF, Hampson DJ, Knight DR, Bloomfield LE, Riley TV. Clostridium difficile Infection in Production Animals and Avian Species: A Review. Foodborne Pathog Dis 2016; 13:647-655. [PMID: 27602596 DOI: 10.1089/fpd.2016.2181] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile is the leading cause of antibiotic-associated diarrhea and colitis in hospitalized humans. Recently, C. difficile infection (CDI) has been increasingly recognized as a cause of neonatal enteritis in food animals such as pigs, resulting in stunted growth, delays in weaning, and mortality, as well as colitis in large birds such as ostriches. C. difficile is a strictly anaerobic spore-forming bacterium, which produces two toxins A (TcdA) and B (TcdB) as its main virulence factors. The majority of strains isolated from animals produce an additional binary toxin (C. difficile transferase) that is associated with increased virulence. C. difficile is ubiquitous in the environment and has a wide host range. This review summarizes the epidemiology, clinical presentations, risk factors, and laboratory diagnosis of CDI in animals. Increased awareness by veterinarians and animal owners of the significance of clinical disease caused by C. difficile in livestock and avians is needed. Finally, this review provides an overview on methods for controlling environmental contamination and potential therapeutics available.
Collapse
Affiliation(s)
- Peter Moono
- 1 Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia , Nedlands, WA, Australia
| | - Niki F Foster
- 2 Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre , Nedlands, WA, Australia
| | - David J Hampson
- 3 School of Veterinary & Life Sciences, Murdoch University , Murdoch, WA, Australia
| | - Daniel R Knight
- 1 Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia , Nedlands, WA, Australia
| | - Lauren E Bloomfield
- 4 Healthcare Associated Infection Unit, Department of Health, Communicable Disease Control Directorate, Shenton Park, WA, Australia
| | - Thomas V Riley
- 1 Microbiology & Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia , Nedlands, WA, Australia .,2 Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre , Nedlands, WA, Australia .,3 School of Veterinary & Life Sciences, Murdoch University , Murdoch, WA, Australia .,4 Healthcare Associated Infection Unit, Department of Health, Communicable Disease Control Directorate, Shenton Park, WA, Australia .,5 School of Medical & Health Sciences, Edith Cowan University , Joondalup, WA, Australia
| |
Collapse
|
46
|
Subboiling Moist Heat Favors the Selection of Enteric Pathogen Clostridium difficile PCR Ribotype 078 Spores in Food. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:1462405. [PMID: 27375748 PMCID: PMC4914716 DOI: 10.1155/2016/1462405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
Emerging enteric pathogens could have not only more antibiotic resistance or virulence traits; they could also have increased resistance to heat. We quantified the effects of minimum recommended cooking and higher temperatures, individually on a collection of C. difficile isolates and on the survival probability of a mixture of emerging C. difficile strains. While minimum recommended cooking time/temperature combinations (63–71°C) allowed concurrently tested strains to survive, higher subboiling temperatures reproducibly favored the selection of newly emerging C. difficile PCR ribotype 078. Survival ratios for “ribotypes 078” : “other ribotypes” (n = 49 : 45 isolates) from the mid-2000s increased from 1 : 1 and 0.7 : 1 at 85°C (for 5 and 10 minutes, resp.) to 2.3 : 1 and 3 : 1 with heating at 96°C (for 5 and 10 minutes, resp.) indicating an interaction effect between the heating temperature and survival of C. difficile genotypes. In multistrain heating experiments, with PCR ribotypes 027 and 078 from 2004 and reference type strain ATCC 9689 banked in the 1970s, multinomial logistic regression (P < 0.01) revealed PCR ribotype 078 was the most resistant to increasing lethal heat treatments. Thermal processes (during cooking or disinfection) may contribute to the selection of emergent specific virulent strains of C. difficile. Despite growing understanding of the role of cooking on human evolution, little is known about the role of cooking temperatures on the selection and evolution of enteric pathogens, especially spore-forming bacteria.
Collapse
|
47
|
Thitaram S, Frank J, Siragusa G, Bailey J, Dargatz D, Lombard J, Haley C, Lyon S, Fedorka-Cray P. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms. Int J Food Microbiol 2016; 227:1-5. [DOI: 10.1016/j.ijfoodmicro.2016.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/12/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
|
48
|
Bandelj P, Blagus R, Briski F, Frlic O, Vergles Rataj A, Rupnik M, Ocepek M, Vengust M. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet Res 2016; 47:41. [PMID: 26968527 PMCID: PMC4788955 DOI: 10.1186/s13567-016-0326-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
Farm animals have been suggested to play an important role in the epidemiology of Clostridium difficile infection (CDI) in the community. The purpose of this study was to evaluate risk factors associated with C. difficile dissemination in family dairy farms, which are the most common farming model in the European Union. Environmental samples and fecal samples from cows and calves were collected repeatedly over a 1 year period on 20 mid-size family dairy farms. Clostridium difficile was detected in cattle feces on all farms using qPCR. The average prevalence between farms was 10% (0–44.4%) and 35.7% (3.7–66.7%) in cows and calves, respectively. Bacterial culture yielded 103 C. difficile isolates from cattle and 61 from the environment. Most C. difficile isolates were PCR-ribotype 033. A univariate mixed effect model analysis of risk factors associated dietary changes with increasing C. difficile prevalence in cows (P = 0.0004); and dietary changes (P = 0.004), breeding Simmental cattle (P = 0.001), mastitis (P = 0.003) and antibiotic treatment (P = 0.003) in calves. Multivariate analysis of risk factors found that dietary changes in cows (P = 0.0001) and calves (P = 0.002) increase C. difficile prevalence; mastitis was identified as a risk factor in calves (P = 0.001). This study shows that C. difficile is common on dairy farms and that shedding is more influenced by farm management than environmental factors. Based on molecular typing of C. difficile isolates, it could also be concluded that family dairy farms are currently not contributing to increased CDI incidence.
Collapse
Affiliation(s)
- Petra Bandelj
- Veterinary faculty, University of Ljubljana, cesta v Mestni log 47, 1115, Ljubljana, Slovenia.
| | - Rok Blagus
- Institute for biostatistics and Medical informatics, University of Ljubljana, Vrazov trg 2, 1104, Ljubljana, Slovenia
| | | | - Olga Frlic
- , Vinharje 6, 4223, Poljane nad Skofjo Loko, Slovenia
| | | | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Matjaz Ocepek
- Veterinary faculty, University of Ljubljana, cesta v Mestni log 47, 1115, Ljubljana, Slovenia
| | - Modest Vengust
- Veterinary faculty, University of Ljubljana, cesta v Mestni log 47, 1115, Ljubljana, Slovenia
| |
Collapse
|
49
|
Knight D, Putsathit P, Elliott B, Riley T. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clin Microbiol Infect 2016; 22:266.e1-7. [DOI: 10.1016/j.cmi.2015.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/22/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
50
|
Epidemiology and Antimicrobial Resistance in Clostridium difficile With Special Reference to the Horse. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|