1
|
Duwe SC, Milde J, Heider A, Wedde M, Schweiger B, Dürrwald R. Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses 2024; 16:1109. [PMID: 39066271 PMCID: PMC11281601 DOI: 10.3390/v16071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The unexpected emergence of oseltamivir-resistant A(H1N1) viruses in 2008 was facilitated in part by the establishment of permissive secondary neuraminidase (NA) substitutions that compensated for the fitness loss due to the NA-H275Y resistance substitution. These viruses were replaced in 2009 by oseltamivir-susceptible A(H1N1)pdm09 influenza viruses. Genetic analysis and screening of A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2024 were conducted to identify any potentially synergistic or resistance-associated NA substitutions. Selected viruses were then subjected to further characterization in vitro. In the NA gene of circulating A(H1N1)pdm09 viruses, two secondary substitutions, NA-V241I and NA-N369K, were identified. These substitutions demonstrated a stable lineage in phylogenetic analysis since the 2010-2011 influenza season. The data indicate a slight increase in viral NA bearing two additional potentially synergistic substitutions, NA-I223V and NA-S247N, in the 2023-2024 season, which both result in a slight reduction in susceptibility to NA inhibitors. The accumulation of secondary synergistic substitutions in the NA of A(H1N1)pdm09 viruses increases the probability of the emergence of antiviral-resistant viruses. Therefore, it is crucial to closely monitor the evolution of circulating influenza viruses and to develop additional antiviral drugs against different target proteins.
Collapse
Affiliation(s)
- Susanne C. Duwe
- Unit 17 Influenza and Other Respiratory Viruses, Department 1 Infectious Diseases, Robert Koch-Institute, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Hallmann E, Masny A, Poznańska A, Pozo F, Casas I, Brydak LB. Molecular Determinants of Drug Resistance and Mutation Patterns in Influenza Viruses Circulating in Poland Across Multiple Epidemic Seasons: Implications for Vaccination Strategies. Med Sci Monit 2024; 30:e942125. [PMID: 38446736 PMCID: PMC10926709 DOI: 10.12659/msm.942125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND According to the WHO, up to 650 000 people die each year from seasonal flu-related respiratory illnesses. The most effective method of fighting the virus is seasonal vaccination. However, if an infection does occur, antiviral medications should be used as soon as possible. No studies of drug resistance in influenza viruses circulating in Poland have been systematically conducted. Therefore, the aim of the present study was to investigate the drug resistance and genetic diversity of influenza virus strains circulating in Poland by determining the presence of mutations in the neuraminidase gene. MATERIAL AND METHODS A total of 258 clinical specimens were collected during the 2016-2017, 2017-2018, and 2018-2019 epidemic seasons. The samples containing influenza A and B were analyzed by RT-PCR and Sanger sequencing. RESULTS Differences were found between the influenza virus strains detected in different epidemic seasons, demonstrating the occurrence of mutations. Influenza A virus was found to be more genetically variable than influenza B virus (P<0.001, Kruskal-Wallis test). However, there was no significant difference in the resistance prevalence between the influenza A subtypes A/H1N1/pdm09 (4.8%) and A/H3N2/ (6.1%). In contrast, more mutations of drug-resistance genes were found in the influenza B virus (P<0.001, chi-square test). In addition, resistance mutations appeared en masse in vaccine strains circulating in unvaccinated populations. CONCLUSIONS It seems important to determine whether the influenza virus strains tested for drug resistance as part of global influenza surveillance are equally representative of viruses circulating in populations with high and low vaccination rates, for all countries. Our results suggest that countries with low levels of influenza immunization may constitute reservoirs of drug-resistant influenza viruses.
Collapse
Affiliation(s)
- Ewelina Hallmann
- Department of Virology, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Aleksander Masny
- Department of Virology, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Anna Poznańska
- Department of Population Health Monitoring and Analysis, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Francisco Pozo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Inmaculada Casas
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lidia Bernadeta Brydak
- Department of Virology, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| |
Collapse
|
3
|
Smyk JM, Szydłowska N, Szulc W, Majewska A. Evolution of Influenza Viruses-Drug Resistance, Treatment Options, and Prospects. Int J Mol Sci 2022; 23:12244. [PMID: 36293099 PMCID: PMC9602850 DOI: 10.3390/ijms232012244] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Viral evolution refers to the genetic changes that a virus accumulates during its lifetime which can arise from adaptations in response to environmental changes or the immune response of the host. Influenza A virus is one of the most rapidly evolving microorganisms. Its genetic instability may lead to large changes in its biological properties, including changes in virulence, adaptation to new hosts, and even the emergence of infectious diseases with a previously unknown clinical course. Genetic variability makes it difficult to implement effective prophylactic programs, such as vaccinations, and may be responsible for resistance to antiviral drugs. The aim of the review was to describe the consequences of the variability of influenza viruses, mutations, and recombination, which allow viruses to overcome species barriers, causing epidemics and pandemics. Another consequence of influenza virus evolution is the risk of the resistance to antiviral drugs. Thus far, one class of drugs, M2 protein inhibitors, has been excluded from use because of mutations in strains isolated in many regions of the world from humans and animals. Therefore, the effectiveness of anti-influenza drugs should be continuously monitored in reference centers representing particular regions of the world as a part of epidemiological surveillance.
Collapse
Affiliation(s)
| | | | | | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Xing JH, Shi CW, Sun MJ, Gu W, Zhang RR, Chen HL, Li Y, Wang D, Li J, Niu TM, Huang QT, Qian JH, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang GL, Yang WT, Wang CF. Lactiplantibacillus plantarum 0111 Protects Against Influenza Virus by Modulating Intestinal Microbial-Mediated Immune Responses. Front Microbiol 2022; 13:820484. [PMID: 35847111 PMCID: PMC9282045 DOI: 10.3389/fmicb.2022.820484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
There are some limitations of traditional influenza vaccines concerning novel mutant strains. Therefore, it is particularly important to develop preventive means for antigen-unrelated types of influenza viruses. Recent studies have shown that probiotics can modulate the immune system and reduce the severity of viral infections. In this study, we investigated the potential of Lactiplantibacillus plantarum 0111 against influenza virus H9N2. Challenge experiments showed that L. plantarum 0111 pretreatments could effectively improve mice’s survival rate and weight loss and reduce the inflammatory cytokines IL-6 and TNF-α in the lungs and bronchoalveolar lavage fluid (BALF) along with the degree of lung and intestinal injury. FMT experiment demonstrates that the protective effect produced by L. plantarum 0111 is associated with gut microorganisms. In addition, 16S high-throughput sequencing of the mouse intestinal microbiota showed that L. plantarum 0111 remodeled the intestinal microbiota after H9N2 infection and maintained the gut microbiota balance. In a mouse model, the oral administration of L. plantarum 0111 increased IFN-β expression in the serum and BALF. At the same time, the transcript levels of IFN-β and related ISGs in the intestine and lungs of mice were also increased. In addition, the activation and polarization of T cells in mesenteric lymph nodes (MLNs) and the spleen were detected by flow cytometry, and the results showed that L. plantarum 0111 modulated cytokines in T cells and increased IgA expression in B cells in the MLNs and spleen. Thus, L. plantarum 0111 may improve gut microbiota-mediated immune responses and thus, resist infection by the influenza virus, and it could be used as an effective preventive measure against the influenza virus.
Collapse
Affiliation(s)
- Jun-Hong Xing
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ming-Jie Sun
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Wei Gu
- Shandong BaoLai-LeeLai Bioengineering Co., Ltd., Tai’an, China
| | - Rong-Rong Zhang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Hong-Liang Chen
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ying Li
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Dan Wang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - JunYi Li
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Tian-Ming Niu
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Qun-Tao Huang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jia-Hao Qian
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Hai Bin Huang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Gui-Lian Yang,
| | - Wen Tao Yang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Wen Tao Yang,
| | - Chun-Feng Wang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- *Correspondence: Chun-Feng Wang,
| |
Collapse
|
5
|
Effects of Heat-Killed Levilactobacillus brevis KB290 in Combination with β-Carotene on Influenza Virus Infection in Healthy Adults: A Randomized Controlled Trial. Nutrients 2021; 13:nu13093039. [PMID: 34578917 PMCID: PMC8467669 DOI: 10.3390/nu13093039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
Influenza, a seasonal acute respiratory disease caused primarily by the influenza virus A or B, manifests with severe symptoms leading to considerable morbidity and mortality and is a major concern worldwide. Therefore, effective preventive measures against it are required. The aim of this trial was to evaluate the preventive effects of heat-killed Levilactobacillus brevis KB290 (KB290) in combination with β-carotene (βC) on influenza virus infections in healthy Japanese subjects aged between 20 and 59 y throughout the winter season. We performed a randomized, double-blind, placebo-controlled, parallel-group trial from 16 December 2019 to 8 March 2020, comparing KB290 + βC beverage with placebo beverage. The primary endpoint was the incidence of influenza based on a doctor’s certificate. The incidence of influenza was not significantly different between the two groups. However, the subgroup analysis showed a significant difference between the two groups (influenza incidence: the KB290 + βC group 1.9%, and the placebo group 3.9%) in the subgroup of subjects aged ˂40 y, but not in the subgroup of subjects aged ≥40 y. The results of this trial suggest that the combination of KB290 and βC might be a possible candidate supplement for protection against the seasonal influenza virus infection in humans aged <40 y, although further clinical studies are needed to confirm the concrete preventive effect of this combination on influenza.
Collapse
|
6
|
Low replicative fitness of neuraminidase inhibitor-resistant H7N9 avian influenza a virus with R292K substitution in neuraminidase in cynomolgus macaques compared with I222T substitution. Antiviral Res 2020; 178:104790. [PMID: 32272175 DOI: 10.1016/j.antiviral.2020.104790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
Abstract
Human cases of H7N9 influenza A virus infection have been increasing since 2013. The first choice of treatment for influenza is neuraminidase (NA) inhibitors (NAIs), but there is a concern that NAI-resistant viruses are selected in the presence of NAIs. In our previous study, an H7N9 virus carrying AA substitution of threonine (T) for isoleucine (I) at residue 222 in NA (NA222T, N2 numbering) and an H7N9 virus carrying AA substitution of lysine (K) for arginine (R) at residue 292 in NA (NA292K, N2 numbering) were found in different macaques that had been infected with A/Anhui/1/2013 (H7N9) and treated with NAIs. In the present study, the variant with NA292K showed not only resistance to NAIs but also lower replication activity in MDCK cells than did the virus with wild-type NA, whereas the variant with NA222T, which was less resistant to NAIs, showed replication activity similar to that of the wild-type virus. Next, we examined the pathogenicity of these H7N9 NAI-resistant viruses in macaques. The variants caused clinical signs similar to those caused by the wild-type virus with similar replication potency. However, the virus with NA292K was replaced within 7 days by that with NA292R (same as the wild-type) in nasal samples from macaques infected with the virus with NA292K, i.e. the so-called revertant (wild-type virus) became dominant in the population in the absence of an NAI. These results suggest that the clinical signs observed in macaques infected with the NA292K virus are caused by the NA292K virus and the NA292R virus and that the virus with NA292K may not replicate continuously in the upper respiratory tract of patients without treatment as effectively as the wild-type virus.
Collapse
|
7
|
Lang S, Xie J, Zhu X, Wu NC, Lerner RA, Wilson IA. Antibody 27F3 Broadly Targets Influenza A Group 1 and 2 Hemagglutinins through a Further Variation in V H1-69 Antibody Orientation on the HA Stem. Cell Rep 2018; 20:2935-2943. [PMID: 28930686 DOI: 10.1016/j.celrep.2017.08.084] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022] Open
Abstract
Antibodies that target both group 1 and group 2 influenza A viruses are valuable for therapeutic and vaccine development, but only a few have been reported to date. Here, we describe a new VH1-69 antibody 27F3 that broadly recognizes heterosubtypic hemagglutinins (HAs) from both group 1 and group 2 influenza A viruses. Structural characterization of 27F3 Fab with A/California/04/2009 (H1N1) hemagglutinin illustrates that 27F3 shares the key binding features observed in other VH1-69 antibodies to the HA stem. Compared to other VH1-69 antibodies, the 27F3 VH domain interacts with the HA stem in a distinct orientation, which alters its epitope and may have influenced its breadth. The diverse rotations of VH1-69 antibodies on the HA stem epitope highlight the different ways that this antibody family can evolve to broadly neutralize influenza A viruses. These results have important implications for understanding how to elicit broad antibody responses against influenza virus.
Collapse
Affiliation(s)
- Shanshan Lang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Hsieh NH, Lin YJ, Yang YF, Liao CM. Assessing the oseltamivir-induced resistance risk and implications for influenza infection control strategies. Infect Drug Resist 2017; 10:215-226. [PMID: 28790857 PMCID: PMC5529381 DOI: 10.2147/idr.s138317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Oseltamivir-resistant mutants with higher drug resistance rates and low trans-mission fitness costs have not accounted for influenza (sub)type viruses. Predicting the impacts of neuraminidase inhibitor therapy on infection rates and transmission of drug-resistant viral strains requires further investigation. Objectives The purpose of this study was to assess the potential risk of oseltamivir-induced resistance for influenza A (H1N1) and A (H3N2) viruses. Materials and methods An immune-response-based virus dynamic model was used to best fit the oseltamivir-resistant A (H1N1) and A (H3N2) infection data. A probabilistic risk assessment model was developed by incorporating branching process-derived probability distribution of resistance to estimate oseltamivir-induced resistance risk. Results Mutation rate and sensitive strain number were key determinants in assessing resistance risk. By increasing immune response, antiviral efficacy, and fitness cost, the spread of resistant strains for A (H1N1) and A (H3N2) were greatly decreased. Probability of resistance depends most strongly on the sensitive strain number described by a Poisson model. Risk of oseltamivir-induced resistance increased with increasing the mutation rate for A (H1N1) only. The ≥50% of resistance risk induced by A (H1N1) and A (H3N2) sensitive infected cells were 0.4 (95% CI: 0.28–0.43) and 0.95 (95% CI 0.93–0.99) at a mutation rate of 10−6, respectively. Antiviral drugs must be administrated within 1–1.5 days for A (H1N1) and 2–2.5 days for A (H3N2) virus infections to limit viral production. Conclusion Probabilistic risk assessment of antiviral drug-induced resistance is crucial in the decision-making process for preventing influenza virus infections.
Collapse
Affiliation(s)
- Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yi-Jun Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir. Antiviral Res 2016; 132:170-7. [PMID: 27321665 DOI: 10.1016/j.antiviral.2016.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
Abstract
Favipiravir, a viral RNA-dependent RNA polymerase inhibitor, has recently been approved in Japan for influenza pandemic preparedness. Here, we conducted a cell-based screening system to evaluate the susceptibility of influenza viruses to favipiravir. In this assay, the antiviral activity of favipiravir is determined by inhibition of virus-induced cytopathic effect, which can be measured by using a colorimetric cell proliferation assay. To demonstrate the robustness of the assay, we compared the favipiravir susceptibilities of neuraminidase (NA) inhibitor-resistant influenza A(H1N1)pdm09, A(H3N2), A(H7N9) and B viruses and their sensitive counterparts. No significant differences in the favipiravir susceptibilities were found between NA inhibitor-resistant and sensitive viruses. We, then, examined the antiviral susceptibility of 57 pairs of influenza viruses isolated from patients pre- and post-administration of favipiravir in phase 3 clinical trials. We found that there were no viruses with statistically significant reduced susceptibility to favipiravir or NA inhibitors, although two of 20 paired A(H1N1)pdm09, one of 17 paired A(H3N2) and one of 20 paired B viruses possessed amino acid substitutions in the RNA-dependent RNA polymerase subunits, PB1, PB2 and PA, after favipiravir administration. This is the first report on the antiviral susceptibility of influenza viruses isolated from patients after favipiravir treatment.
Collapse
|
10
|
Shirato K, Ujike M, Kawase M, Matsuyama S. Identification of CCL2, RARRES2 and EFNB2 as host cell factors that influence the multistep replication of respiratory syncytial virus. Virus Res 2015; 210:213-26. [PMID: 26277777 DOI: 10.1016/j.virusres.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 01/20/2023]
Abstract
Human respiratory syncytial virus (RSV) is a major causative agent of respiratory tract infections in children worldwide. Preterm children or those with underlying cardiopulmonary disorders are at particularly high risk of developing severe and lethal RSV respiratory tract infections; however, there are currently no effective vaccines or anti-viral drugs. To identify targets for the development of drugs to treat RSV infections, we investigated host cell factors involved in the replication of RSV. To this end, MDCK cells with low susceptibility to RSV were transfected with cDNA libraries derived from RSV-susceptible human lung or HeLa cells. A microarray analysis was subsequently performed on parental MDCK cells and MDCK cells that were converted to an RSV-susceptible form. Among the genes identified, chemokine (C-C motif) ligand 2 (CCL2), retinoic acid receptor responder protein 2 (RARRES2) and ephrin-B2 (EFNB2) had a positive effect on RSV replication. Expression of these genes in MDCK cells resulted in a 10- to 100-fold increase in RSV replication. CCL2 expression also disrupted the distribution of claudin-1, a tight junction protein, suggesting that CCL2 plays a role in claudin-based tight junction formation during RSV replication. The knockdown of EFNB2 and RARRES2 by siRNA in RSV-susceptible cell lines (HEp-2 and A549) resulted in reduced RSV replication, suggesting that EFNB2 and RARRES2 participate in RSV replication. Together, our findings suggest that CCL2, RARRES2 and EFNB2 are host cell factors involved in RSV replication.
Collapse
Affiliation(s)
- Kazuya Shirato
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | - Makoto Ujike
- Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Kyonan-cho 1-7-1, Musashino, Tokyo 180-8602, Japan
| | - Miyuki Kawase
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Shutoku Matsuyama
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
11
|
Takashita E, Meijer A, Lackenby A, Gubareva L, Rebelo-de-Andrade H, Besselaar T, Fry A, Gregory V, Leang SK, Huang W, Lo J, Pereyaslov D, Siqueira MM, Wang D, Mak GC, Zhang W, Daniels RS, Hurt AC, Tashiro M. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013–2014. Antiviral Res 2015; 117:27-38. [PMID: 25721488 PMCID: PMC9036627 DOI: 10.1016/j.antiviral.2015.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 12/25/2022]
Abstract
Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 10,641 viruses collected by WHO-recognized National Influenza Centres between May 2013 and May 2014 to determine 50% inhibitory concentration (IC50) data for neuraminidase inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. In addition, neuraminidase (NA) sequence data, available from the WHO CCs and from sequence databases (n = 3206), were screened for amino acid substitutions associated with reduced NAI susceptibility. Ninety-five per cent of the viruses tested by the WHO CCs were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 2% (n = 172) showed highly reduced inhibition (HRI) against at least one of the four NAIs, commonly oseltamivir, while 0.3% (n = 32) showed reduced inhibition (RI). Those showing HRI were A(H1N1)pdm09 with NA H275Y (n = 169), A(H3N2) with NA E119V (n = 1), B/Victoria-lineage with NA E117G (n = 1) and B/Yamagata-lineage with NA H273Y (n = 1); amino acid position numbering is A subtype and B type specific. Although approximately 98% of circulating viruses tested during the 2013–2014 period were sensitive to all four NAIs, a large community cluster of A(H1N1)pdm09 viruses with the NA H275Y substitution from patients with no previous exposure to antivirals was detected in Hokkaido, Japan. Significant numbers of A(H1N1)pdm09 NA H275Y viruses were also detected in China and the United States: phylogenetic analyses showed that the Chinese viruses were similar to those from Japan, while the United States viruses clustered separately from those of the Hokkaido outbreak, indicative of multiple resistance-emergence events. Consequently, global surveillance of influenza antiviral susceptibility should be continued from a public health perspective.
Collapse
Affiliation(s)
- Emi Takashita
- World Health Organization Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Angie Lackenby
- Public Health England Colindale, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Larisa Gubareva
- World Health Organization Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention, 1600 Clifton RD NE, MS-G16 Atlanta, GA, United States.
| | - Helena Rebelo-de-Andrade
- Instituto Nacional de Saúde, Av. Padre Cruz, 1649-016 Lisboa, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Terry Besselaar
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland.
| | - Alicia Fry
- World Health Organization Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention, 1600 Clifton RD NE, MS-G16 Atlanta, GA, United States.
| | - Vicky Gregory
- World Health Organization Collaborating Centre for Reference and Research on Influenza, MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | - Sook-Kwan Leang
- World Health Organization Collaborating Centre for Reference and Research on Influenza, VIDRL, At the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Weijuan Huang
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| | - Janice Lo
- Public Health Laboratory Centre, 382 Nam Cheong Street, Shek Kip Mei, Kowloon, Hong Kong, China.
| | - Dmitriy Pereyaslov
- Division of Communicable Diseases, Health Security, & Environment, World Health Organization Regional Office for Europe, UN City, Marmorvej 51, DK-2100 Copenhagen Ø, Denmark.
| | - Marilda M Siqueira
- Respiratory Viruses Laboratory/IOC, FIOCRUZ, Av Brasil, 4365 Rio de Janeiro, Brazil.
| | - Dayan Wang
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| | - Gannon C Mak
- Public Health Laboratory Centre, 382 Nam Cheong Street, Shek Kip Mei, Kowloon, Hong Kong, China.
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland.
| | - Rod S Daniels
- World Health Organization Collaborating Centre for Reference and Research on Influenza, MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | - Aeron C Hurt
- World Health Organization Collaborating Centre for Reference and Research on Influenza, VIDRL, At the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; University of Melbourne, Melbourne School of Population and Global Health, Melbourne, VIC 3010, Australia.
| | - Masato Tashiro
- World Health Organization Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| |
Collapse
|
12
|
Characterization of a large cluster of influenza A(H1N1)pdm09 viruses cross-resistant to oseltamivir and peramivir during the 2013-2014 influenza season in Japan. Antimicrob Agents Chemother 2015; 59:2607-17. [PMID: 25691635 DOI: 10.1128/aac.04836-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Between September 2013 and July 2014, 2,482 influenza 2009 pandemic A(H1N1) [A(H1N1)pdm09] viruses were screened in Japan for the H275Y substitution in their neuraminidase (NA) protein, which confers cross-resistance to oseltamivir and peramivir. We found that a large cluster of the H275Y mutant virus was present prior to the main influenza season in Sapporo /: Hokkaido, with the detection rate for this mutant virus reaching 29% in this area. Phylogenetic analysis suggested the clonal expansion of a single mutant virus in Sapporo /: Hokkaido. To understand the reason for this large cluster, we examined the in vitro and in vivo properties of the mutant virus. We found that it grew well in cell culture, with growth comparable to that of the wild-type virus. The cluster virus also replicated well in the upper respiratory tract of ferrets and was transmitted efficiently between ferrets by way of respiratory droplets. Almost all recently circulating A(H1N1)pdm09 viruses, including the cluster virus, possessed two substitutions in NA, V241I and N369K, which are known to increase replication and transmission fitness. A structural analysis of NA predicted that a third substitution (N386K) in the NA of the cluster virus destabilized the mutant NA structure in the presence of the V241I and N369K substitutions. Our results suggest that the cluster virus retained viral fitness to spread among humans and, accordingly, caused the large cluster in Sapporo/Hokkaido. However, the mutant NA structure was less stable than that of the wild-type virus. Therefore, once the wild-type virus began to circulate in the community, the mutant virus could not compete and faded out.
Collapse
|
13
|
Waki N, Matsumoto M, Fukui Y, Suganuma H. Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett Appl Microbiol 2014; 59:565-71. [PMID: 25294223 PMCID: PMC4285317 DOI: 10.1111/lam.12340] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED We investigated the efficacy of dietary consumption of Lactobacillus brevis KB290 (KB290) against influenza in humans by a preliminary intervention study on elementary schoolchildren, using a commercially available probiotic drink. Subjects were divided into Groups A and B, and an open-label, parallel-group trial was conducted in two 8-week periods at a 1-month interval in winter 2013/2014. Group A was provided with a bottle of the test drink containing KB290 (about 6 billion colony-forming units) every school day in the first period and had no treatment in the second period, and vice versa for Group B. Epidemic influenza was not observed during the first period and only two of 1783 subjects were diagnosed. In the second period, the incidence of influenza in Groups A (no treatment) and B (provided the test drink) was 23·9 and 15·7%, respectively, and the difference was statistically significant (P < 0·001). The reduction in the incidence of influenza by KB290 consumption was especially remarkable in unvaccinated individuals. This is believed to be the first study to show a probiotic food reducing the incidence of influenza in schoolchildren, although further studies are needed to confirm the effectiveness of the probiotic strain KB290. SIGNIFICANCE AND IMPACT OF THE STUDY We demonstrated a reduction in the incidence of influenza in 1089 schoolchildren by continual intake of a probiotic drink containing Lactobacillus brevis KB290 (KB290), isolated from a traditional Japanese pickle 'Suguki'. The effect was especially evident in subjects not inoculated with influenza vaccine. This is believed to be the first report to show reduced incidence of influenza in schoolchildren taking a probiotic food. Further studies are needed to confirm the effectiveness of the probiotic strain KB290, which may be useful in the development of potential anti-influenza agents derived from common foods.
Collapse
Affiliation(s)
- N Waki
- Research and Development Division, Kagome Co., Ltd., Nasushiobara, Tochigi, Japan
| | | | | | | |
Collapse
|
14
|
Hata A, Akashi-Ueda R, Takamatsu K, Matsumura T. Safety and efficacy of peramivir for influenza treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2017-38. [PMID: 25368514 PMCID: PMC4216046 DOI: 10.2147/dddt.s46654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective This report presents a review of the efficacy and safety of peramivir, a neuraminidase inhibitor that was granted Emergency Use Authorization by the US Food and Drug Administration (FDA) from October 23, 2009 to June 23, 2010 during the 2009 H1N1 pandemic. Methods Literature was accessed via PubMed (January 2000–April 2014) using several search terms: peramivir; BCX-1812; RWJ 270201; H1N1, influenza; antivirals; and neuraminidase inhibitors. The peramivir manufacturers, Shionogi and Co Ltd and BioCryst Pharmaceuticals, were contacted to obtain unpublished data and information presented at recent scientific meetings. Information was obtained from the Centers for Disease Control and Prevention (CDC) and from US FDA websites. English-language and Japanese-language reports in the literature were reviewed and selected based on relevance, along with information from the CDC, US FDA, and the drug manufacturers. Results We obtained eleven clinical trial reports of intravenous peramivir, two of which described comparisons with oseltamivir. Seven of nine other recently reported published studies was a dose–response study. Clinical reports of critically ill patients and pediatric patients infected with pandemic H1N1 described that early treatment significantly decreased mortality. Peramivir administered at 300 mg once daily in adult patients with influenza significantly reduces the time to alleviation of symptoms or fever compared to placebo. It is likely to be as effective as other neuraminidase inhibitors. Conclusion Although peramivir shows efficacy for the treatment of seasonal and pH1N1 influenza, it has not received US FDA approval. Peramivir is used safely and efficiently in hospitalized adult and pediatric patients with suspected or laboratory-confirmed influenza. Peramivir might be a beneficial alternative antiviral treatment for many patients, including those unable to receive inhaled or oral neuraminidase inhibitors, or those requiring nonintravenous drug delivery.
Collapse
Affiliation(s)
- Atsuko Hata
- Department of Pediatrics, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan ; Department of Infectious Diseases, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryoko Akashi-Ueda
- Department of Pediatrics, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Kazufumi Takamatsu
- Respiratory Disease Center, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Takuro Matsumura
- Department of Infectious Diseases, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| |
Collapse
|
15
|
Watanabe K, Rahmasari R, Matsunaga A, Haruyama T, Kobayashi N. Anti-influenza viral effects of honey in vitro: potent high activity of manuka honey. Arch Med Res 2014; 45:359-65. [PMID: 24880005 DOI: 10.1016/j.arcmed.2014.05.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/14/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Influenza viruses are a serious threat to human health and cause thousands of deaths annually. Thus, there is an urgent requirement for the development of novel anti-influenza virus drugs. Therefore, the aim of this study was to evaluate the anti-influenza viral activity of honey from various sources. METHODS Antiviral activities of honey samples were evaluated using MDCK cells. To elucidate the possible mechanism of action of honey, plaque inhibition assays were used. Synergistic effects of honey with known anti-influenza virus drugs such as zanamivir or oseltamivir were tested. RESULTS Manuka honey efficiently inhibited influenza virus replication (IC50 = 3.6 ± 1.2 mg/mL; CC50 = 82.3 ± 2.2 mg/mL; selective index = 22.9), which is related to its virucidal effects. In the presence of 3.13 mg/mL manuka honey, the IC50 of zanamivir or oseltamivir was reduced to nearly 1/1000th of their single use. CONCLUSIONS Our results showed that honey, in general, and particularly manuka honey, has potent inhibitory activity against the influenza virus, demonstrating a potential medicinal value.
Collapse
Affiliation(s)
- Ken Watanabe
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ratika Rahmasari
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ayaka Matsunaga
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Nobuyuki Kobayashi
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Central Research Center, AVSS Corporation, Nagasaki, Japan.
| |
Collapse
|
16
|
Pretreatment of mice with oligonucleotide prop5 protects them from influenza virus infections. Viruses 2014; 6:573-81. [PMID: 24509810 PMCID: PMC3939472 DOI: 10.3390/v6020573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/05/2013] [Accepted: 01/23/2014] [Indexed: 01/15/2023] Open
Abstract
Influenza A virus is a successful parasite and requires host factors to complete its life cycle. Prop5 is an antisense oligonucleotide, targeting programmed cell death protein 5 (PDCD5). In this study, we tested the antiviral activity of prop5 against mouse-adapted A/FM/1/47 strain of influenza A virus in a mouse model. Prop5 intranasally administered the mice at dosages of 10 and 20 mg/kg/d at 24 h and 30 min before infection, provided 80% and 100% survival rates and prolonged mean survival days in comparison with influenza virus-infected mice (both p < 0.01). Moreover, viral titres in mice pretreated with prop5, at dose of 10 and 20 mg/kg/d, had declined significantly on day two, four, and six post-infection compared with the yields in infected mice (p < 0.05 or p < 0.01); lung index in mice pretreated with prop5 (20 mg/kg/d) had been inhibited on day six post-infection (p < 0.05). Western blotting and immunohistochemistry showed that prop5 could down-regulate the PDCD5 protein expression levels in lung tissues of infected mice. These data indicate that antisense oligonucleotide prop5 is a promising drug for prophylaxis and control influenza virus infections and provides an insight into the host-pathogen interaction.
Collapse
|
17
|
Hatagishi E, Okamoto M, Ohmiya S, Yano H, Hori T, Saito W, Miki H, Suzuki Y, Saito R, Yamamoto T, Shoji M, Morisaki Y, Sakata S, Nishimura H. Establishment and clinical applications of a portable system for capturing influenza viruses released through coughing. PLoS One 2014; 9:e103560. [PMID: 25083787 PMCID: PMC4118893 DOI: 10.1371/journal.pone.0103560] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/04/2014] [Indexed: 11/25/2022] Open
Abstract
Coughing plays an important role in influenza transmission; however, there is insufficient information regarding the viral load in cough because of the lack of convenient and reliable collection methods. We developed a portable airborne particle-collection system to measure the viral load; it is equipped with an air sampler to draw air and pass it through a gelatin membrane filter connected to a cone-shaped, megaphone-like device to guide the cough airflow to the membrane. The membrane was dissolved in a medium, and the viral load was measured using quantitative real-time reverse transcriptase-polymerase chain reaction and a plaque assay. The approximate viral recovery rate of this system was 10% in simulation experiments to collect and quantify the viral particles aerosolized by a nebulizer. Using this system, cough samples were collected from 56 influenza A patients. The total viral detection rate was 41% (23/56), and the viral loads varied significantly (from <10, less than the detection limit, to 2240 viral gene copies/cough). Viable viruses were detected from 3 samples with ≤18 plaque forming units per cough sample. The virus detection rates were similar among different groups of patients infected with different viral subtypes and during different influenza seasons. Among patients who did not receive antiviral treatment, viruses were detected in one of six cases in the vaccinated group and four of six cases in the unvaccinated group. We found cases with high viral titers in throat swabs or oral secretions but very low or undetectable in coughs and vice versa suggesting other possible anatomical sites where the viruses might be mixed into the cough. Our system is easy to operate, appropriate for bedside use, and is useful for comparing the viral load in cough samples from influenza patients under various conditions and settings. However, further large-scale studies are warranted to validate our results.
Collapse
Affiliation(s)
- Etsuko Hatagishi
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
- Department of International Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Michiko Okamoto
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Hisakazu Yano
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Toru Hori
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Wakana Saito
- Department of Respiratory Medicine, Sendai Medical Center, Sendai, Japan
| | - Hiroshi Miki
- Department of Respiratory Medicine, Sendai Medical Center, Sendai, Japan
| | - Yasushi Suzuki
- Division of Public Health, Department of Infectious Disease Control and International Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Reiko Saito
- Division of Public Health, Department of Infectious Disease Control and International Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taro Yamamoto
- Department of International Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | | | | | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
- * E-mail:
| |
Collapse
|
18
|
Yoneda M, Okayama A, Kitahori Y. Oseltamivir-Resistant Seasonal A(H1N1) and A(H1N1)pdm09 Influenza Viruses from the 2007/2008 to 2012/2013 Season in Nara Prefecture, Japan. Jpn J Infect Dis 2014; 67:385-8. [DOI: 10.7883/yoken.67.385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Waki N, Yajima N, Suganuma H, Buddle BM, Luo D, Heiser A, Zheng T. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Lett Appl Microbiol 2013; 58:87-93. [PMID: 24329975 DOI: 10.1111/lam.12160] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED Lactobacillus brevis KB290 (KB290), isolated from a traditional Japanese pickle 'Suguki', has been reported to have immunomodulatory effects. We investigated whether oral administration of KB290 has protective effects against influenza virus (IFV) infection in mice. After 14 days of administration of lyophilized KB290 suspended in phosphate-buffered saline by oral gavage, BALB/c mice were intranasally infected with 2 × MLD50 (50% mouse lethal dose) of IFV A/PR/8/34 (H1N1). Prophylactically administered KB290 significantly alleviated the loss of body weight and the deterioration in observational physical conditions induced by the infection. In addition, 7 days after infection, the levels of IFV-specific immunoglobulin (Ig)A in bronchoalveolar lavage fluid were significantly increased in mice fed KB290 compared with controls. Moreover, there was a significant elevation of serum interferon (IFN)-α in KB290 group mice, even at three and 7 days after infection, despite the administration of KB290 being stopped before IFV infection. Our results demonstrated that oral administration of KB290 before infection could alleviate IFV-induced clinical symptoms. Alleviation of clinical symptoms by KB290 consumption may have been induced by long-lasting enhancement of IFN-α production and the augmentation of IFV-specific IgA production. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that oral administration of Lactobacillus brevis KB290 (KB290), a probiotic strain derived from a Japanese traditional pickle, could protect against influenza virus (IFV) infection in mice. Our results demonstrated that continual intake of KB290 for 14 days prior to IFV infection alleviated clinical symptoms such as loss of body weight and deterioration in observational physical conditions induced by the infection. The beneficial effects of KB290 consumption may have been elicited by the long-lasting enhancement of interferon-α production and the augmentation of IFV-specific immunoglobulin A production.
Collapse
Affiliation(s)
- N Waki
- Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
An NA-deficient 2009 pandemic H1N1 influenza virus mutant can efficiently replicate in cultured cells. Arch Virol 2013; 159:797-800. [PMID: 24142272 DOI: 10.1007/s00705-013-1887-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/06/2013] [Indexed: 10/26/2022]
Abstract
We identified a novel neuraminidase (NA)-deficient virus that was a 2009 pandemic influenza H1N1 virus mutant. The mutant virus had a deletion of 1,009 nt in the NA gene and lacked an enzymatic domain. Although the yield of the NA-deficient virus was limited, it formed large plaques when applied to MDCK cell cultures, indicating that the virus was able to spread to adjacent cells. Furthermore, the NA-deficient virus was eluted from chicken erythrocytes at 37 °C, even in the presence of the antiviral drug peramivir. Spread of this NA-deficient virus may pose a potential threat to anti-influenza therapies.
Collapse
|
21
|
Li X, Duan S, Chu C, Xu J, Zeng G, Lam AKY, Zhou J, Yin Y, Fang D, Reynolds MJ, Gu H, Jiang L. Melaleuca alternifolia concentrate inhibits in vitro entry of influenza virus into host cells. Molecules 2013; 18:9550-66. [PMID: 23966077 PMCID: PMC6270578 DOI: 10.3390/molecules18089550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/28/2022] Open
Abstract
Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC) is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure.
Collapse
Affiliation(s)
- Xinghua Li
- Key Laboratory of Tropical Disease Control of Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (X.L.); (G.Z.); (J.Z.); (Y.Y.); (D.F.)
| | - Songwei Duan
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mail:
| | - Cordia Chu
- Center for Environment and Population Health, Griffith University, Queensland 4111, Australia; E-Mails: (C.C.); (M.R.)
| | - Jun Xu
- Research Center for Drug Discovery and Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; E-Mail:
| | - Gucheng Zeng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (X.L.); (G.Z.); (J.Z.); (Y.Y.); (D.F.)
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, Griffith Health Institute, Griffith University, Gold Coast, QLD 4222, Australia; E-Mail:
| | - Junmei Zhou
- Key Laboratory of Tropical Disease Control of Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (X.L.); (G.Z.); (J.Z.); (Y.Y.); (D.F.)
| | - Yue Yin
- Key Laboratory of Tropical Disease Control of Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (X.L.); (G.Z.); (J.Z.); (Y.Y.); (D.F.)
| | - Danyun Fang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (X.L.); (G.Z.); (J.Z.); (Y.Y.); (D.F.)
| | - Maxwell John Reynolds
- Center for Environment and Population Health, Griffith University, Queensland 4111, Australia; E-Mails: (C.C.); (M.R.)
| | - Huaiyu Gu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (H.G.); (L.J.); Tel./Fax: +86-20-8733-2068 (H.G.); Tel./Fax: +86-20-8733-2806 (L.J.)
| | - Lifang Jiang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; E-Mails: (X.L.); (G.Z.); (J.Z.); (Y.Y.); (D.F.)
- Authors to whom correspondence should be addressed; E-Mails: (H.G.); (L.J.); Tel./Fax: +86-20-8733-2068 (H.G.); Tel./Fax: +86-20-8733-2806 (L.J.)
| |
Collapse
|
22
|
Dapat C, Kondo H, Dapat IC, Baranovich T, Suzuki Y, Shobugawa Y, Saito K, Saito R, Suzuki H. Neuraminidase inhibitor susceptibility profile of pandemic and seasonal influenza viruses during the 2009-2010 and 2010-2011 influenza seasons in Japan. Antiviral Res 2013; 99:261-9. [PMID: 23791870 DOI: 10.1016/j.antiviral.2013.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/05/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Two new influenza virus neuraminidase inhibitors (NAIs), peramivir and laninamivir, were approved in 2010 which resulted to four NAIs that were used during the 2010-2011 influenza season in Japan. This study aims to monitor the susceptibility of influenza virus isolates in 2009-2010 and 2010-2011 influenza seasons in Japan to the four NAIs using the fluorescence-based 50% inhibitory concentration (IC₅₀) method. Outliers were identified using box-and-whisker plot analysis and full NA gene sequencing was performed to determine the mutations that are associated with reduction of susceptibility to NAIs. A total of 117 influenza A(H1N1)pdm09, 59 A(H3N2), and 18 type B viruses were tested before NAI treatment and eight A(H1N1)pdm09 and 1 type B viruses were examined from patients after NAI treatment in the two seasons. NA inhibition assay showed type A influenza viruses were more susceptible to NAIs than type B viruses. The peramivir and laninamivir IC₅₀ values of both type A and B viruses were significantly lower than the oseltamivir and zanamivir IC₅₀ values. Among influenza A(H1N1)pdm09 viruses, the prevalence of H274Y viruses increased from 0% in the 2009-2010 season to 3% in the 2010-2011 season. These H274Y viruses were resistant to oseltamivir and peramivir with 200-300 fold increase in IC₅₀ values but remained sensitive to zanamivir and laninamivir. Other mutations in NA, such as I222T and M241I were identified among the outliers. Among influenza A(H3N2) viruses, two outliers were identified with D151G and T148I mutations, which exhibited a reduction in susceptibility to oseltamivir and zanamivir, respectively. Among type B viruses, no outliers were identified to the four NAIs. For paired samples that were collected before and after drug treatment, three (3/11; 27.3%) H274Y viruses were identified among A(H1N1)pdm09 viruses after oseltamivir treatment but no outliers were found in the laninamivir-treatment group (n=3). Despite widespread use of NAIs in Japan, the prevalence of NAI-resistant influenza viruses is still low.
Collapse
Affiliation(s)
- Clyde Dapat
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Takashita E, Fujisaki S, Kishida N, Xu H, Imai M, Tashiro M, Odagiri T. Characterization of neuraminidase inhibitor-resistant influenza A(H1N1)pdm09 viruses isolated in four seasons during pandemic and post-pandemic periods in Japan. Influenza Other Respir Viruses 2013; 7:1390-9. [PMID: 23745712 PMCID: PMC4634248 DOI: 10.1111/irv.12132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2013] [Indexed: 12/18/2022] Open
Abstract
Background/Objectives Japan has the highest frequency of neuraminidase (NA) inhibitor use against influenza in the world. Therefore, Japan could be at high risk of the emergence and spread of NA inhibitor‐resistant viruses. The aim of this study was to monitor the emergence of NA inhibitor‐resistant viruses and the possibility of human‐to‐human transmission during four influenza seasons in Japan. Methods To monitor antiviral‐resistant A(H1N1)pdm09 viruses, we examined viruses isolated in four seasons from the 2008–2009 season through the 2011–2012 season in Japan by allelic discrimination, NA gene sequencing, and NA inhibitor susceptibility. Results We found that 157 (1·3%) of 12 026 A(H1N1)pdm09 isolates possessed an H275Y substitution in the NA protein that confers about 400‐ and 140‐fold decreased susceptibility to oseltamivir and peramivir, respectively, compared with 275H wild‐type viruses. The detection rate of resistant viruses increased from 1·0% during the pandemic period to 2·0% during the post‐pandemic period. The highest detection rate of the resistant viruses was found in patients who were 0–9 years old. Furthermore, among the cases with resistant viruses, the percentage of no known exposure to antiviral drugs increased from 16% during the pandemic period to 44% during the post‐pandemic period, implying that suspected human‐to‐human transmission of the resistant viruses gradually increased in the post‐pandemic period. Conclusions A(H1N1)pdm09 viruses resistant to oseltamivir and peramivir were sporadically detected in Japan, but they did not spread throughout the community. No viruses resistant to zanamivir and laninamivir were detected.
Collapse
Affiliation(s)
- Emi Takashita
- Laboratory of Influenza Virus Surveillance, Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fujisaki S, Takashita E, Yokoyama M, Taniwaki T, Xu H, Kishida N, Sato H, Tashiro M, Imai M, Odagiri T. A single E105K mutation far from the active site of influenza B virus neuraminidase contributes to reduced susceptibility to multiple neuraminidase-inhibitor drugs. Biochem Biophys Res Commun 2012; 429:51-6. [PMID: 23131559 DOI: 10.1016/j.bbrc.2012.10.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/24/2012] [Indexed: 11/28/2022]
Abstract
Drugs inhibiting the enzymatic activity of influenza virus neuraminidase (NA) are the cornerstone of therapy for influenza virus infection. The emergence of drug-resistant variants may limit the benefits of antiviral therapy. Here we report the recovery of an influenza B virus with reduced susceptibilities to NA inhibitors from a human patient with no history of antiviral drug treatment. The virus, designated B/Kochi/61/2011, was isolated by inoculating Madin-Darby canine kidney (MDCK) cells with respiratory specimens from the patient. NA inhibition assays demonstrated that the B/Kochi/61/2011 isolate showed a remarkable reduction in susceptibility to peramivir. The isolate also exhibited low to moderately reduced sensitivity to oseltamivir, laninamivir, and zanamivir. A sequence analysis of viruses propagated in MDCK cells revealed that the isolate contained a mutation (E105K) not previously associated with reduced susceptibility to NA inhibitors. However, pyrosequencing analysis showed that the NA E105K mutation was below a detectable level in the original clinical specimens, suggesting that the mutant virus may be preferably selected during propagation in MDCK cells. Analysis of the three-dimensional model of E105 and K105 NAs with peramivir suggested that the E105K mutation at the monomer-monomer interface of the NA tetramer may destabilize the tetrameric form of NA, leading to decreased susceptibility to NA inhibitors. These results have implications for understanding the mechanism of resistance against NA-inhibitor drugs.
Collapse
Affiliation(s)
- Seiichiro Fujisaki
- Laboratory of Influenza Virus Surveillance, Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kaku Y, Noguchi A, Okutani A, Inoue S, Tanabayashi K, Yamamoto Y, Hotta A, Suzuki M, Sugiura N, Yamada A. Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form. BMC Res Notes 2012; 5:483. [PMID: 22943792 PMCID: PMC3492028 DOI: 10.1186/1756-0500-5-483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/31/2012] [Indexed: 12/31/2022] Open
Abstract
Background In 2009, a novel influenza A/H1N1 virus (H1N1pdm) quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1). Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs). Findings Human single-fold scFv libraries (Tomlinson I + J) underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA). After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity. Discussion Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display libraries was highly advantageous for the rapid development of molecules to detect target antigens. However, our results also indicated that this strategy might not have been effective for selecting H1N1pdm-specific antibodies during the 2009 pandemic, where the co-circulating sH1N1 virus shared similar antigenic properties. This suggests that it might be advisable to use a synthetic scFv phage display library by strategically considering the characteristics of target antigens and the potential situations.
Collapse
Affiliation(s)
- Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tachiki K, Kuramoto M, Kaneko M, Nawa M, Niwa Y, Itoh M. Capture of influenza viruses and prevention of their infection by coral mineral powder (sango mineral powder). Biocontrol Sci 2012; 17:17-25. [PMID: 22451428 DOI: 10.4265/bio.17.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The anti-influenza virus activity of fossilized marine coral powder (sango mineral powder, SMP) was studied. SMP is composed in terms of mass of around 25 % of calcium and 10 % of magnesium, respectively, principally as dolomite (CaMg(CO(3))(2)) but not as calcium oxide (CaO) or magnesium oxide (MgO). By mixing the influenza virus with SMP, the infectivity of the virus substantially decreased and there was more than a 10(4) reduction on the 3rd d of infection. The antiviral effect was observed against all the type A and B strains of the influenza virus examined including the H1N1 2009 pandemic and H5N1 avian viruses. The surface structure of SMP was highly porous and the anti-influenza activity was explained by the adsorption of the viral particles onto its surface. The binding of viruses to SMP was strong and stable in the physiological condition, and the attached viruses detached only in the presence of a high concentration of phosphate. This was similar to the binding of protein to hydroxyapatite, suggesting an ionic interaction between SMP and the viral proteins. SMP maintained its activity to capture influenza viruses even after being immobilized on a non-woven textile. SMP would be useful as a practical anti-influenza tool especially in preparation for the next pandemic virus.
Collapse
Affiliation(s)
- Kiyoshi Tachiki
- Department of Microbiology, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Sugawara T, Ohkusa Y, Ibuka Y, Kawanohara H, Taniguchi K, Okabe N. Real-time prescription surveillance and its application to monitoring seasonal influenza activity in Japan. J Med Internet Res 2012; 14:e14. [PMID: 22249906 PMCID: PMC3846340 DOI: 10.2196/jmir.1881] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 12/31/2022] Open
Abstract
Background Real-time surveillance is fundamental for effective control of disease outbreaks, but the official sentinel surveillance in Japan collects information related to disease activity only weekly and updates it with a 1-week time lag. Objective To report on a prescription surveillance system using electronic records related to prescription drugs that was started in 2008 in Japan, and to evaluate the surveillance system for monitoring influenza activity during the 2009–2010 and 2010–2011 influenza seasons. Methods We developed an automatic surveillance system using electronic records of prescription drug purchases collected from 5275 pharmacies through the application service provider’s medical claims service. We then applied the system to monitoring influenza activity during the 2009–2010 and 2010–2011 influenza seasons. The surveillance system collected information related to drugs and patients directly and automatically from the electronic prescription record system, and estimated the number of influenza cases based on the number of prescriptions of anti-influenza virus medication. Then it shared the information related to influenza activity through the Internet with the public on a daily basis. Results During the 2009–2010 influenza season, the number of influenza patients estimated by the prescription surveillance system between the 28th week of 2009 and the 12th week of 2010 was 9,234,289. In the 2010–2011 influenza season, the number of influenza patients between the 36th week of 2010 and the 12th week of 2011 was 7,153,437. The estimated number of influenza cases was highly correlated with that predicted by the official sentinel surveillance (r = .992, P < .001 for 2009–2010; r = .972, P < .001 for 2010–2011), indicating that the prescription surveillance system produced a good approximation of activity patterns. Conclusions Our prescription surveillance system presents great potential for monitoring influenza activity and for providing early detection of infectious disease outbreaks.
Collapse
Affiliation(s)
- Tamie Sugawara
- National Institute of Infectious Diseases, Infectious Disease Surveillance Center, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Charu V, Viboud C, Simonsen L, Sturm-Ramirez K, Shinjoh M, Chowell G, Miller M, Sugaya N. Influenza-related mortality trends in Japanese and American seniors: evidence for the indirect mortality benefits of vaccinating schoolchildren. PLoS One 2011; 6:e26282. [PMID: 22087226 PMCID: PMC3210121 DOI: 10.1371/journal.pone.0026282] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/23/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The historical Japanese influenza vaccination program targeted at schoolchildren provides a unique opportunity to evaluate the indirect benefits of vaccinating high-transmitter groups to mitigate disease burden among seniors. Here we characterize the indirect mortality benefits of vaccinating schoolchildren based on data from Japan and the US. METHODS We compared age-specific influenza-related excess mortality rates in Japanese seniors aged ≥65 years during the schoolchildren vaccination program (1978-1994) and after the program was discontinued (1995-2006). Indirect vaccine benefits were adjusted for demographic changes, socioeconomics and dominant influenza subtype; US mortality data were used as a control. RESULTS We estimate that the schoolchildren vaccination program conferred a 36% adjusted mortality reduction among Japanese seniors (95%CI: 17-51%), corresponding to ∼1,000 senior deaths averted by vaccination annually (95%CI: 400-1,800). In contrast, influenza-related mortality did not change among US seniors, despite increasing vaccine coverage in this population. CONCLUSIONS The Japanese schoolchildren vaccination program was associated with substantial indirect mortality benefits in seniors.
Collapse
Affiliation(s)
- Vivek Charu
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nakauchi M, Ujike M, Obuchi M, Takashita E, Takayama I, Ejima M, Oba K, Konomi N, Odagiri T, Tashiro M, Kageyama T. Rapid discrimination of oseltamivir-resistant 275Y and -susceptible 275H substitutions in the neuraminidase gene of pandemic influenza A/H1N1 2009 virus by duplex one-step RT-PCR assay. J Med Virol 2011; 83:1121-7. [PMID: 21567417 PMCID: PMC7167129 DOI: 10.1002/jmv.22101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pandemic influenza A/H1N1 2009 (A/H1N1pdm) virus caused significant outbreaks worldwide last year (2009). A number of oseltamivir‐resistant A/H1N1pdm viruses possessing an H275Y substitution in the neuraminidase (NA) protein were reported sporadically in several countries, including Japan, but they were sensitive to zanamivir and did not spread in the community. In this study, to monitor rapidly and simply oseltamivir‐resistant A/H1N1pdm viruses possessing H275Y, a duplex one‐step RT‐PCR assay (H275Y RT‐PCR assay) was developed based on an endpoint genotyping analysis method. H275Y RT‐PCR assay evaluated using several subtypes/types of influenza A and B viruses and other respiratory pathogenic viruses and shown to have high sensitivity and high specificity. Forty‐four clinical specimens were tested after RNA purification using the H275Y RT‐PCR assay, resulting in one clinical specimen being found to contain a virus possessing the H275Y mutation. Seventy‐three clinical isolates were then tested with the H275Y assay by using clinical isolates in the cultured supernatants of cells directly, without RNA purification, and the results were consistent with the NA sequencing. Since the H275Y RT‐PCR assay could detect the H275Y mutation in clinical isolates without RNA purification, as well as a H275Y mutated virus in clinical specimens after RNA purification, the assay was considered a powerful tool for surveillance screening of oseltamivir‐resistant A/H1N1pdm virus activity. J. Med. Virol. 83:1121–1127, 2011. © 2011 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Mina Nakauchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Järhult JD, Muradrasoli S, Wahlgren J, Söderström H, Orozovic G, Gunnarsson G, Bröjer C, Latorre-Margalef N, Fick J, Grabic R, Lennerstrand J, Waldenström J, Lundkvist A, Olsen B. Environmental levels of the antiviral oseltamivir induce development of resistance mutation H274Y in influenza A/H1N1 virus in mallards. PLoS One 2011; 6:e24742. [PMID: 21931841 PMCID: PMC3171471 DOI: 10.1371/journal.pone.0024742] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/16/2011] [Indexed: 02/01/2023] Open
Abstract
Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals.
Collapse
Affiliation(s)
- Josef D Järhult
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ujike M, Ejima M, Anraku A, Shimabukuro K, Obuchi M, Kishida N, Hong X, Takashita E, Fujisaki S, Yamashita K, Horikawa H, Kato Y, Oguchi A, Fujita N, Tashiro M, Odagiri T. Monitoring and characterization of oseltamivir-resistant pandemic (H1N1) 2009 virus, Japan, 2009-2010. Emerg Infect Dis 2011; 17:470-9. [PMID: 21392439 PMCID: PMC3166015 DOI: 10.3201/eid1703.101188] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
No evidence of sustained spread was found, but 2 incidents of human-to-human transmission were suspected. To monitor and characterize oseltamivir-resistant (OR) pandemic (H1N1) 2009 virus with the H275Y mutation, we analyzed 4,307 clinical specimens from Japan by neuraminidase (NA) sequencing or inhibition assay; 61 OR pandemic (H1N1) 2009 viruses were detected. NA inhibition assay and M2 sequencing indicated that OR pandemic (H1N1) 2009 virus was resistant to M2 inhibitors, but sensitive to zanamivir. Full-genome sequencing showed OR and oseltamivir-sensitive (OS) viruses had high sequence similarity, indicating that domestic OR virus was derived from OS pandemic (H1N1) 2009 virus. Hemagglutination inhibition test demonstrated that OR and OS pandemic (H1N1) 2009 viruses were antigenically similar to the A/California/7/2009 vaccine strain. Of 61 case-patients with OR viruses, 45 received oseltamivir as treatment, and 10 received it as prophylaxis, which suggests that most cases emerged sporadically from OS pandemic (H1N1) 2009, due to selective pressure. No evidence of sustained spread of OR pandemic (H1N1) 2009 was found in Japan; however, 2 suspected incidents of human-to-human transmission were reported.
Collapse
Affiliation(s)
- Makoto Ujike
- National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Renaud C, Kuypers J, Englund JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol 2011; 52:70-8. [PMID: 21684202 DOI: 10.1016/j.jcv.2011.05.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
Abstract
The emergence of oseltamivir resistance in seasonal and pandemic influenza A/H1N1 has created challenges for diagnosis and clinical management. This review discusses how clinical virology laboratories have handled diagnosis of oseltamivir-resistant H1N1 and what we have learned from clinical studies and case series. Immunocompetent patients infected with oseltamivir-resistant H1N1 have similar outcomes as patients infected with oseltamivir-susceptible H1N1. However, immunocompromised patients infected with oseltamivir-resistant H1N1 experience potentially more risks of complication and transmissibility with few therapeutic options.
Collapse
Affiliation(s)
- Christian Renaud
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
33
|
Adamantane- and oseltamivir-resistant seasonal A (H1N1) and pandemic A (H1N1) 2009 influenza viruses in Guangdong, China, during 2008 and 2009. J Clin Microbiol 2011; 49:2651-5. [PMID: 21593267 DOI: 10.1128/jcm.00535-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adamantane and oseltamivir resistance among influenza viruses is a major concern to public health officials. To determine the prevalence of antiviral-resistant influenza viruses in Guangdong, China, 244 seasonal A (H1N1) and 222 pandemic A (H1N1) 2009 viruses were screened for oseltamivir resistance by a fluorescence-based neuraminidase (NA) inhibition assay along with NA gene sequencing. Also, 147 seasonal A (H1N1) viruses were sequenced to detect adamantane resistance markers in M2. Adamantane-resistant seasonal A (H1N1) viruses clustering to clade 2C were dominant in 2008, followed by oseltamivir-resistant seasonal A (H1N1) viruses, clustering to clade 2B during January and May 2009. In June 2009, a lineage of double-resistant seasonal A (H1N1) viruses emerged, until it was replaced by the pandemic A (H1N1) 2009 viruses. The lineage most likely resulted from reassortment under the pressure of the overuse of adamantanes. As all viruses were resistant to at least one of the two types of antiviral agents, the need for close monitoring of the prevalence of antiviral resistance is stressed.
Collapse
|
34
|
Niikura M, Bance N, Mohan S, Mario Pinto B. Replication inhibition activity of carbocycles related to oseltamivir on influenza A virus in vitro. Antiviral Res 2011; 90:160-3. [PMID: 21443905 DOI: 10.1016/j.antiviral.2011.03.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/15/2022]
Abstract
We have recently demonstrated that newly synthesized oseltamivir derivatives that contain a substituted triazole ring at the C-5 amino group interact with the 150 cavity found specifically in the group-1 neuraminidase (NA) subtypes of influenza A virus. These compounds exhibited in vitro inhibition activity of a group-1 NA enzyme incorporated in virus-like particles (VLPs). In the current study, we tested these nine triazole-containing carbocycles as well as an amino- and a guanidino-substituted derivative in virus replication inhibitory assays in vitro. None of the triazole-containing carbocycles significantly inhibited influenza A virus replication in MDCK cells with either a virus strain containing a group-1 or a group-2 subtype NA. In contrast, the amino- and guanidino-substituted derivatives clearly inhibited the cytopathic effect or spread of virus infection detected by immunostaining in MDCK monolayers as well as progeny virus release; these compounds were also reported to have shown the highest inhibition of group-1 NA in the context of VLPs. These results, together with the structures of these compounds, suggest that hydrogen-bonding interactions between the polar amino or guanidino functions and complementary groups in the neuraminidase active site (e.g. Asp151, Glu 119) may be essential for strong inhibition of the neuraminidase enzyme and, in turn, the inhibition of influenza A virus replication.
Collapse
Affiliation(s)
- Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada V5A1S6.
| | | | | | | |
Collapse
|
35
|
Tamura D, Sugaya N, Ozawa M, Takano R, Ichikawa M, Yamazaki M, Kawakami C, Shimizu H, Uehara R, Kiso M, Kawakami E, Mitamura K, Kawaoka Y. Frequency of drug-resistant viruses and virus shedding in pediatric influenza patients treated with neuraminidase inhibitors. Clin Infect Dis 2011; 52:432-7. [PMID: 21248368 DOI: 10.1093/cid/ciq183] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Although influenza virus resistance to the neuraminidase inhibitor zanamivir is reported less frequently than is resistance to the neuraminidase inhibitor oseltamivir in clinical settings, it is unknown whether this difference is due to the limited use of zanamivir or to an inherent property of the drug. We therefore compared the prevalence of drug-resistant viruses and virus shedding in seasonal influenza virus-infected children treated with either oseltamivir or zanamivir. METHODS Clinical specimens (throat or nasal swab) were collected from a total of 144 pediatric influenza patients during the 2005-2006, 2006-2007, 2007-2008, and 2008-2009 influenza seasons. Neuraminidase inhibitor-resistant mutants were detected among the isolated viruses by sequencing the viral hemagglutinin and neuraminidase genes. Sensitivity of the viruses to neuraminidase inhibitors was tested by neuraminidase inhibition assay. RESULTS In oseltamivir- or zanamivir-treated influenza patients who were statistically comparable in their age distribution, vaccination history, and type or subtype of virus isolates, the virus-shedding period in zanamivir-treated patients was significantly shorter than that in oseltamivir-treated patients. Furthermore, the frequency of zanamivir-resistant viruses was significantly lower than that of oseltamivir-resistant viruses. CONCLUSION In comparison with treatment with oseltamivir, treatment of pediatric patients with zanamivir resulted in the emergence of fewer drug-resistant influenza viruses and a shorter virus-shedding period. We conclude that zanamivir shows promise as a better therapy for pediatric influenza patients.
Collapse
Affiliation(s)
- Daisuke Tamura
- Division of Virology, Department of Microbiology and Immunology, Institute of MedicalScience, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Renaud C, Pergam SA, Polyak C, Jain R, Kuypers J, Englund JA, Corey L, Boeckh MJ. Early emergence of an H275Y mutation in a hematopoietic cell transplant recipient treated with intravenous peramivir. Transpl Infect Dis 2010; 12:513-7. [PMID: 21062390 PMCID: PMC3024056 DOI: 10.1111/j.1399-3062.2010.00582.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oseltamivir resistance in pandemic 2009 influenza A/H1N1 is caused by the neuraminidase mutation H275Y. This mutation has also been associated with in vitro resistance to peramivir, but few clinical cases have been described to date. Using allele-specific real-time reverse transcriptase polymerase chain reaction assay for the H275Y mutation, we were able to identify resistant H1N1 in a hematopoietic cell transplant recipient receiving intravenous peramivir therapy, and through serial testing we determined the molecular evolution of resistance. This case demonstrates that an H275Y mutant population can emerge early and replicate in vivo under peramivir antiviral pressure to become the major viral population.
Collapse
Affiliation(s)
- C Renaud
- Département de Microbiologie et Immunologie, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Identification of oseltamivir resistance among pandemic and seasonal influenza A (H1N1) viruses by an His275Tyr genotyping assay using the cycling probe method. J Clin Microbiol 2010; 49:125-30. [PMID: 21084523 DOI: 10.1128/jcm.01401-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuraminidase inhibitors are agents used against influenza viruses; however, the emergence of drug-resistant strains is a major concern. Recently, the prevalence of oseltamivir-resistant seasonal influenza A (H1N1) virus increased globally and the emergence of oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses was reported. In this study, we developed a cycling probe real-time PCR method for the detection of oseltamivir-resistant seasonal influenza A (H1N1) and pandemic influenza A (H1N1) 2009 viruses. We designed two sets of primers and probes that were labeled with 6-carboxyfluorescein or 6-carboxy-X-rhodamine to identify single nucleotide polymorphisms (SNPs) that correspond to a histidine and a tyrosine at position 275 in the neuraminidase protein, respectively. These SNPs confer susceptibility and resistance to oseltamivir, respectively. In the 2007-2008 season, the prevalence of oseltamivir-resistant H1N1 viruses was 0% (0/72), but in the 2008-2009 season, it increased to 100% (282/282). In the 2009-2010 season, all of the pandemic influenza A (H1N1) 2009 viruses were susceptible to oseltamivir (0/73, 0%). This method is sensitive and specific for the screening of oseltamivir-resistant influenza A (H1N1) viruses. This method is applicable to routine laboratory-based monitoring of drug resistance and patient management during antiviral therapy.
Collapse
|
38
|
Abstract
Human infections with avian influenza A (H5N1) are relatively rare but are associated with high mortality. As of July 5, 2010 there had been 500 cases and 296 fatalities. The influenza virus readily undergoes mutation and reassortment, and there are concerns that an H5N1 variant could be responsible for a future pandemic. The influenza neuraminidase inhibitors zanamivir and oseltamivir are approved for the treatment and prophylaxis of influenza. Oseltamivir is being used to treat H5N1 infections and the case has been made for a role for zanamivir; however, there are no case reports for the latter. Zanamivir is a potent inhibitor of H5N1, attains high lung concentrations immediately on administration, distributes into plasma at antiviral concentrations, has a low propensity for generating resistant virus, and retains activity against H275Y oseltamivir-resistant virus. There have been several reports of oseltamivir-resistant H5N1 arising during treatment with oseltamivir, and zanamivir retains effectiveness (in vitro or in vivo) against these isolates. Compassionate use of intravenous zanamivir for the treatment of seriously ill patients, including those with H275Y H1N1 infections, has also shown promising results. It is concluded that there is a role for zanamivir in treating H5N1 infections either as the approved, inhaled formulation in patients capable of using the Diskhaler, or as the intravenous formulation if compassionate use is warranted. The relatively small number of patients with these infections remains an obstacle to completion of clinical trials. Evidence is therefore likely to be based on carefully documented case reports, ideally in patients treated early in the course of the infection.
Collapse
Affiliation(s)
- Phillip Andrew Reece
- Department of Pharmacology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
39
|
Bantia S, Kellogg D, Parker CD, Babu YS. Combination of peramivir and rimantadine demonstrate synergistic antiviral effects in sub-lethal influenza A (H3N2) virus mouse model. Antiviral Res 2010; 88:276-80. [PMID: 20943201 DOI: 10.1016/j.antiviral.2010.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/14/2010] [Accepted: 09/21/2010] [Indexed: 10/18/2022]
Abstract
Efficacy of combination of the intramuscularly administered neuraminidase (NA) inhibitor, peramivir, and the orally administered M2 ion channel blocker, rimantadine was evaluated in mouse influenza A/Victoria/3/75 (H3N2) model. Mice were challenged with a sub-lethal virus dose (0-40% mortality in placebo group) and changes in body weights were analyzed by three-dimensional effect analysis to assess mode of drug interactions. Compounds were administered in a 5-day treatment course starting 1h before viral inoculation. The peramivir and rimantadine doses ranged from 0.3-3 mg/kg/d and 5-30 mg/kg/d, respectively. The maximum mean weight loss of 5.19 g was observed in the vehicle-infected group on day 10. In the 1 and 3 mg/kg/d peramivir monotherapy groups, the weight losses were 4.3 and 3.55 g, respectively. In the rimantadine monotherapy group, the weight losses were 3.43, 2.1, and 1.64 g for the 5, 10, and 30 mg/kg/d groups, respectively. Combination of 1mg/kg/d peramivir with 5 and 10 mg/kg/d rimantadine produced weight losses of 1.69 and 0.69 (p<0.05 vs. vehicle and individual agent), respectively, whereas the combination of 3.0 mg/kg/d peramivir with 10 and 30 mg/kg/d rimantadine did not show any weight loss (p<0.05 vs. vehicle and individual agent). The three-dimensional analysis of the weight loss for the majority of the drug combinations of peramivir and rimantadine tested demonstrated synergistic antiviral effects.
Collapse
Affiliation(s)
- Shanta Bantia
- Department of Biological Sciences, BioCryst Pharmaceuticals, Inc., Birmingham, AL 35244, USA.
| | | | | | | |
Collapse
|