1
|
Chi J, Ye J, Zhou Y. Mapping QTL controlling count traits with excess zeros and ones using a zero-and-one-inflated generalized Poisson regression model. Biom J 2024; 66:e2200342. [PMID: 38616336 DOI: 10.1002/bimj.202200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 04/16/2024]
Abstract
The research on the quantitative trait locus (QTL) mapping of count data has aroused the wide attention of researchers. There are frequent problems in applied research that limit the application of the conventional Poisson model in the analysis of count phenotypes, which include the overdispersion and excess zeros and ones. In this article, a novel model, that is, the zero-and-one-inflated generalized Poisson (ZOIGP) model, is proposed to deal with these problems. Based on the proposed model, a score test is performed for the inflation parameter, in which the ZOIGP model with a constant proportion of excess zeros and ones is compared with a standard generalized Poisson model. To illustrate the practicability of the ZOIGP model, we extend it to the QTL interval mapping application that underpins count phenotype with excess zeros and excess ones. The genetic effects are estimated utilizing the expectation-maximization algorithm embedded with the Newton-Raphson algorithm, and the genome-wide scan and likelihood ratio test is performed to map and test the potential QTLs. The statistical properties exhibited by the proposed method are investigated through simulation. Finally, a real data analysis example is used to illustrate the utility of the proposed method for QTL mapping.
Collapse
Affiliation(s)
- Jinling Chi
- School of Mathematics and Statistics, Xidian University, Xi'an, China
| | - Jimin Ye
- School of Mathematics and Statistics, Xidian University, Xi'an, China
| | - Ying Zhou
- School of Mathematical Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
2
|
Wee BA, Alves J, Lindsay DSJ, Klatt AB, Sargison FA, Cameron RL, Pickering A, Gorzynski J, Corander J, Marttinen P, Opitz B, Smith AJ, Fitzgerald JR. Population analysis of Legionella pneumophila reveals a basis for resistance to complement-mediated killing. Nat Commun 2021; 12:7165. [PMID: 34887398 PMCID: PMC8660822 DOI: 10.1038/s41467-021-27478-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
Legionella pneumophila is the most common cause of the severe respiratory infection known as Legionnaires' disease. However, the microorganism is typically a symbiont of free-living amoeba, and our understanding of the bacterial factors that determine human pathogenicity is limited. Here we carried out a population genomic study of 902 L. pneumophila isolates from human clinical and environmental samples to examine their genetic diversity, global distribution and the basis for human pathogenicity. We find that the capacity for human disease is representative of the breadth of species diversity although some clones are more commonly associated with clinical infections. We identified a single gene (lag-1) to be most strongly associated with clinical isolates. lag-1, which encodes an O-acetyltransferase for lipopolysaccharide modification, has been distributed horizontally across all major phylogenetic clades of L. pneumophila by frequent recent recombination events. The gene confers resistance to complement-mediated killing in human serum by inhibiting deposition of classical pathway molecules on the bacterial surface. Furthermore, acquisition of lag-1 inhibits complement-dependent phagocytosis by human neutrophils, and promoted survival in a mouse model of pulmonary legionellosis. Thus, our results reveal L. pneumophila genetic traits linked to disease and provide a molecular basis for resistance to complement-mediated killing.
Collapse
Affiliation(s)
- Bryan A Wee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Joana Alves
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Diane S J Lindsay
- Bacterial Respiratory Infections Service (Ex Mycobacteria), Scottish Microbiology Reference Laboratory, Glasgow, Scotland, UK
| | - Ann-Brit Klatt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fiona A Sargison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ross L Cameron
- NHS National Services Scotland, Health Protection Scotland, Glasgow, Scotland, UK
| | - Amy Pickering
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jamie Gorzynski
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Pekka Marttinen
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Aalto, Finland
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew J Smith
- Bacterial Respiratory Infections Service (Ex Mycobacteria), Scottish Microbiology Reference Laboratory, Glasgow, Scotland, UK
- College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - J Ross Fitzgerald
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
3
|
Lourdesamy Anthony AI, Zam Z, Hussin N. A Hospital-based Study on the Local Epidemiology of Pneumonia Including the Contribution of Legionella Pneumonia. Malays J Med Sci 2021; 27:79-88. [PMID: 33447136 PMCID: PMC7785258 DOI: 10.21315/mjms2020.27.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Background In real-life practice, only 20% of hospitalised pneumonia cases have an identified etiology. The usage of Legionella urine antigen test (LUAT) in developed nations revolutionised case detection rates. Accordingly, our objectives were to study the microbiological etiology for hospitalised pneumonia patients and the diagnosis of Legionella pneumonia. Methods A prospective, observational single-centre study was conducted where all 504 cases that were consecutively admitted for pneumonia were enrolled. Blood and sputum samples obtained were used to identify pathogens using standard microbiological culture methods. The urine samples collected were tested using the ImmunocatchTMLegionella immunochromatographic (ICT) urine antigen test. Results A microbiological diagnosis was only achieved in 104 cases (20.6%) and a Gram-negative infection predominance was observed. Culture-positive cases required longer hospitalisation (8.46 days versus 5.53 days; P < 0.001) and the higher usage of antipseudomonal antibiotics (23.1% versus 8.3%; P < 0.001). Only 3 cases (0.6%) were diagnosed with Legionella pneumonia. Conclusion The local pathogen distribution is diverse compared to other regions. Culture-negative pneumonia is common and significantly differs from culture-positive pneumonia. Legionella pneumophila serotype 1 is not a common cause of pneumonia and LUAT did not help demystify the cause of culture-negative pneumonia.
Collapse
Affiliation(s)
| | - Zarifah Zam
- Microbiology Unit, Hospital Taiping, Taiping, Malaysia
| | - Narwani Hussin
- Clinical Research Centre, Hospital Taiping, Taiping, Malaysia
| |
Collapse
|
4
|
Burillo A, Pedro-Botet ML, Bouza E. Microbiology and Epidemiology of Legionnaire's Disease. Infect Dis Clin North Am 2017; 31:7-27. [PMID: 28159177 DOI: 10.1016/j.idc.2016.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Legionnaire's disease (LD) is the pneumonic form of legionellosis caused by aerobic gram-negative bacilli of the genus Legionella. Individuals become infected when they inhale aerosolized water droplets contaminated with Legionella species. Forty years after the identification of Legionella pneumophila as the cause of the 1976 pneumonia outbreak in a hotel in Philadelphia, we have non-culture-based diagnostic tests, effective antibiotics, and preventive measures to handle LD. With a mortality rate still around 10%, underreporting, and sporadic outbreaks, there is still much work to be done. In this article, the authors review the microbiology, laboratory diagnosis, and epidemiology of LD.
Collapse
Affiliation(s)
- Almudena Burillo
- Division of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María Luisa Pedro-Botet
- Infectious Diseases Unit, Hospital Universitario German Trías i Pujol, Carretera de Canyet s/n, 08916 Badalona, Spain; Departamento de Medicina, Area de Medicina, Universidad Autónoma de Barcelona, Plaza Cívica, Campus de la UAB, 08193 Bellaterra, Sardañola del Vallés (Barcelona), Spain; CIBER de Enfermedades Respiratorias (CIBERES CB06/06/1089), Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Emilio Bouza
- Division of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Peci A, Winter AL, Gubbay JB. Evaluation and Comparison of Multiple Test Methods, Including Real-time PCR, for Legionella Detection in Clinical Specimens. Front Public Health 2016; 4:175. [PMID: 27630979 PMCID: PMC5005417 DOI: 10.3389/fpubh.2016.00175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
Legionella is a Gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture, and polymerase chain reaction (PCR) test methods and to determine if sputum is an acceptable alternative to the use of more invasive bronchoalveolar lavage (BAL). Data for this study included specimens tested for Legionella at Public Health Ontario Laboratories from 1st January, 2010 to 30th April, 2014, as part of routine clinical testing. We found sensitivity of urinary antigen test (UAT) compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV) 63.8%, and negative predictive value (NPV) 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7%, and NPV 98.1%. Out of 146 patients who had a Legionella-positive result by PCR, only 66 (45.2%) also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%); sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results regardless testing methods (Fisher Exact p-values = 1.0, for each test). In summary, all test methods have inherent weaknesses in identifying Legionella; therefore, more than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical from patients being tested for Legionella.
Collapse
Affiliation(s)
| | | | - Jonathan B Gubbay
- Public Health Ontario, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Hampton LM, Garrison L, Kattan J, Brown E, Kozak-Muiznieks NA, Lucas C, Fields B, Fitzpatrick N, Sapian L, Martin-Escobar T, Waterman S, Hicks LA, Alpuche-Aranda C, Lopez-Gatell H. Legionnaires' Disease Outbreak at a Resort in Cozumel, Mexico. Open Forum Infect Dis 2016; 3:ofw170. [PMID: 27704023 PMCID: PMC5047414 DOI: 10.1093/ofid/ofw170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022] Open
Abstract
An investigation of a Legionnaires' disease outbreak at a Cozumel Island resort identified the source of the first reported Legionnaires' disease outbreak in Mexico and highlighted the need for all countries to make Legionnaires' disease a reportable disease. Background. A Legionnaires' disease (LD) outbreak at a resort on Cozumel Island in Mexico was investigated by a joint Mexico-United States team in 2010. This is the first reported LD outbreak in Mexico, where LD is not a reportable disease. Methods. Reports of LD among travelers were solicited from US health departments and the European Working Group for Legionella Infections. Records from the resort and Cozumel Island health facilities were searched for possible LD cases. In April 2010, the resort was searched for possible Legionella exposure sources. The temperature and total chlorine of the water at 38 sites in the resort were measured, and samples from those sites were tested for Legionella. Results. Nine travelers became ill with laboratory-confirmed LD within 2 weeks of staying at the resort between May 2008 and April 2010. The resort and its potable water system were the only common exposures. No possible LD cases were identified among resort workers. Legionellae were found to have extensively colonized the resort's potable water system. Legionellae matching a case isolate were found in the resort's potable water system. Conclusions. Medical providers should test for LD when treating community-acquired pneumonia that is severe or affecting patients who traveled in the 2 weeks before the onset of symptoms. When an LD outbreak is detected, the source should be identified and then aggressively remediated. Because LD can occur in tropical and temperate areas, all countries should consider making LD a reportable disease if they have not already done so.
Collapse
Affiliation(s)
- Lee M Hampton
- Epidemic Intelligence Service, Scientific Education and Professional Development Program Office; Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Laurel Garrison
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Jessica Kattan
- Epidemic Intelligence Service, Scientific Education and Professional Development Program Office; Connecticut Department of Public Health, Hartford
| | - Ellen Brown
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | | | - Claressa Lucas
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Barry Fields
- Division of Global Health Protection, Center for Global Health
| | - Nicole Fitzpatrick
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Luis Sapian
- Instituto de Diagnóstico y Referencia Epidemiologicos , Ciudad de Mexico, Distrito Federal
| | | | - Stephen Waterman
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Lauri A Hicks
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases
| | - Celia Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública , Cuernavaca, Morelos , Mexico
| | - Hugo Lopez-Gatell
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública , Cuernavaca, Morelos , Mexico
| |
Collapse
|
7
|
Parr A, Whitney EA, Berkelman RL. Legionellosis on the Rise: A Review of Guidelines for Prevention in the United States. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2015; 21:E17-26. [PMID: 25203696 PMCID: PMC4519350 DOI: 10.1097/phh.0000000000000123] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
CONTEXT Reported cases of legionellosis more than tripled between 2001 and 2012 in the United States. The disease results primarily from exposure to aerosolized water contaminated with Legionella. OBJECTIVE To identify and describe policies and guidelines for the primary prevention of legionellosis in the US. DESIGN An Internet search for Legionella prevention guidelines in the United States at the federal and state levels was conducted from March to June 2012. Local government agency guidelines and guidelines from professional organizations that were identified in the initial search were also included. SETTING Federal, state, and local governing bodies and professional organizations. RESULTS Guidelines and regulations for the primary prevention of legionellosis (ie, Legionnaires' disease and Pontiac fever) have been developed by various public health and other government agencies at the federal, state, and local levels as well as by professional organizations. These guidelines are similar in recommending maintenance of building water systems; federal and other guidelines differ in the population/institutions targeted, the extent of technical detail, and support of monitoring water systems for levels of Legionella contamination. CONCLUSIONS Legionellosis deserves a higher public health priority for research and policy development. Guidance across public health agencies for the primary prevention of legionellosis requires strengthening as this disease escalates in importance as a cause of severe morbidity and mortality. We recommend a formal and comprehensive review of national public health guidelines for prevention of legionellosis.
Collapse
Affiliation(s)
- Alyssa Parr
- Center for Public Health Preparedness and Research, Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
8
|
Jjemba PK, Johnson W, Bukhari Z, LeChevallier MW. Occurrence and Control of Legionella in Recycled Water Systems. Pathogens 2015; 4:470-502. [PMID: 26140674 PMCID: PMC4584268 DOI: 10.3390/pathogens4030470] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila is on the United States Environmental Protection Agency (USEPA) Candidate Contaminant list (CCL) as an important pathogen. It is commonly encountered in recycled water and is typically associated with amoeba, notably Naegleria fowleri (also on the CCL) and Acanthamoeba sp. No legionellosis outbreak has been linked to recycled water and it is important for the industry to proactively keep things that way. A review was conducted examine the occurrence of Legionella and its protozoa symbionts in recycled water with the aim of developing a risk management strategy. The review considered the intricate ecological relationships between Legionella and protozoa, methods for detecting both symbionts, and the efficacy of various disinfectants.
Collapse
Affiliation(s)
- Patrick K Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - Zia Bukhari
- American Water, 1025 Laurel Oak Road, Voorhees, NJ 08043, USA.
| | | |
Collapse
|
9
|
Legionellosis in Patients With Cancer. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2015. [DOI: 10.1097/ipc.0000000000000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Alexandropoulou IG, Ntougias S, Konstantinidis TG, Parasidis TA, Panopoulou M, Constantinidis TC. Environmental surveillance and molecular epidemiology of waterborne pathogen Legionella pneumophila in health-care facilities of Northeastern Greece: a 4-year survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7628-7640. [PMID: 25712880 DOI: 10.1007/s11356-014-3740-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
A 4-year proactive environmental surveillance of Legionella spp. in the water distribution and cooling systems of five health-care facilities was carried out as part of the strategy for the prevention of hospital-acquired Legionnaires' disease in Northeastern Greece. Legionella spp. were detected in 71 out of 458 collected samples. The majority of strains belonged to Legionella pneumophila serogroups 2-15 (75.0%), while all L. pneumophila serogroup 1 strains (23.6%) were isolated from a single hospital. The highest percentage of positive samples was found in distal sites (19.4%), while no Legionella strains were detected in cooling systems. Each hospital was colonized at least once with L. pneumophila, while remedial actions resulted in significant reduction of Legionella concentration. The molecular epidemiology of environmental L. pneumophila strains was also investigated using random amplified polymorphic DNA (RAPD) and multi-gene sequence-based analysis. Based on RAPD patterns, L. pneumophila serogroups 2-15 and serogroup 1 strains were classified into 24 and 9 operational taxonomic units (OTUs), respectively. Sequencing of housekeeping and diversifying pressure-related genes recommended by European Working Group for Legionella Infections (EWGLI) revealed not only a high intraspecies variability but also the circulation and persistence of one specific genotyping profile in the majority of hospitals. This study highlights the necessity for diachronic surveillance of Legionella in health-care facilities by adopting both cultural and molecular methods.
Collapse
Affiliation(s)
- Ioanna G Alexandropoulou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Campus (Dragana) Building 5, 68100, Alexandroupolis, Greece,
| | | | | | | | | | | |
Collapse
|
11
|
van Heijnsbergen E, Schalk JAC, Euser SM, Brandsema PS, den Boer JW, de Roda Husman AM. Confirmed and Potential Sources of Legionella Reviewed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4797-815. [PMID: 25774976 DOI: 10.1021/acs.est.5b00142] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Legionella bacteria are ubiquitous in natural matrices and man-made systems. However, it is not always clear if these reservoirs can act as source of infection resulting in cases of Legionnaires' disease. This review provides an overview of reservoirs of Legionella reported in the literature, other than drinking water distribution systems. Levels of evidence were developed to discriminate between potential and confirmed sources of Legionella. A total of 17 systems and matrices could be classified as confirmed sources of Legionella. Many other man-made systems or natural matrices were not classified as a confirmed source, since either no patients were linked to these reservoirs or the supporting evidence was weak. However, these systems or matrices could play an important role in the transmission of infectious Legionella bacteria; they might not yet be considered in source investigations, resulting in an underestimation of their importance. To optimize source investigations it is important to have knowledge about all the (potential) sources of Legionella. Further research is needed to unravel what the contribution is of each confirmed source, and possibly also potential sources, to the LD disease burden.
Collapse
Affiliation(s)
- Eri van Heijnsbergen
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Johanna A C Schalk
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Sjoerd M Euser
- ‡Regional Public Health Laboratory Kennemerland, Haarlem, Boerhaavelaan 26, 2035 RC Haarlem, The Netherlands
| | - Petra S Brandsema
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Jeroen W den Boer
- ‡Regional Public Health Laboratory Kennemerland, Haarlem, Boerhaavelaan 26, 2035 RC Haarlem, The Netherlands
| | - Ana Maria de Roda Husman
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
- §Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
12
|
Phin N, Parry-Ford F, Harrison T, Stagg HR, Zhang N, Kumar K, Lortholary O, Zumla A, Abubakar I. Epidemiology and clinical management of Legionnaires' disease. THE LANCET. INFECTIOUS DISEASES 2014; 14:1011-21. [DOI: 10.1016/s1473-3099(14)70713-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|