1
|
Dai Z, Lu Q, Sun M, Chen H, Zhu R, Wang H. Identification of a Novel Parvovirus in the Arctic Wolf ( Canis lupus arctos). Pol J Microbiol 2024; 73:395-401. [PMID: 39268953 PMCID: PMC11395419 DOI: 10.33073/pjm-2024-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
A novel virus, temporarily named "Arctic wolf parvovirus" (AWPV), was discovered in a pharyngeal metagenomic library derived from an Arctic wolf (Canis lupus arctos) in China. The genome sequence was assigned GenBase accession number C_AA071902.1. AWPV has a genome comprised of 4,920 base pairs with a nucleotide composition of 36.4% A, 23.4% T, 18.2% G, and 22.0% C, with a GC content of 40.2%. Its structure resembles parvoviruses, containing two open reading frames: the nonstructural (NS) region encoding replication enzymes and the structural (VP) region encoding capsid protein. Pairwise sequence comparison and phylogenetic analysis suggest AWPV may represent a novel species within the genus Protoparvovirus. This discovery enhances our understanding of mammalian virus ecology and potential future infectious diseases.
Collapse
Affiliation(s)
- Ziyuan Dai
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Qiang Lu
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Mingzhong Sun
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Hongmei Chen
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Rong Zhu
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Huiqing Wang
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
2
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Chaves A, Ibarra-Cerdeña CN, López-Pérez AM, Monge O, Avendaño R, Ureña-Saborio H, Chavarría M, Zaldaña K, Sánchez L, Ortíz-Malavassi E, Suzan G, Foley J, Gutiérrez-Espeleta GA. Bocaparvovirus, Erythroparvovirus and Tetraparvovirus in New World Primates from Central America. Transbound Emerg Dis 2019; 67:377-387. [PMID: 31529612 DOI: 10.1111/tbed.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Abstract
Parvoviruses in the genera Bocaparvovirus (HBoV), Erythroparvovirus (B19) and Tetraparvovirus (PARV4) are the only autonomous parvoviruses known to be associated with human and non-human primates based on studies and clinical cases in humans worldwide and non-human primates in Asia and Africa. Here, the presence of these agents with pathogenic potential was assessed by PCR in blood and faeces from 55 howler monkeys, 112 white-face monkeys, 3 squirrel monkeys and 127 spider monkeys in Costa Rica and El Salvador. Overall, 3.7% (11/297) of the monkeys had HboV DNA, 0.67% (2/297) had B19 DNA, and 14.1% (42/297) had PARV4 DNA, representing the first detection of these viruses in New World Primates (NWP). Sex was significantly associated with the presence of HBoV, males having greater risk up to nine times compared with females. Captivity was associated with increased prevalence for PARV4 and when all viruses were analysed together. This study provides compelling molecular evidence of parvoviruses in NWPs and underscores the importance of future research aimed at understanding how these viruses behave in natural environments of the Neotropics and what variables may favour their presence and transmission.
Collapse
Affiliation(s)
- Andrea Chaves
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.,Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Mérida, Mérida, México
| | - Andrés M López-Pérez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.,Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F, México
| | - Otto Monge
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Hilary Ureña-Saborio
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica.,Escuela de Química & CIPRONA, Universidad de Costa Rica, San José, Costa Rica
| | - Karla Zaldaña
- Asociación Territorios Vivos El Salvador, San Salvador, El Salvador
| | - Lucía Sánchez
- Asociación Territorios Vivos El Salvador, San Salvador, El Salvador
| | - Edgar Ortíz-Malavassi
- Escuela de Ingienería Forestal, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Gerardo Suzan
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F, México
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
4
|
Brožová K, Modrý D, Dadáková E, Mapua MI, Piel AK, Stewart FA, Celer V, Hrazdilová K. PARV4 found in wild chimpanzee faeces: an alternate route of transmission? Arch Virol 2018; 164:573-578. [PMID: 30343383 DOI: 10.1007/s00705-018-4073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Human parvovirus 4 (PARV4, family Parvoviridae, genus Tetraparvovirus) displays puzzling features, such as uncertain clinical importance/significance, unclear routes of transmission, and discontinuous geographical distribution. The origin, or the general reservoir, of human PARV4 infection is unknown. We aimed to detect and characterize PARV4 virus in faecal samples collected from two wild chimpanzee populations and 19 species of captive non-human primates. We aimed to investigate these species as a potential reservoir and alternate route of transmission on the African continent. From almost 500 samples screened, a single wild Pan troglodytes schweinfurthii sample tested positive. Full genome analysis, as well as single ORF phylogenies, confirmed species-specific PARV4 infection.
Collapse
Affiliation(s)
- Kristýna Brožová
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - David Modrý
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Eva Dadáková
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Mwanahamisi I Mapua
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alex K Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L33AF, UK.,Greater Mahale Ecosystem Research and Conservation Project (GMERC), Dar es Salaam, Tanzania
| | - Fiona A Stewart
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L33AF, UK.,Greater Mahale Ecosystem Research and Conservation Project (GMERC), Dar es Salaam, Tanzania
| | - Vladimír Celer
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Kristýna Hrazdilová
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic. .,Department of Virology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Sharp CP, Gregory WF, Hattingh L, Malik A, Adland E, Daniels S, van Zyl A, Carlson JM, Wareing S, Ogwu A, Shapiro R, Riddell L, Chen F, Ndung'u T, Goulder PJR, Klenerman P, Simmonds P, Jooste P, Matthews PC. PARV4 prevalence, phylogeny, immunology and coinfection with HIV, HBV and HCV in a multicentre African cohort. Wellcome Open Res 2017; 2:26. [PMID: 28497124 PMCID: PMC5423528 DOI: 10.12688/wellcomeopenres.11135.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: The seroprevalence of human parvovirus-4 (PARV4) varies considerably by region. In sub-Saharan Africa, seroprevalence is high in the general population, but little is known about the transmission routes or the prevalence of coinfection with blood-borne viruses, HBV, HCV and HIV.
Methods: To further explore the characteristics of PARV4 in this setting, with a particular focus on the prevalence and significance of coinfection, we screened a cohort of 695 individuals recruited from Durban and Kimberley (South Africa) and Gaborone (Botswana) for PARV4 IgG and DNA, as well as documenting HIV, HBV and HCV status.
Results: Within these cohorts, 69% of subjects were HIV-positive. We identified no cases of HCV by PCR, but 7.4% were positive for HBsAg. PARV4 IgG was positive in 42%; seroprevalence was higher in adults (69%) compared to children (21%) (p<0.0001) and in HIV-positive (52%) compared to HIV-negative individuals (24%) (p<0.0001), but there was no association with HBsAg status. We developed an on-line tool to allow visualization of coinfection data (
https://purl.oclc.org/coinfection-viz). We identified five subjects who were PCR-positive for PARV4 genotype-3.
Ex vivo CD8+ T cell responses spanned the entire PARV4 proteome and we propose a novel HLA-B*57:03-restricted epitope within the NS protein.
Conclusions: This characterisation of PARV4 infection provides enhanced insights into the epidemiology of infection and co-infection in African cohorts, and provides the foundations for planning further focused studies to elucidate transmission pathways, immune responses, and the clinical significance of this organism.
Collapse
Affiliation(s)
- Colin P Sharp
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.,Edinburgh Genomics, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | | | - Louise Hattingh
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, OX1 3SY, UK
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, OX1 3SY, UK
| | - Samantha Daniels
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Anriette van Zyl
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | | | - Susan Wareing
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Anthony Ogwu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lynn Riddell
- Northampton General Hospital NHS Trust, Northampton, NN1 5BD, UK
| | - Fabian Chen
- Royal Berkshire Hospital, Reading, RG1 5AN, UK
| | - Thumbi Ndung'u
- HIV Pathogenesis Program, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4041, South Africa
| | | | - Paul Klenerman
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - Pieter Jooste
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Philippa C Matthews
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| |
Collapse
|
6
|
Saekhow P, Mawatari T, Ikeda H. Coexistence of multiple strains of porcine parvovirus 2 in pig farms. Microbiol Immunol 2015; 58:382-7. [PMID: 24845822 DOI: 10.1111/1348-0421.12159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 01/05/2023]
Abstract
The porcine parvovirus 2 (PPV2) genome was first identified in 2001 in Myanmar. Recently, the PPV2 genome has been found in several other countries. In this study, the prevalence of PPV2 in Japanese domestic pigs was investigated and found to be 58% (69/120) in healthy domestic pigs and 100% (69/69) in sick domestic pigs. Sequencing and phylogenetic analysis of the PCR products of the VP1 gene and an almost full length PPV2 clone indicated that diverged PPV2 strains exist in Japan. Clearly distinct strains of PPV2 were detected in 7 of the 10 pig farms.
Collapse
Affiliation(s)
- Prayuth Saekhow
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, 180-8602; Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Mae Hia, Muang, Chiang Mai, 50100, Thailand
| | | | | |
Collapse
|
7
|
Adlhoch C, Kaiser M, Kingsley MT, Schwarz NG, Ulrich M, de Paula VS, Ehlers J, Löwa A, Daniel AM, Poppert S, Schmidt-Chanasit J, Ellerbrok H. Porcine hokovirus in domestic pigs, Cameroon. Emerg Infect Dis 2014; 19:2060-2. [PMID: 24274159 PMCID: PMC3840879 DOI: 10.3201/eid1912.130891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
8
|
Klamroth R, Gröner A, Simon TL. Pathogen inactivation and removal methods for plasma-derived clotting factor concentrates. Transfusion 2014; 54:1406-17. [PMID: 24117799 PMCID: PMC7169823 DOI: 10.1111/trf.12423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
Pathogen safety is crucial for plasma-derived clotting factor concentrates used in the treatment of bleeding disorders. Plasma, the starting material for these products, is collected by plasmapheresis (source plasma) or derived from whole blood donations (recovered plasma). The primary measures regarding pathogen safety are selection of healthy donors donating in centers with appropriate epidemiologic data for the main blood-transmissible viruses, screening donations for the absence of relevant infectious blood-borne viruses, and release of plasma pools for further processing only if they are nonreactive for serologic markers and nucleic acids for these viruses. Despite this testing, pathogen inactivation and/or removal during the manufacturing process of plasma-derived clotting factor concentrates is required to ensure prevention of transmission of infectious agents. Historically, hepatitis viruses and human immunodeficiency virus have posed the greatest threat to patients receiving plasma-derived therapy for treatment of hemophilia or von Willebrand disease. Over the past 30 years, dedicated virus inactivation and removal steps have been integrated into factor concentrate production processes, essentially eliminating transmission of these viruses. Manufacturing steps used in the purification of factor concentrates have also proved to be successful in reducing potential prion infectivity. In this review, current techniques for inactivation and removal of pathogens from factor concentrates are discussed. Ideally, production processes should involve a combination of complementary steps for pathogen inactivation and/or removal to ensure product safety. Finally, potential batch-to-batch contamination is avoided by stringent cleaning and sanitization methods as part of the manufacturing process.
Collapse
Affiliation(s)
- Robert Klamroth
- Center for Vascular MedicineVivantes Klinikum im FriedrichshainBerlinGermany
| | - Albrecht Gröner
- Preclinical Research and Development, Pathogen SafetyCSL BehringMarburgGermany
| | - Toby L. Simon
- Plasma Research and Development/CSL PlasmaCSL BehringKing of PrussiaPennsylvania
| |
Collapse
|
9
|
Affiliation(s)
- Philippa C. Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Amna Malik
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Ruth Simmons
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Colin Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Peter Simmonds
- The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
10
|
Baylis SA, Tuke PW, Miyagawa E, Blümel J. Studies on the inactivation of human parvovirus 4. Transfusion 2013; 53:2585-92. [PMID: 24032592 DOI: 10.1111/trf.12372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human parvovirus 4 (PARV4) is a novel parvovirus, which like parvovirus B19 (B19V) can be a contaminant of plasma pools used to prepare plasma-derived medicinal products. Inactivation studies of B19V have shown that it is more sensitive to virus inactivation strategies than animal parvoviruses. However, inactivation of PARV4 has not yet been specifically addressed. STUDY DESIGN AND METHODS Treatment of parvoviruses by heat or low-pH conditions causes externalization of the virus genome. Using nuclease treatment combined with real-time polymerase chain reaction, the extent of virus DNA externalization was used as an indirect measure of the inactivation of PARV4, B19V, and minute virus of mice (MVM) by pasteurization of albumin and by low-pH treatment. Infectivity studies were performed in parallel for B19V and MVM. RESULTS PARV4 showed greater resistance to pasteurization and low-pH treatment than B19V, although PARV4 was not as resistant as MVM. There was a 2- to 3-log reduction of encapsidated PARV4 DNA after pasteurization and low-pH treatment. In contrast, B19V was effectively inactivated while MVM was stable under these conditions. Divalent cations were found to have a stabilizing effect on PARV4 capsids. In the absence of divalent cations, even at neutral pH, there was a reduction of PARV4 titer, an effect not observed for B19V or MVM. CONCLUSION In the case of heat treatment and incubation at low pH, PARV4 shows intermediate resistance when compared to B19V and MVM. Divalent cations seem important for stabilizing PARV4 virus particles.
Collapse
|