1
|
Wernike K, Beer M. More than a decade of research on Schmallenberg virus-Knowns and unknowns. Adv Virus Res 2024; 120:77-98. [PMID: 39455169 DOI: 10.1016/bs.aivir.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Schmallenberg virus, an arbovirus of the Orthobunyavirus genus that primarily infects ruminants, emerged in 2011 near the Dutch-German border region and subsequently caused a large number of abortions and the births of severely malformed newborns in the European livestock population. Immediate intensive research led to the development of reliable diagnostic tests, the identification of competent Culicoides vector species, and the elucidation of the pathogenesis in infected vertebrate hosts. In addition, the structure of the major antigenic domain has been elucidated in great detail, leading to the development of effective marker vaccine candidates. The knowledge gained over the last decade on the biology and pathogenesis of SBV and the experience acquired in its control will be of great value in the future for the control of any similar emerging pathogen of veterinary or public health importance such as Shuni or Oropouche virus. However, some important knowledge gaps remain, for example, the factors contributing to the highly variable transmission rate from dam to fetus or the viral factors responsible for the vector competence of Culicoides midges are largely unknown. Thus, questions still remain for the next decade of research on SBV and related viruses.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Riccò M, Corrado S, Bottazzoli M, Marchesi F, Gili R, Bianchi FP, Frisicale EM, Guicciardi S, Fiacchini D, Tafuri S, Cascio A, Giuri PG, Siliquini R. (Re-)Emergence of Oropouche Virus (OROV) Infections: Systematic Review and Meta-Analysis of Observational Studies. Viruses 2024; 16:1498. [PMID: 39339974 PMCID: PMC11437499 DOI: 10.3390/v16091498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Oropouche Virus (OROV; genus of Orthobunyavirus) is the causal agent of Oropouche Fever (OF). Due to the lack of specific signs and symptoms and the limited availability of diagnostic tests, the actual epidemiology of OROV infections and OF has been extensively disputed. In this systematic review with meta-analysis, a literature search was carried out in PubMed, Scopus, EMBASE, and MedRxiv in order to retrieve relevant articles on the documented occurrence of OROV infections. Pooled detection rates were then calculated for anti-OROV antibodies and virus detection (i.e., viral RNA detected by viral cultures and/or real-time polymerase chain reaction [RT-qPCR]). Where available, detection rates for other arboviruses (i.e., Dengue [DENV], Chikungunya [CHKV], and Zika Virus [ZIKV]) were calculated and compared to those for OROV. A total of 47 studies from South America and the Caribbean were retrieved. In individuals affected by febrile illness during OROV outbreaks, a documented prevalence of 0.45% (95% confidence interval [95%CI] 0.16 to 1.12) for virus isolation, 12.21% (95%CI 4.96 to 27.09) for seroprevalence (including both IgM and IgG class antibodies), and 12.45% (95%CI 3.28 to 37.39) for the detection of OROV-targeting IgM class antibodies were eventually documented. In the general population, seroprevalence was estimated to be 24.45% (95%CI 7.83 to 55.21) for IgG class antibodies. The OROV detection rate from the cerebrospinal fluids of suspected cases of viral encephalitis was estimated to be 2.40% (95%CI 1.17 to 5.03). The occurrence of OROV infections was consistently lower than that of DENV, CHKV, and ZIKV during outbreaks (Risk Ratio [RR] 24.82, 95%CI 21.12 to 29.16; RR 2.207, 95%CI 1.427 to 3.412; and RR 7.900, 95%CI 5.386 to 11.578, respectively) and in the general population (RR 23.614, 95%CI 20.584 to 27.129; RR 3.103, 95%CI 2.056 to 4.685; and RR 49.500, 95%CI 12.256 to 199.921, respectively). In conclusion, our study stresses the possibly high underestimation of OROV prevalence in the general population of South America, the potential global threat represented by this arbovirus infection, and the potential preventive role of a comprehensive "One Health approach".
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Silvia Corrado
- ASST Rhodense, Dipartimento della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Milan, Italy;
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Renata Gili
- Department of Prevention, Turin Local Health Authority, 10125 Turin, Italy;
| | | | | | - Stefano Guicciardi
- Health Directorate, Local Health Authority of Bologna, 40124 Bologna, Italy
| | - Daniel Fiacchini
- AST Ancona, Prevention Department, UOC Sorveglianza e Prevenzione Malattie Infettive e Cronico Degenerative, 61100 Ancona, Italy;
| | - Silvio Tafuri
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, 70121 Bari, Italy;
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, G D’Alessandro, University of Palermo, AOUP P. Giaccone, 90127 Palermo, Italy;
| | | | - Roberta Siliquini
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Azienda Ospedaliera Universitaria City of Health and Science of Turin, 10126 Turin, Italy
| |
Collapse
|
3
|
Kiene F, Ganter M, Bauer BU. Exposure of small ruminants to the Schmallenberg arbovirus in Germany from 2017 to 2018 - animal-specific and flock-management-related risk factors. Prev Vet Med 2024; 230:106274. [PMID: 38971017 DOI: 10.1016/j.prevetmed.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The Schmallenberg virus (SBV), an emerging Orthobunyavirus of mainly ruminant hosts, caused a substantial epidemic in European ruminant populations between 2011 and 2013. The pathogen is transmitted by arthropod vectors (Culicoides spp.) and can cause reproductive disorders and severe malformations of the offspring or stillbirth. The present study aimed to assess SBV seroprevalence among German sheep and goats a few years after the first virus detection in the country (November 2011). In addition, an extensive risk factor analysis including host-specific and husbandry-related factors was implemented. Seroprevalence was determined by examining serum samples from 2759 sheep and 446 goats out of a total of 70 flocks across five German federal states. The samples were withdrawn in the period between 2017 and 2018. Using a commercial competitive ELISA, antibodies against SBV were detected in all 70 investigated flocks. A percentage of 60.1 % (1657/2759) of the sheep and 40.4 % (180/446) of the goat sera contained SBV antibodies. Generalized linear mixed modeling revealed significant effects of host species (sheep > goats), age (old > young) and sex (female > male) on SBV seroprevalence. For both species, also the farming purpose, and for goats, ectoparasite treatment and the presence of cattle on the farm played a role in terms of risk for SBV exposure. The observations from this study still emphasize a wide distribution of the pathogen in Germany. Nevertheless, the observed seroprevalence might not be sufficient to achieve effective herd immunity. Pinpointing risk factors identified susceptible populations for targeted vaccination programs to reduce potential animal losses caused by SBV.
Collapse
Affiliation(s)
- Frederik Kiene
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Martin Ganter
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Benjamin U Bauer
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
4
|
Dijkstra E, Vellema P, Peterson K, ter Bogt-Kappert C, Dijkman R, Harkema L, van Engelen E, Aalberts M, Santman-Berends I, van den Brom R. Monitoring and Surveillance of Small Ruminant Health in The Netherlands. Pathogens 2022; 11:pathogens11060635. [PMID: 35745489 PMCID: PMC9230677 DOI: 10.3390/pathogens11060635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
In contemporary society and modern livestock farming, a monitoring and surveillance system for animal health has become indispensable. In addition to obligations arising from European regulations regarding monitoring and surveillance of animal diseases, The Netherlands developed a voluntary system for the monitoring and surveillance of small ruminant health. This system aims for (1) early detection of outbreaks of designated animal diseases, (2) early detection of yet unknown disease conditions, and (3) insight into trends and developments. To meet these objectives, a system is in place based on four main surveillance components, namely a consultancy helpdesk, diagnostic services, multiple networks, and an annual data analysis. This paper describes the current system and its ongoing development and gives an impression of nearly twenty years of performance by providing a general overview of key findings and three elaborated examples of notable disease outbreaks. Results indicate that the current system has added value to the detection of various (re)emerging and new diseases. Nevertheless, animal health monitoring and surveillance require a flexible approach that is able to keep pace with changes and developments within the industry. Therefore, monitoring and surveillance systems should be continuously adapted and improved using new techniques and insights.
Collapse
Affiliation(s)
- Eveline Dijkstra
- Department of Small Ruminant Health, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (P.V.); (K.P.); (C.t.B.-K.); (R.v.d.B.)
- Correspondence: ; Tel.: +31-(0)88-2094595
| | - Piet Vellema
- Department of Small Ruminant Health, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (P.V.); (K.P.); (C.t.B.-K.); (R.v.d.B.)
| | - Karianne Peterson
- Department of Small Ruminant Health, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (P.V.); (K.P.); (C.t.B.-K.); (R.v.d.B.)
| | - Carlijn ter Bogt-Kappert
- Department of Small Ruminant Health, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (P.V.); (K.P.); (C.t.B.-K.); (R.v.d.B.)
| | - Reinie Dijkman
- Department of Pathology, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (R.D.); (L.H.)
| | - Liesbeth Harkema
- Department of Pathology, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (R.D.); (L.H.)
| | - Erik van Engelen
- Department of Research and Development, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (E.v.E.); (M.A.); (I.S.-B.)
| | - Marian Aalberts
- Department of Research and Development, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (E.v.E.); (M.A.); (I.S.-B.)
| | - Inge Santman-Berends
- Department of Research and Development, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (E.v.E.); (M.A.); (I.S.-B.)
| | - René van den Brom
- Department of Small Ruminant Health, Royal Animal Health Services (GD), P.O. Box 9, 7400 AA Deventer, The Netherlands; (P.V.); (K.P.); (C.t.B.-K.); (R.v.d.B.)
| |
Collapse
|
5
|
IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5010010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The world population currently stands at about 7 billion amidst an expected increase in 2030 from 9.4 billion to around 10 billion in 2050. This burgeoning population has continued to influence the upward demand for animal food. Moreover, the management of finite resources such as land, the need to reduce livestock contribution to greenhouse gases, and the need to manage inherent complex, highly contextual, and repetitive day-to-day livestock management (LsM) routines are some examples of challenges to overcome in livestock production. The Internet of Things (IoT)’s usefulness in other vertical industries (OVI) shows that its role will be significant in LsM. This work uses the systematic review methodology of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to guide a review of existing literature on IoT in OVI. The goal is to identify the IoT’s ecosystem, architecture, and its technicalities—present status, opportunities, and expected future trends—regarding its role in LsM. Among identified IoT roles in LsM, the authors found that data will be its main contributor. The traditional approach of reactive data processing will give way to the proactive approach of augmented analytics to provide insights about animal processes. This will undoubtedly free LsM from the drudgery of repetitive tasks with opportunities for improved productivity.
Collapse
|
6
|
Kęsik-Maliszewska J, Collins ÁB, Rola J, Blanco-Penedo I, Larska M. Schmallenberg virus in Poland endemic or re-emerging? A six-year serosurvey. Transbound Emerg Dis 2020; 68:2188-2198. [PMID: 33012078 DOI: 10.1111/tbed.13870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/20/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
A novel arbovirus, called Schmallenberg virus (SBV), emerged in Europe in 2011 infecting domestic as well as wild ruminants. The virus was first detected in Poland during the 2012 vector season. In order to study the SBV post-epidemic period in Poland, over twenty-one thousand domestic ruminants (cattle, sheep, goats) were tested for SBV infection between 2013 and 2018. Samples were collected as part of the national Bluetongue virus (BTV) surveillance programme. Thirteen per cent of all samples were collected from animals between 6 months and one year of age. Overall, 37.5% of ruminants tested seropositive. The seroprevalence fluctuated yearly and was highest in 2014 and 2017; however, seroconversion was detected in younger animals throughout the study indicating continuous virus circulation during the 6-year study period. A significantly higher proportion of seropositive animals were detected among cattle and older animals. Uneven distribution of seropositive animals between provinces was identified and may be a result of different housing and breeding practices and/or meteorological conditions influencing local and regional vector abundances, rather than farm stocking densities. A small number of animals were identified as being exposed to both SBV and BTV; this is likely due to the fact that the same Culicoides species transmit these two viruses thus increasing the risk of co-exposure. Considering these results, in addition to virological and entomological studies carried out in Poland previously, it can be concluded that SBV is endemic in Poland with cyclical waves of virus circulation happening every 3-4 years.
Collapse
Affiliation(s)
| | - Áine B Collins
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Department of Agriculture, Food and the Marine, Dublin 2, Ireland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - Isabel Blanco-Penedo
- Veterinary Epidemiology Unit, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
7
|
Wernike K, Beer M. Schmallenberg Virus: To Vaccinate, or Not to Vaccinate? Vaccines (Basel) 2020; 8:E287. [PMID: 32521621 PMCID: PMC7349947 DOI: 10.3390/vaccines8020287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Schmallenberg virus (SBV), a teratogenic orthobunyavirus that infects predominantly ruminants, emerged in 2011 in Central Europe, spread rapidly throughout the continent, and subsequently established an endemic status with re-circulations to a larger extent every 2 to 3 years. Hence, it represents a constant threat to the continent's ruminant population when no effective countermeasures are implemented. Here, we discuss potential preventive measures to protect from Schmallenberg disease. Previous experiences with other arboviruses like bluetongue virus have already demonstrated that vaccination of livestock against a vector-transmitted disease can play a major role in reducing or even stopping virus circulation. For SBV, specific inactivated whole-virus vaccines have been developed and marketing authorizations were granted for such preparations. In addition, candidate marker vaccines either as live attenuated, DNA-mediated, subunit or live-vectored preparations have been developed, but none of these DIVA-capable candidate vaccines are currently commercially available. At the moment, the licensed inactivated vaccines are used only to a very limited extent. The high seroprevalence rates induced in years of virus re-occurrence to a larger extent, the wave-like and sometimes hard to predict circulation pattern of SBV, and the expenditures of time and costs for the vaccinations presumably impact on the willingness to vaccinate. However, one should bear in mind that the consequence of seronegative young animals and regular renewed virus circulation might be again more cases of fetal malformation caused by an infection of naïve dams during one of their first gestations. Therefore, an appropriate and cost-effective strategy might be to vaccinate naïve female animals of all affected species before the reproductive age.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | | |
Collapse
|
8
|
Oymans J, Wichgers Schreur PJ, van Oort S, Vloet R, Venter M, Pijlman GP, van Oers MM, Kortekaas J. Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential. Viruses 2020; 12:E455. [PMID: 32316542 PMCID: PMC7232226 DOI: 10.3390/v12040455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
The genus Orthobunyavirus (family Peribunyaviridae, order Bunyavirales) comprises over 170 named mosquito- and midge-borne viruses, several of which cause severe disease in animals or humans. Their three-segmented genomes enable reassortment with related viruses, which may result in novel viruses with altered host or tissue tropism and virulence. One such reassortant, Schmallenberg virus (SBV), emerged in north-western Europe in 2011. Shuni virus (SHUV) is an orthobunyavirus related to SBV that is associated with neurological disease in horses in southern Africa and recently caused an outbreak manifesting with neurological disease and birth defects among ruminants in Israel. The zoonotic potential of SHUV was recently underscored by its association with neurological disease in humans. We here report a reverse genetics system for SHUV and provide first evidence that the non-structural (NSs) protein of SHUV functions as an antagonist of host innate immune responses. We furthermore report the rescue of a reassortant containing the L and S segments of SBV and the M segment of SHUV. This novel reverse genetics system can now be used to study SHUV virulence and tropism, and to elucidate the molecular mechanisms that drive reassortment events.
Collapse
Affiliation(s)
- Judith Oymans
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| | - Paul J. Wichgers Schreur
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
| | - Sophie van Oort
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
| | - Rianka Vloet
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
| | - Marietjie Venter
- Department Medical Virology, Faculty of Health Science, Centre for Viral Zoonoses, University of Pretoria, Pretoria 0028, South Africa;
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| |
Collapse
|
9
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
10
|
Veldhuis A, Mars J, Stegeman A, van Schaik G. Changing surveillance objectives during the different phases of an emerging vector-borne disease outbreak: The Schmallenberg virus example. Prev Vet Med 2019; 166:21-27. [PMID: 30935502 DOI: 10.1016/j.prevetmed.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/09/2018] [Accepted: 03/08/2019] [Indexed: 11/27/2022]
Abstract
In the late summer of 2011, a sudden rise in incidence of fever, drop in milk production and diarrhoea was observed in dairy cows in the eastern region of the Netherlands and in north-western Germany. In the autumn of 2011, a novel orthobunyavirus was identified by metagenomic analyses in samples from acutely diseased cows on a farm near the German city of Schmallenberg, and was thereafter named Schmallenberg virus (SBV). Due to the novelty of the virus, there was an immediate need for knowledge regarding the epidemiological characteristics of SBV-infections to inform surveillance and control strategies. A rapid assessment of the spread and impact of an emerging disease supports decision-makers on allocation of resources. This paper reviews the disease mitigation activities during and after the SBV epidemic in the Netherlands, to illustrate the phases in surveillance when a new (vector-borne) pathogen emerges in a country or region. Immediate and short-term disease mitigation activities that were initiated after SBV was identified are discussed in detail, as well as ways to enhance future surveillance (e.g. by syndromic surveillance) and preparedness for similar disease outbreaks. By doing so, lessons learnt from the SBV epidemic will also improve surveillance for other emerging diseases in cattle.
Collapse
Affiliation(s)
- Anouk Veldhuis
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands.
| | - Jet Mars
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands
| | - Arjan Stegeman
- Utrecht University, Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht, the Netherlands
| | - Gerdien van Schaik
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht, the Netherlands
| |
Collapse
|
11
|
Ségard A, Gardès L, Jacquier E, Grillet C, Mathieu B, Rakotoarivony I, Setier-Rio ML, Chavernac D, Cêtre-Sossah C, Balenghien T, Garros C. Schmallenberg virus in Culicoides
Latreille (Diptera: Ceratopogonidae) populations in France during 2011-2012 outbreak. Transbound Emerg Dis 2017; 65:e94-e103. [DOI: 10.1111/tbed.12686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 01/26/2023]
Affiliation(s)
- A. Ségard
- UMR ASTRE; CIRAD; Montpellier France
| | - L. Gardès
- UMR ASTRE; CIRAD; Montpellier France
| | | | | | - B. Mathieu
- IPPTS, DHPI EA 7292; Université de Strasbourg; Strasbourg France
| | | | | | | | - C. Cêtre-Sossah
- UMR ASTRE; CIRAD; Montpellier France
- UMR ASTRE; CIRAD; Sainte-Clotilde La Réunion France
| | - T. Balenghien
- UMR ASTRE; CIRAD; Montpellier France
- CIRAD; UMR ASTRE; Rabat Maroc
- Institut Agronomique et Vétérinaire Hassan II; Rabat Maroc
| | - C. Garros
- UMR ASTRE; CIRAD; Montpellier France
- UMR ASTRE; CIRAD; Sainte-Clotilde La Réunion France
| |
Collapse
|
12
|
Schmallenberg virus, an emerging viral pathogen of cattle and sheep and a potential contaminant of raw materials, is detectable by classical in-vitro adventitious virus assays. Biologicals 2017; 49:28-32. [PMID: 28751059 DOI: 10.1016/j.biologicals.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023] Open
Abstract
Emerging viruses, as potential contaminants of raw materials used in the manufacture of biologicals represent a challenge in the safety testing of biopharmaceutical products intended for human or veterinary use. Here, we report the challenge of an in vitro adventitious virus platform used in safety testing of biologicals, where a broad panel of detector cell lines was challenged to provide evidence that Schmallenberg virus is detectable by a classical reporting endpoint of cytopathic effect with Vero, BHK-21 and CHO-K1 detector cells, within typical in vitro assay timescales. We conclude that Schmallenberg virus is robustly detectable by classical in vitro viral biosafety assays.
Collapse
|
13
|
Abstract
Orthobunyaviruses include several recently emerging viruses of significant medical and veterinary importance. There is currently very limited understanding on what determines the host species range of these pathogens. In this study we discovered that BST-2/tetherin restricts orthobunyavirus replication in a host-specific manner. We show that viruses with human tropism (Oropouche virus and La Crosse virus) are restricted by sheep BST-2 but not by the human orthologue, while viruses with ruminant tropism (Schmallenberg virus and others) are restricted by human BST-2 but not by the sheep orthologue. We also show that BST-2 blocks orthobunyaviruses replication by reducing the amount of envelope glycoprotein into viral particles egressing from infected cells. This is the first study identifying a restriction factor that correlates with species susceptibility to orthobunyavirus infection. This work provides insight to help us dissect the adaptive changes that bunyaviruses require to cross the species barrier and emerge into new species. BST-2 is a determinant of orthobuynyavirus host range. BST-2 restricts orthobunyavirus replication. BST-2 reduces the incorporation of envelope glycoprotein into virions.
Collapse
|
14
|
Schmallenberg virus in Germany 2011-2014: searching for the vectors. Parasitol Res 2016; 115:527-34. [PMID: 26462800 PMCID: PMC4722053 DOI: 10.1007/s00436-015-4768-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
Following the emergence of Schmallenberg virus (SBV) in 2011, 21,397 culicoid biting midges (Diptera: Ceratopogonidae) from targeted and non-targeted sampling activities carried out during the summer months of 2011 to 2013 and in late 2014 in various regions in Germany were analyzed for the virus by real-time RT-PCR. While no SBV was found in biting midges collected during 2011 and 2013, 2 out of 334 pools including 20 and 22 non-engorged females of the Obsoletus complex sampled in 2012 tested positive for the SBV S-segment with Ct values of 42.46 and 35.45. In addition, 673 black flies (Diptera: Simuliidae) captured during the same studies were screened for the presence of SBV and proved negative. In late autumn 2014, biting midges were collected again in a limited study in eastern Germany after some cases of SBV infection had occurred in a quarantine station for cattle. Due to the unfavorable seasonal weather conditions, only few specimens were caught, and these were also negative for SBV. The German experience suggests that biting midge collections launched only after an outbreak and are not locally targeted may be ineffective as to virus detection. It rather might be advisable to collect biting midges at sentinel farms on a permanent basis so to have material available to be examined in the case of a disease outbreak.
Collapse
|
15
|
Helmer C, Eibach R, Humann‐Ziehank E, Tegtmeyer PC, Bürstel D, Mayer K, Moog U, Stauch S, Strobel H, Voigt K, Sieber P, Greiner M, Ganter M. Seroprevalence of Schmallenberg virus infection in sheep and goats flocks in Germany, 2012-2013. Vet Med Sci 2016; 2:10-22. [PMID: 29067177 PMCID: PMC5645825 DOI: 10.1002/vms3.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 10/30/2015] [Accepted: 11/29/2015] [Indexed: 12/24/2022] Open
Abstract
Schmallenberg virus (SBV) is a member of the family Bunyaviridae and mainly affects ruminants. It is transmitted by biting midges, first and foremost Culicoides spp., and causes congenital malformations reflected in arthrogryposis-hydranencephaly (AH) syndrome. The aim of this study was to collect data on the emergence of SBV as a new arthropod-borne disease introduced into Europe in 2011. Germany was located in the core region of the 2011/2012 epidemic. Following two seroprevalence studies in the north-west of Germany in 2012, this study focused on the epidemiology and distribution of SBV throughout 130 small ruminant flocks in the whole country. Blood samples were obtained of 30 animals per flock and a SBV-specific questionnaire was used to collect operating data of the farms. The median within-herd seroprevalence for all 130 flocks tested was 53.3% with a total range from 0% to 100%. The median within-herd seroprevalence for goats was 30% [interquartile range (IQR): 40.3%] and 57% for sheep (IQR: 43.3%). Small ruminant flocks kept permanently indoors or housed overnight had a significantly lower seroprevalence than flocks kept permanently outdoors. In addition, this study revealed a significantly lower seroprevalence in the north-east of Germany. These results show that small ruminants in Germany are still at risk of contracting new SBV infections following incomplete seroconversion of flocks especially in the north-east of Germany. This might contribute to SBV becoming enzootic in central and northern Europe. Furthermore, the survey revealed that housing animals at least during mating and early pregnancy may reduce the risk of new SBV infections and may thus be an option to reduce losses as long as there is no licensed vaccine available on the German market.
Collapse
Affiliation(s)
- Carina Helmer
- Clinic for Swine and Small RuminantsUniversity of Veterinary Medicine Hannover, FoundationBischofsholer Damm 15D‐30173HannoverGermany
| | - Regina Eibach
- Clinic for Swine and Small RuminantsUniversity of Veterinary Medicine Hannover, FoundationBischofsholer Damm 15D‐30173HannoverGermany
| | - Esther Humann‐Ziehank
- Clinic for Swine and Small RuminantsUniversity of Veterinary Medicine Hannover, FoundationBischofsholer Damm 15D‐30173HannoverGermany
| | - Philip C. Tegtmeyer
- Clinic for Swine and Small RuminantsUniversity of Veterinary Medicine Hannover, FoundationBischofsholer Damm 15D‐30173HannoverGermany
| | - Daniela Bürstel
- Tierseuchenkasse (Animal Diseases Fund) Baden‐WuerttembergSchaflandstr. 3D‐70736FellbachGermany
| | - Kathrin Mayer
- Small Ruminant Health ServiceSächsische Tierseuchenkasse (Animal Diseases Fund)Löwenstraße 7aD‐01099DresdenGermany
| | - Udo Moog
- Animal Health Service Thuringia e.V.Thüringer Tierseuchenkasse (Animal Diseases Fund)Victor‐Goerttler‐Str. 4D‐07745JenaGermany
| | - Sieglinde Stauch
- Schafpraxis (sheep veterinary practice) StoffenriedAm Hopfenberg 8D‐89352StoffenriedGermany
| | - Heinz Strobel
- Schafpraxis (sheep veterinary practice) StoffenriedAm Hopfenberg 8D‐89352StoffenriedGermany
| | - Katja Voigt
- Clinic for RuminantsLudwig Maximilians University (LMU) MunichSonnenstr.1685764OberschleißheimGermany
| | - Philipp Sieber
- Clinic for RuminantsLudwig Maximilians University (LMU) MunichSonnenstr.1685764OberschleißheimGermany
| | - Matthias Greiner
- Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Straße 8‐10D‐10589BerlinGermany
- University of Veterinary Medicine Hannover, FoundationHannoverGermany
| | - Martin Ganter
- Clinic for Swine and Small RuminantsUniversity of Veterinary Medicine Hannover, FoundationBischofsholer Damm 15D‐30173HannoverGermany
| |
Collapse
|
16
|
Abutarbush SM, La Rocca A, Wernike K, Beer M, Al Zuraikat K, Al Sheyab OM, Talafha AQ, Steinbach F. Circulation of a Simbu Serogroup Virus, Causing Schmallenberg Virus-Like Clinical Signs in Northern Jordan. Transbound Emerg Dis 2015; 64:1095-1099. [PMID: 26715241 DOI: 10.1111/tbed.12468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV)-like clinical cases of abortions in northern Jordan in early 2013, together with the emergence of SBV in Europe in 2011, its rapid spread within the following years and the detection of this virus in Turkey, raised questions about the distribution of SBV or related orthobunyaviruses. To evaluate the occurrence of SBV or related members of the Simbu serogroup of orthobunyaviruses in Jordan, bulk milk (cattle) and serum samples (cattle, sheep and goat) collected in northern Jordan in 2013 were first tested by commercially available SBV antibody ELISAs. Indeed, 3 of 47 bulk milk samples and 57 of 115 serum samples provided positive results, but SBV specificity of the ELISA results could not be confirmed by virus neutralization assays. Instead, subsequent cross-neutralization tests were able to further investigate the specificity of these antibodies. Here, a significant inhibition of Aino virus was observed. Thus, the causative agent was most likely a Simbu serogroup virus closely related to Aino virus. Consequently, these results confirm that members of this group of virus are not only present in Europe, Africa or Australia, but also in the Middle East.
Collapse
Affiliation(s)
- S M Abutarbush
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.,Veterinary Medicine Department, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - A La Rocca
- Virology Department, Animal and Plant Health Agency - Weybridge, Addlestone, Surrey, UK
| | - K Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - K Al Zuraikat
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - O M Al Sheyab
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - A Q Talafha
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - F Steinbach
- Virology Department, Animal and Plant Health Agency - Weybridge, Addlestone, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
17
|
Abstract
Schmallenberg disease has emerged in North-Western Europe in 2011 and has since spread widely, even across the European borders. It has the potency to infect many, mainly ruminant, species, but seems to lack zoonotic potential. Horizontal transmission occurs through various Culicoides biting midges and subsequent trans-placental transmission causes teratogenic effects. In some small ruminants, clinical signs, including fever, decreased milk production and diarrhea occur during the viraemic phase, but infection is mostly asymptomatic. However, fetal Schmallenberg virus infection in naïve ewes and goats can result in stillborn offspring, showing a congenital arthrogryposis-hydranencephaly syndrome. The economic impact of infection depends on the number of malformed lambs, but is generally limited. There is debate on whether Schmallenberg virus has newly emerged or is re-emerging, since it is likely one of the ancestors of Shamonda virus, both Orthobunyaviruses belonging to the species Sathuperi virus within the Simbu serogroup viruses. Depending on the vector-borne transmission and the serologic status, future outbreaks of Schmallenberg disease induced congenital disease are expected.
Collapse
|
18
|
Claine F, Coupeau D, Wiggers L, Muylkens B, Kirschvink N. Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians. VETERINARY MEDICINE-RESEARCH AND REPORTS 2015; 6:261-272. [PMID: 30101112 PMCID: PMC6067779 DOI: 10.2147/vmrr.s83594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV) leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus) was first discovered in the same region where bluetongue virus serotype 8 (BTV-8) emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp.) and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants.
Collapse
Affiliation(s)
- François Claine
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Damien Coupeau
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Laetitia Wiggers
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Benoît Muylkens
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| | - Nathalie Kirschvink
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,
| |
Collapse
|
19
|
Alarcon P, Häsler B, Raboisson D, Waret-Szkuta A, Corbière F, Rushton J. Application of integrated production and economic models to estimate the impact of Schmallenberg virus for various sheep production types in the UK and France. Vet Rec Open 2014; 1:e000036. [PMID: 26392876 PMCID: PMC4562446 DOI: 10.1136/vetreco-2014-000036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 11/08/2022] Open
Abstract
Objective The present study aimed to estimate and compare the economic impact of Schmallenberg virus (SBV) in different sheep production holdings using partial budget and gross margin analyses in combination with production models. Participants The sheep production types considered were lowland spring lambing, upland spring lambing and early lambing flocks in the UK, and grass lamb flocks of the Centre and West of France, extensive lambing flocks and dairy sheep flocks in France. Methodology Two disease scenarios with distinct input parameters associated with reproductive problems were considered: low and high impact. Sensitivity analyses were performed for the most uncertain input parameters, and the models were run with all of the lowest and highest values to estimate the range of disease impact. Results The estimated net SBV disease cost per year and ewe for the UK was £19.65–£20.85 for the high impact scenario and £6.40–£6.58 for the low impact scenario. No major differences were observed between the different production types. For France, the net SBV disease cost per year and ewe for the meat sheep holdings was £15.59–£17.20 for the high impact scenario and £4.75–£5.26 for the low impact scenario. For the dairy sheep, the costs per year and ewe were £29.81 for the high impact scenario and £10.34 for the low impact scenario. Conclusions The models represent a useful decision support tool for farmers and veterinarians who are facing decisions regarding disease control measures. They allow estimating disease impact on a farm accounting for differing production practices, which creates the necessary basis for cost effectiveness analysis of intervention strategies, such as vaccination.
Collapse
Affiliation(s)
- Pablo Alarcon
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK
| | - Barbara Häsler
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK ; Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College , London , UK
| | - Didier Raboisson
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Agnes Waret-Szkuta
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Fabien Corbière
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Jonathan Rushton
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK ; Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College , London , UK
| |
Collapse
|
20
|
Deletion mutants of Schmallenberg virus are avirulent and protect from virus challenge. J Virol 2014; 89:1825-37. [PMID: 25410877 DOI: 10.1128/jvi.02729-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Since its emergence, Schmallenberg virus (SBV), a novel insect-transmitted orthobunyavirus which predominantly infects ruminants, has caused a large epidemic in European livestock. Newly developed inactivated vaccines are available, but highly efficacious and safe live vaccines are still not available. Here, the properties of novel recombinant SBV mutants lacking the nonstructural protein NSs (rSBVΔNSs) or NSm (rSBVΔNSm) or both of these proteins (rSBVΔNSs/ΔNSm) were tested in vitro and in vivo in type I interferon receptor knockout mice (IFNAR(-/-)) and in a vaccination/challenge trial in cattle. As for other bunyaviruses, both nonstructural proteins of SBV are not essential for viral growth in vitro. In interferon-defective BHK-21 cells, rSBVΔNSs and rSBVΔNSm replicated to levels comparable to that of the parental rSBV; the double mutant virus, however, showed a mild growth defect, resulting in lower final virus titers. Additionally, both mutants with an NSs deletion induced high levels of interferon and showed a marked growth defect in interferon-competent sheep SFT-R cells. Nevertheless, in IFNAR(-/-) mice, all mutants were virulent, with the highest mortality rate for rSBVΔNSs and a reduced virulence for the NSm-deleted virus. In cattle, SBV lacking NSm caused viremia and seroconversion comparable to those caused by the wild-type virus, while the NSs and the combined NSs/NSm deletion mutant induced no detectable virus replication or clinical disease after immunization. Furthermore, three out of four cattle immunized once with the NSs deletion mutant and all animals vaccinated with the virus lacking both nonstructural proteins were fully protected against a challenge infection. Therefore, the double deletion mutant will provide the basis for further developments of safe and efficacious modified live SBV vaccines which could be also a model for other viruses of the Simbu serogroup and related orthobunyaviruses. IMPORTANCE SBV induces only mild clinical signs in adult ruminants but causes severe fetal malformation and, thereby, can have an important impact on animal welfare and production. As SBV is an insect-transmitted pathogen, vaccination will be one of the most important aspects of disease control. Here, mutant viruses lacking one or two proteins that essentially contribute to viral pathogenicity were tested as modified live vaccines in cattle. It could be demonstrated that a novel recombinant double deletion mutant is a safe and efficacious vaccine candidate. This is the first description of a putative modified live vaccine for the complete genus Orthobunyavirus, and in addition, such a vaccine type has never been tested in cattle for any virus of the entire family Bunyaviridae. Therefore, the described vaccine also represents the first model for a broad range of related viruses and is of high importance to the field.
Collapse
|
21
|
Bunyavirus-vector interactions. Viruses 2014; 6:4373-97. [PMID: 25402172 PMCID: PMC4246228 DOI: 10.3390/v6114373] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023] Open
Abstract
The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family.
Collapse
|
22
|
Abstract
The Human Animal Infections and Risk Surveillance (HAIRS) group is a collaboration between a number of human and animal health organisations within the UK government. The group aims to provide a 'joined-up' response to emerging diseases that threaten the health of people or animals. Here, Dilys Morgan, who chairs the group, discusses its work, highlighting its response to Schmallenberg virus, and shows how a One Health approach can improve government responses to potential crises.
Collapse
Affiliation(s)
- Dilys Morgan
- Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
23
|
Afonso A, Abrahantes JC, Conraths F, Veldhuis A, Elbers A, Roberts H, Van der Stede Y, Méroc E, Gache K, Richardson J. The Schmallenberg virus epidemic in Europe—2011–2013. Prev Vet Med 2014; 116:391-403. [DOI: 10.1016/j.prevetmed.2014.02.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/08/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
|
24
|
|
25
|
Schmallenberg virus-two years of experiences. Prev Vet Med 2014; 116:423-34. [PMID: 24768435 DOI: 10.1016/j.prevetmed.2014.03.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 03/14/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
In autumn 2011, a novel species of the genus Orthobunyavirus of the Simbu serogroup was discovered close to the German/Dutch border and named Schmallenberg virus (SBV). Since then, SBV has caused a large epidemic in European livestock. Like other viruses of the Simbu serogroup, SBV is transmitted by insect vectors. Adult ruminants may show a mild transient disease, while an infection during a critical period of pregnancy can lead to severe congenital malformation, premature birth or stillbirth. The current knowledge about the virus, its diagnosis, the spread of the epidemic, the impact and the possibilities for preventing infections with SBV is described and discussed.
Collapse
|
26
|
The influence of the wind in the Schmallenberg virus outbreak in Europe. Sci Rep 2013; 3:3361. [PMID: 24285292 PMCID: PMC6506448 DOI: 10.1038/srep03361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022] Open
Abstract
A model previously developed for the wind-borne spread by midges of bluetongue virus in NW Europe in 2006 is here modified and applied to the spread of Schmallenberg virus in 2011. The model estimates that pregnant animals were infected 113 days before producing malformed young, the commonest symptom of reported infection, and explains the spatial and temporal pattern of infection in 70% of the 3,487 affected farms, most of which were infected by midges arriving through downwind movement (62% of explained infections), or a mixture of downwind and random movements (38% of explained infections), during the period of day (1600–2100 h, i.e. dusk) when these insects are known to be most active. The main difference with Bluetongue is the higher rate of spread of SBV, which has important implications for disease control.
Collapse
|
27
|
Garigliany MM, Desmecht D, Bayrou C, Peeters D. No Serologic Evidence for Emerging Schmallenberg Virus Infection in Dogs (Canis domesticus). Vector Borne Zoonotic Dis 2013; 13:830-3. [DOI: 10.1089/vbz.2012.1251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- M-M. Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Belgium
- These authors contributed equally to this study
| | - D. Desmecht
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Belgium
- These authors contributed equally to this study
| | - C. Bayrou
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Belgium
| | - D. Peeters
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Belgium
| |
Collapse
|
28
|
Carpenter S, Groschup MH, Garros C, Felippe-Bauer ML, Purse BV. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res 2013; 100:102-13. [PMID: 23933421 DOI: 10.1016/j.antiviral.2013.07.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
Abstract
The emergence of multiple strains of bluetongue virus (BTV) and the recent discovery of Schmallenberg virus (SBV) in Europe have highlighted the fact that exotic Culicoides-borne arboviruses from remote geographic areas can enter and spread rapidly in this region. This review considers the potential for this phenomenon to impact on human health in Europe, by examining evidence of the role of Culicoides biting midges in the zoonotic transmission and person-to-person spread of arboviruses worldwide. To date, the only arbovirus identified as being primarily transmitted by Culicoides to and between humans is Oropouche virus (OROV). This member of the genus Orthobunyavirus causes major epidemics of febrile illness in human populations of South and Central America and the Caribbean. We examine factors promoting sustained outbreaks of OROV in Brazil from an entomological perspective and assess aspects of the epidemiology of this arbovirus that are currently poorly understood, but may influence the risk of incursion into Europe. We then review the secondary and rarely reported role of Culicoides in the transmission of high-profile zoonotic infections, while critically reviewing evidence of this phenomenon in endemic transmission and place this in context with the presence of other potential vector groups in Europe. Scenarios for the incursions of Culicoides-borne human-to-human transmitted and zoonotic arboviruses are then discussed, along with control measures that could be employed to reduce their impact. These measures are placed in the context of legislative measures used during current and ongoing outbreaks of Culicoides-borne arboviruses in Europe, involving both veterinary and public health sectors.
Collapse
Affiliation(s)
- Simon Carpenter
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Epidemiology, molecular virology and diagnostics of Schmallenberg virus, an emerging orthobunyavirus in Europe. Vet Res 2013; 44:31. [PMID: 23675914 PMCID: PMC3663787 DOI: 10.1186/1297-9716-44-31] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/22/2013] [Indexed: 12/26/2022] Open
Abstract
After the unexpected emergence of Bluetongue virus serotype 8 (BTV-8) in northern Europe in 2006, another arbovirus, Schmallenberg virus (SBV), emerged in Europe in 2011 causing a new economically important disease in ruminants. The virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the United Kingdom, France, Italy, Luxembourg, Spain, Denmark and Switzerland. This review describes the current knowledge on the emergence, epidemiology, clinical signs, molecular virology and diagnosis of SBV infection.
Collapse
|
31
|
Mackenzie JS, Jeggo M. Reservoirs and vectors of emerging viruses. Curr Opin Virol 2013; 3:170-9. [PMID: 23491947 PMCID: PMC7102734 DOI: 10.1016/j.coviro.2013.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
Abstract
Wildlife, especially mammals and birds, are hosts to an enormous number of viruses, most of which we have absolutely no knowledge about even though we know these viruses circulate readily in their specific niches. More often than not, these viruses are silent or asymptomatic in their natural hosts. In some instances, they can infect other species, and in rare cases, this cross-species transmission might lead to human infection. There are also instances where we know the reservoir hosts of zoonotic viruses that can and do infect humans. Studies of these animal hosts, the reservoirs of the viruses, provide us with the knowledge of the types of virus circulating in wildlife species, their incidence, pathogenicity for their host, and in some instances, the potential for transmission to other hosts. This paper describes examples of some of the viruses that have been detected in wildlife, and the reservoir hosts from which they have been detected. It also briefly explores the spread of arthropod-borne viruses and their diseases through the movement and establishment of vectors in new habitats.
Collapse
Affiliation(s)
- John S Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia.
| | | |
Collapse
|
32
|
Fischer M, Hoffmann B, Goller KV, Höper D, Wernike K, Beer M. A mutation 'hot spot' in the Schmallenberg virus M segment. J Gen Virol 2013; 94:1161-1167. [PMID: 23364189 DOI: 10.1099/vir.0.049908-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the autumn of 2011, Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was identified by metagenomic analysis in Germany. SBV has since been detected in ruminants all over Europe, and investigations on phylogenetic relationships, clinical signs and epidemiology have been conducted. However, until now, only comparative sequence analysis of SBV genome segments with other species of the Simbu serogroup have been performed, and detailed data on the S and M segments, relevant for virus-host-cell interaction, have been missing. In this study, we investigated the S- and M-segment sequences obtained from 24 SBV-positive field samples from sheep, cattle and a goat collected from all over Germany. The results obtained indicated that the overall genome variability of SBV is neither regionally nor host species dependent. Nevertheless, we characterized for the first time a region of high sequence variability (a mutation 'hot spot') within the glycoprotein Gc encoded by the M segment.
Collapse
Affiliation(s)
- Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Katja V Goller
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
33
|
Mansfield KL, La Rocca SA, Khatri M, Johnson N, Steinbach F, Fooks AR. Detection of Schmallenberg virus serum neutralising antibodies. J Virol Methods 2012. [PMID: 23201289 DOI: 10.1016/j.jviromet.2012.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Schmallenberg virus (SBV) emerged in continental Europe in late 2011, and further work is required to assess the prevalence of SBV throughout Europe. Since its detection in Germany, SBV has now been detected in other European countries, including the United Kingdom. Infection with SBV can cause mild clinical signs in ruminants, including diarrhoea and reduced milk yield. However, the virus can have a devastating effect on the developing foetus leading to malformation in newborn offspring. This is a feature shared by other members of the Simbu group of orthobunyaviruses. Since disease in adult animals can be inapparent, serology offers the best method for monitoring for the presence of SBV and assisting in livestock management. This protocol describes a method for initial titration of SBV on African Green Monkey kidney (Vero) cells, and a plaque reduction neutralisation test (PRNT) for the detection of neutralising antibodies against SBV in cattle and sheep sera. This assay can be used to screen ruminant sera in order to confirm exposure to the virus, and the results obtained are comparable to a recently developed commercial enzyme linked immunosorbent assay (ELISA). Thus, these two assays constitute an effective diagnostic tool-box for providing confirmation of exposure to SBV.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Disease and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency-AHVLA, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
SUMMARYIn 2011, a novel orthobunyavirus of the Simbu serogroup, the Schmallenberg virus (SBV), was discovered using a metagenomic approach. SBV caused a large epidemic in Europe in ruminants. As with related viruses such as Akabane virus, it appears to be transmitted by biting midges. Transplacental infection often results in the birth of malformed calves, lambs and goat kids. In more than 5000 farms in Germany, The Netherlands, Belgium, France, UK, Italy, Spain, Luxembourg, Denmark and Switzerland acute infections of adult ruminants or malformed SBV-positive offspring were detected, and high seroprevalences were seen in adult ruminants in the core regions in The Netherlands, Germany and Belgium. The discovery of SBV, the spread of the epidemic, the role of vectors, the impact on livestock, public health issues, SBV diagnosis and measures taken are described in this review. Lessons to be learned from the Schmallenberg virus epidemic and the consequences for future outbreaks are discussed.
Collapse
|