1
|
Lu W, Kuang L, Hu Y, Shi J, Li Q, Tian W. Epidemiological and clinical characteristics of death from hemorrhagic fever with renal syndrome: a meta-analysis. Front Microbiol 2024; 15:1329683. [PMID: 38638893 PMCID: PMC11024303 DOI: 10.3389/fmicb.2024.1329683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Hemorrhagic fever with renal syndrome (HFRS) is an acute infectious disease comprising five stages: fever, hypotension, oliguria, diuresis (polyuria), and convalescence. Increased vascular permeability, coagulopathy, and renal injury are typical clinical features of HFRS, which has a case fatality rate of 1-15%. Despite this, a comprehensive meta-analyses of the clinical characteristics of patients who died from HFRS is lacking. Methods Eleven Chinese- and English-language research databases were searched, including the China National Knowledge Infrastructure Database, Wanfang Database, SinoMed, VIP Database, PubMed, Embase, Scopus, Cochrane Library, Web of Science, Proquest, and Ovid, up to October 5, 2023. The search focused on clinical features of patients who died from HFRS. The extracted data were analyzed using STATA 14.0. Results A total of 37 articles on 140,295 patients with laboratory-confirmed HFRS were included. Categorizing patients into those who died and those who survived, it was found that patients who died were older and more likely to smoke, have hypertension, and have diabetes. Significant differences were also observed in the clinical manifestations of multiple organ dysfunction syndrome, shock, occurrence of overlapping disease courses, cerebral edema, cerebral hemorrhage, toxic encephalopathy, convulsions, arrhythmias, heart failure, dyspnea, acute respiratory distress syndrome, pulmonary infection, liver damage, gastrointestinal bleeding, acute kidney injury, and urine protein levels. Compared to patients who survived, those who died were more likely to demonstrate elevated leukocyte count; decreased platelet count; increased lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels; prolonged activated partial thromboplastin time and prothrombin time; and low albumin and chloride levels and were more likely to use continuous renal therapy. Interestingly, patients who died received less dialysis and had shorter average length of hospital stay than those who survived. Conclusion Older patients and those with histories of smoking, hypertension, diabetes, central nervous system damage, heart damage, liver damage, kidney damage, or multiorgan dysfunction were at a high risk of death. The results can be used to assess patients' clinical presentations and assist with prognostication.Systematic review registration:https://www.crd.york.ac.uk/prospero/, (CRD42023454553).
Collapse
Affiliation(s)
- Wei Lu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Kuang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Hu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jialing Shi
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Tian
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Mustonen J, Vaheri A, Pörsti I, Mäkelä S. Long-Term Consequences of Puumala Hantavirus Infection. Viruses 2022; 14:v14030598. [PMID: 35337005 PMCID: PMC8953343 DOI: 10.3390/v14030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Several viral infections are associated with acute and long-term complications. During the past two years, there have been many reports on post-infectious symptoms of the patients suffering from COVID-19 disease. Serious complications occasionally occur during the acute phase of Puumala orthohantavirus caused nephropathia epidemica. Severe long-term consequences are rare. Fatigue for several weeks is quite common. Hormonal insufficiencies should be excluded if the patient does not recover normally.
Collapse
Affiliation(s)
- Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
- Correspondence:
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland;
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
| |
Collapse
|
3
|
Schmedes CM, Grover SP, Hisada YM, Goeijenbier M, Hultdin J, Nilsson S, Thunberg T, Ahlm C, Mackman N, Fors Connolly AM. Circulating Extracellular Vesicle Tissue Factor Activity During Orthohantavirus Infection Is Associated With Intravascular Coagulation. J Infect Dis 2020; 222:1392-1399. [PMID: 31722433 PMCID: PMC7488197 DOI: 10.1093/infdis/jiz597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Puumala orthohantavirus (PUUV) causes hemorrhagic fever with renal syndrome (HFRS). Patients with HFRS have an activated coagulation system with increased risk of disseminated intravascular coagulation (DIC) and venous thromboembolism (VTE). The aim of the study was to determine whether circulating extracellular vesicle tissue factor (EVTF) activity levels associates with DIC and VTE (grouped as intravascular coagulation) in HFRS patients. METHODS Longitudinal samples were collected from 88 HFRS patients. Patients were stratified into groups of those with intravascular coagulation (n = 27) and those who did not (n = 61). We measured levels of circulating EVTF activity, fibrinogen, activated partial prothrombin time, D-dimer, tissue plasminogen activator (tPA), plasminogen activator inhibitor 1 (PAI-1), and platelets. RESULTS Plasma EVTF activity was transiently increased during HFRS. Levels of EVTF activity were significantly associated with plasma tPA and PAI-1, suggesting that endothelial cells could be a potential source. Patients with intravascular coagulation had significantly higher peak EVTF activity levels compared with those who did not, even after adjustment for sex and age. The peak EVTF activity value predicting intravascular coagulation was 0.51 ng/L with 63% sensitivity and 61% specificity with area under the curve = 0.63 (95% confidence interval, 0.51-0.76) and P = .046. CONCLUSIONS Plasma EVTF activity during HFRS is associated with intravascular coagulation.
Collapse
Affiliation(s)
- Clare M Schmedes
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | - Steven P Grover
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | - Yohei M Hisada
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Sofie Nilsson
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Therese Thunberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | | |
Collapse
|
4
|
Noack D, Goeijenbier M, Reusken CBEM, Koopmans MPG, Rockx BHG. Orthohantavirus Pathogenesis and Cell Tropism. Front Cell Infect Microbiol 2020; 10:399. [PMID: 32903721 PMCID: PMC7438779 DOI: 10.3389/fcimb.2020.00399] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Orthohantaviruses are zoonotic viruses that are naturally maintained by persistent infection in specific reservoir species. Although these viruses mainly circulate among rodents worldwide, spill-over infection to humans occurs. Orthohantavirus infection in humans can result in two distinct clinical outcomes: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). While both syndromes develop following respiratory transmission and are associated with multi-organ failure and high mortality rates, little is known about the mechanisms that result in these distinct clinical outcomes. Therefore, it is important to identify which cell types and tissues play a role in the differential development of pathogenesis in humans. Here, we review current knowledge on cell tropism and its role in pathogenesis during orthohantavirus infection in humans and reservoir rodents. Orthohantaviruses predominantly infect microvascular endothelial cells (ECs) of a variety of organs (lungs, heart, kidney, liver, and spleen) in humans. However, in this review we demonstrate that other cell types (e.g., macrophages, dendritic cells, and tubular epithelium) are infected as well and may play a role in the early steps in pathogenesis. A key driver for pathogenesis is increased vascular permeability, which can be direct effect of viral infection in ECs or result of an imbalanced immune response in an attempt to clear the virus. Future studies should focus on the role of identifying how infection of organ-specific endothelial cells as well as other cell types contribute to pathogenesis.
Collapse
Affiliation(s)
- Danny Noack
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Barry H G Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med 2019; 285:510-523. [PMID: 30663801 PMCID: PMC6850289 DOI: 10.1111/joim.12876] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. Here, we describe recent insights into the generation of innate and adaptive cell-mediated immune responses following clinical infection with PUUV. First described are studies demonstrating a marked redistribution of peripheral blood mononuclear phagocytes (MNP) to the airways, a process that may underlie local immune activation at the site of primary infection. We then describe observations of an excessive natural killer (NK) cell activation and the persistence of highly elevated numbers of NK cells in peripheral blood following PUUV infection. A similar vigorous CD8 Tcell response is also described, though Tcell responses decline with viraemia. Like MNPs, many NK cells and CD8 T cells also localize to the lung upon acute PUUV infection. Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
Collapse
Affiliation(s)
- J Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K T Maleki
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Solà-Riera
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University Hospital, Umeå University, Umeå, Sweden
| | - N K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H G Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Murphy EG, Williams NJ, Bennett M, Jennings D, Chantrey J, McElhinney LM. Detection of Seoul virus in wild brown rats ( Rattus norvegicus) from pig farms in Northern England. Vet Rec 2019; 184:525. [PMID: 30952778 PMCID: PMC6582813 DOI: 10.1136/vr.105249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 11/23/2022]
Abstract
Introduction Hantaviruses are maintained by mammalian hosts, such as rodents, and are shed in their excretions. Clinical disease can occur in humans from spillover infection. Brown rats (Rattus norvegicus) are the globally distributed reservoir host of Seoul virus (SEOV). Human cases of SEOV-associated haemorrhagic fever with renal syndrome (SEOV-HFRS)have been reported in Great Britain (GB) since 1977. Methods Brown rats (n=68) were trapped from a variety of peridomestic locations, with a focus on pig farms. Kidney and lung tissues were tested for viral RNA using a pan-hantavirus RT-PCR assay followed by Sanger sequencing and analysis. Results SEOV RNA was detected in 19 per cent (13/68, 95% CI 11 to 30) of rats and all sequences fell within SEOV lineage 9. Twelve sequences were highly similar to each other and to the previously reported GB Humber strain of SEOV (98 per cent). One rat SEOV sequence was more distant. The SEOV prevalence in rats from pig farms was significantly greater (p=0.047) than other sites sampled. No significant sex or age differences were observed among positive and negative rats. Discussion The results from this study suggest that SEOV could be widespread in wild rats in GB and therefore pose a potential risk to public health.
Collapse
Affiliation(s)
- Ellen G Murphy
- HPRU EZI, Institute of Infection and Global Health (IGH), University of Liverpool School of Life Sciences, Neston, Cheshire, UK.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Nicola J Williams
- HPRU EZI, Institute of Infection and Global Health (IGH), University of Liverpool School of Life Sciences, Neston, Cheshire, UK.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Malcolm Bennett
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Daisy Jennings
- Wildlife Zoonoses and Vector-Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, UK
| | - Julian Chantrey
- Department of Veterinary Pathology, School of Life Sciences, Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Lorraine M McElhinney
- HPRU EZI, Institute of Infection and Global Health (IGH), University of Liverpool School of Life Sciences, Neston, Cheshire, UK.,Wildlife Zoonoses and Vector-Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
7
|
Outinen TK, Mäkelä S, Clement J, Paakkala A, Pörsti I, Mustonen J. Community Acquired Severe Acute Kidney Injury Caused by Hantavirus-Induced Hemorrhagic Fever with Renal Syndrome Has a Favorable Outcome. Nephron Clin Pract 2015; 130:182-90. [PMID: 26139246 DOI: 10.1159/000433563] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Puumala hantavirus (PUUV) induces an acute tubulointerstitial nephritis and acute kidney injury (AKI). Our aim was to evaluate the prognosis of severe AKI associated with PUUV infection. METHODS We examined 556 patients who were treated at Tampere University Hospital during 1982-2013 for acute, serologically confirmed PUUV infection. Plasma creatinine was measured during hospitalization, convalescence, and 1, 2, and 5 years after the acute infection. RESULTS Plasma creatinine concentration was elevated (>100 μmol/l) in 459 (83%) patients, while altogether 189 patients (34%) had severe AKI defined as Kidney Disease: Improving Global Outcomes (KDIGO) stage 3, that is, plasma creatinine ≥353.6 μmol/l (4.0 mg/dl) or need of dialysis. There were no fatal cases during the hospitalization or the following 3 months. Fatality rate during the years following PUUV infection did not differ between patients who had suffered from severe AKI versus those without severe AKI. Post-hospitalization plasma creatinine values were available for 188 (34%) patients. One month after the acute infection, patients with prior severe AKI had higher median plasma creatinine concentration (82 µmol/l, range 54-184) than patients without severe AKI (74 µmol/l, range 55-109, p = 0.005). After 1 year, no significant difference existed in median plasma creatinine concentrations between patients with (71 µmol/l, range 36-123) and without prior severe AKI (72 µmol/l, range 34-116, p = 0.711). After 5 years all but 1 patient had normal creatinine levels. CONCLUSIONS In contrast to the worldwide well-accepted KDIGO criteria, severe AKI associated with PUUV infection is not associated with excess fatality but has a very good prognosis, both in the short and long terms.
Collapse
Affiliation(s)
- Tuula K Outinen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
8
|
Connolly-Andersen AM, Hammargren E, Whitaker H, Eliasson M, Holmgren L, Klingström J, Ahlm C. Increased risk of acute myocardial infarction and stroke during hemorrhagic fever with renal syndrome: a self-controlled case series study. Circulation 2014; 129:1295-302. [PMID: 24398017 DOI: 10.1161/circulationaha.113.001870] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We recently observed that cardiovascular causes of death are common in patients with hemorrhagic fever with renal syndrome (HFRS), which is caused by hantaviruses. However, it is not known whether HFRS is a risk factor for the acute cardiovascular events of acute myocardial infarction (AMI) and stroke. METHODS AND RESULTS Personal identification numbers from the Swedish HFRS patient database (1997-2012; n=6643) were cross-linked with the National Patient Register from 1987 to 2011. Using the self-controlled case series method, we calculated the incidence rate ratio of AMI/stroke in the 21 days after HFRS against 2 different control periods either excluding (analysis 1) or including (analysis 2) fatal AMI/stroke events. The incidence rate ratios for analyses 1 and 2 for all AMI events were 5.53 (95% confidence interval [CI], 2.6-11.8) and 6.02 (95% CI, 2.95-12.3) and for first AMI events were 3.53 (95% CI, 1.25-9.96) and 4.64 (95% CI, 1.83-11.77). The incidence rate ratios for analyses 1 and 2 for all stroke events were 12.93 (95% CI, 5.62-29.74) and 15.16 (95% CI, 7.21-31.87) and for first stroke events were 14.54 (95% CI, 5.87-36.04) and 17.09 (95% CI, 7.49-38.96). The majority of stroke events occurred in the first week after HFRS. Seasonal effects were not observed, and apart from 1 study, neither sex nor age interacted with the associations observed in this study. CONCLUSIONS There is a significantly increased risk for AMI and stroke in the immediate time period after HFRS. Therefore, HFRS patients should be carefully monitored during the acute phase of disease to ensure early recognition of symptoms of impending AMI or stroke.
Collapse
Affiliation(s)
- Anne-Marie Connolly-Andersen
- Department of Clinical Microbiology, Infectious Diseases (A.-M.C.-A., E.H., C.A.) and Department of Public Health and Clinical Medicine, Sunderby Research Unit (M.E., L.H.), Umeå University, Umeå, Sweden; Department of Mathematics and Statistics, The Open University, Milton Keynes, UK (H.W.); and Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden (J.K.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Rajaniemi SM, Hautala N, Sironen T, Vainio O, Vapalahti O, Vaheri A, Vuolteenaho O, Ruskoaho H, Kauma H, Hautala T. Plasma B-type natriuretic peptide (BNP) in acute Puumala hantavirus infection. Ann Med 2014; 46:38-43. [PMID: 24393073 DOI: 10.3109/07853890.2013.862960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nephropathia epidemica (NE) is a haemorrhagic fever with renal syndrome (HFRS) caused by Puumala hantavirus (PUUV). Acute infection causes transient kidney injury, permeability disorder, and fluid retention, for example. METHODS B-type natriuretic peptide (BNP) and N-terminal peptide (NT-proBNP) during NE were investigated; disease severity and development of clinical symptoms were considered. RESULTS Mean concentrations were 80.2 pg/mL and 55.2 pg/mL for BNP, and 2362.5 pg/mL and 1057.0 pg/mL for NT-proBNP in males and females, respectively. Hospitalization was 6.3 versus 5.2 days (P = 0.01) and 5.9 versus 4.4 days (P = 0.01) for patients with elevated BNP (> 100 pg/mL) or NT-proBNP (> 300 pg/mL), respectively, compared to those with normal peptide concentrations. Weight change during hospitalization was -2.8 or -0.3 kg (P <0.05) in patients with elevated or normal BNP, respectively. Heart rate (r = -0.46, P = 0.001 and r = -0.37, P = 0.01), creatinine clearance (r = -0.46, P = 0.001 and r = -0.56, P = 0.000), blood haemoglobin concentration (r = -0.55, P = 0.000 and r = -0.52, P = 0.000), and C-reactive protein (r = -0.47, P = 0.001 and r = -0.36, P = 0.01) measured when the peptide samples were collected correlated with BNP and NT-proBNP, respectively. In addition, anterior chamber depth of eye and plasma BNP (r = -0.39, P < 0.05) displayed a correlation. CONCLUSIONS BNP and NT-proBNP levels are associated with severity of several clinical features of acute NE.
Collapse
Affiliation(s)
- Saara-Mari Rajaniemi
- Institute of Diagnostics, Department of Medical Microbiology, University of Oulu , Oulu , Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mustonen J, Mäkelä S, Outinen T, Laine O, Jylhävä J, Arstila PT, Hurme M, Vaheri A. The pathogenesis of nephropathia epidemica: new knowledge and unanswered questions. Antiviral Res 2013; 100:589-604. [PMID: 24126075 DOI: 10.1016/j.antiviral.2013.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 01/20/2023]
Abstract
Puumala virus (PUUV) causes an acute hemorrhagic fever with renal syndrome (HFRS), a zoonosis also called nephropathia epidemica (NE). The reservoir host of PUUV is the bank vole (Myodes glareolus). Herein we review the main clinical manifestations of NE, acute kidney injury, increased vascular permeability, coagulation abnormalities as well as pulmonary, cardiac, central nervous system and ocular manifestations of the disease. Several biomarkers of disease severity have recently been discovered: interleukin-6, pentraxin-3, C-reactive protein, indoleamine 2,3-dioxygenase, cell-free DNA, soluble urokinase-type plasminogen activator, GATA-3 and Mac-2 binding protein. The role of cytokines, vascular endothelial growth hormone, complement, bradykinin, cellular immune response and other mechanisms in the pathogenesis of NE as well as host genetic factors will be discussed. Finally therapeutic aspects and directions for further research will be handled.
Collapse
Affiliation(s)
- Jukka Mustonen
- School of Medicine, University of Tampere, Tampere, Finland; Department of Internal Medicine, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|