1
|
Zhao W, Ye C, Li J, Yu X. Increased risk of antibiotic resistance in surface water due to global warming. ENVIRONMENTAL RESEARCH 2024; 263:120149. [PMID: 39414103 DOI: 10.1016/j.envres.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
As the pace of global warming accelerates, so do the threats to human health, urgent priority among them being antibiotic-resistant infections. In the context of global warming, this review summarises the direct and indirect effects of rising surface water temperatures on the development of bacterial antibiotic resistance. First, the resistance of typical pathogens such as E. coli increased with average temperature. This is not only related to increased bacterial growth rate and horizontal gene transfer frequency at high temperatures but also heat shock responses and cumulative effects. Secondly, the acceleration of bacterial growth indirectly promotes antibiotic residues in surface water, which is conducive to the growth and spread of resistant bacteria. Furthermore, the cascading effects of global warming, including the release of nutrients into the water and the resulting increase of bacteria and algae, indirectly promote the improvement of resistance. Water treatment processes exposed to high temperatures also increase the risk of resistance in surface water. The fitness costs of antibiotic resistance under these dynamic conditions are also discussed, concluding the relationship between various factors and resistance persistence. It was expected to provide a comprehensive basis for mitigating antibiotic resistance in the face of global warming.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Jianguo Li
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China.
| |
Collapse
|
2
|
Mavian CN, Tagliamonte MS, Alam MT, Sakib SN, Cash MN, Moir M, Jimenez JP, Riva A, Nelson EJ, Cato ET, Ajayakumar J, Louis R, Curtis A, De Rochars VMB, Rouzier V, Pape JW, de Oliveira T, Morris JG, Salemi M, Ali A. Ancestral Origin and Dissemination Dynamics of Reemerging Toxigenic Vibrio cholerae, Haiti. Emerg Infect Dis 2023; 29:2072-2082. [PMID: 37735743 PMCID: PMC10521621 DOI: 10.3201/eid2910.230554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
The 2010 cholera epidemic in Haiti was thought to have ended in 2019, and the Prime Minister of Haiti declared the country cholera-free in February 2022. On September 25, 2022, cholera cases were again identified in Port-au-Prince. We compared genomic data from 42 clinical Vibrio cholerae strains from 2022 with data from 327 other strains from Haiti and 1,824 strains collected worldwide. The 2022 isolates were homogeneous and closely related to clinical and environmental strains circulating in Haiti during 2012-2019. Bayesian hypothesis testing indicated that the 2022 clinical isolates shared their most recent common ancestor with an environmental lineage circulating in Haiti in July 2018. Our findings strongly suggest that toxigenic V. cholerae O1 can persist for years in aquatic environmental reservoirs and ignite new outbreaks. These results highlight the urgent need for improved public health infrastructure and possible periodic vaccination campaigns to maintain population immunity against V. cholerae.
Collapse
Affiliation(s)
- Carla N. Mavian
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Massimiliano S. Tagliamonte
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Meer T. Alam
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - S. Nazmus Sakib
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Melanie N. Cash
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Monika Moir
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Juan Perez Jimenez
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Alberto Riva
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Eric J. Nelson
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Emilie T. Cato
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Jayakrishnan Ajayakumar
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Rigan Louis
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Andrew Curtis
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - V. Madsen Beau De Rochars
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Vanessa Rouzier
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Jean William Pape
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | - Tulio de Oliveira
- University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali)
- Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira)
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis)
- Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape)
- Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape)
- University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira)
- University of Washington, Seattle, Washington, USA (T. de Oliveira)
| | | | | | | |
Collapse
|
3
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
4
|
Molecular Basis of the Toxigenic Vibrio cholerae O1 Serotype Switch from Ogawa to Inaba in Haiti. Microbiol Spectr 2023; 11:e0362422. [PMID: 36537825 PMCID: PMC9927444 DOI: 10.1128/spectrum.03624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Toxigenic Vibrio cholerae O1 serotype Ogawa was introduced involuntarily into Haiti in October 2010, and virtually all of the clinical strains isolated during the first 5 years of the epidemic were Ogawa. Inaba strains were identified intermittently prior to 2015, with diverse mutations resulting in a common phenotype. In 2015, the percentage of clinical infections due to the Inaba serotype began to rapidly increase, with Inaba supplanting Ogawa as the dominant serotype during the subsequent 4 years. We investigated the molecular basis of the serotype switch and confirmed that all Inaba strains had the same level of mRNA expression of the wbeT genes, as well as the same translation levels for the truncated WbeT proteins in the V. cholerae Inaba isolates. Neither wbeT gene expression levels, differential mutations, or truncation size of the WbeT proteins appeared to be responsible for the successful Inaba switch in 2015. Our phylodynamic analysis demonstrated that the V. cholerae Inaba strains in Haiti evolved directly from Ogawa strains and that a significant increase of diversifying selection at the population level occurred at the time of the Ogawa-Inaba switch. We conclude that the emergence of the Inaba serotype was driven by diversifying selection, independent of the mutational pattern in the wbeT gene. IMPORTANCE Our phylodynamic analysis demonstrated that Vibrio cholerae Inaba strains in Haiti evolved directly from Ogawa strains. Our results support the hypothesis that after an initial Ogawa-dominated epidemic wave, V. cholerae Inaba was able to become the dominant strain thanks to a selective advantage driven by ongoing diversifying selection, independently from the mutational pattern in the wbeT gene.
Collapse
|
5
|
Griffiths K, Moise K, Piarroux M, Gaudart J, Beaulieu S, Bulit G, Marseille JP, Jasmin PM, Namphy PC, Henrys JH, Piarroux R, Rebaudet S. Delineating and Analyzing Locality-Level Determinants of Cholera, Haiti. Emerg Infect Dis 2021; 27:170-181. [PMID: 33350917 PMCID: PMC7774537 DOI: 10.3201/eid2701.191787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Centre Department, Haiti, was the origin of a major cholera epidemic during 2010–2019. Although no fine-scale spatial delineation is officially available, we aimed to analyze determinants of cholera at the local level and identify priority localities in need of interventions. After estimating the likely boundaries of 1,730 localities by using Voronoi polygons, we mapped 5,322 suspected cholera cases reported during January 2015–September 2016 by locality alongside environmental and socioeconomic variables. A hierarchical clustering on principal components highlighted 2 classes with high cholera risk: localities close to rivers and unimproved water sources (standardized incidence ratio 1.71, 95% CI 1.02–2.87; p = 0.04) and urban localities with markets (standardized incidence ratio 1.69, 95% CI 1.25–2.29; p = 0.0006). Our analyses helped identify and characterize areas where efforts should be focused to reduce vulnerability to cholera and other waterborne diseases; these methods could be used in other contexts.
Collapse
|
6
|
Pal BB, Nayak SR, Biswal B, Das BK. Environmental reservoirs of Vibrio cholerae serogroups in the flowing freshwater environs from the tribal areas of Odisha, Eastern India. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:119-125. [PMID: 33264464 DOI: 10.1111/1758-2229.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The environmental reservoirs of different serogroups of Vibrio cholerae causing cholera in the flowing freshwater bodies of the tribal areas of Odisha are not known. So the present study was conducted from June 2017 to March 2020 to find out the environmental reservoirs of V. cholerae serogroups in the water and plankton samples collected from the river, nala, stream and chua from Rayagada district. Similarly, rectal swabs were collected from diarrhoea patients and correlation was established among the V. cholerae strains isolated from diarrhoea patients and environmental V. cholerae isolates through routine culture, different multiplex PCR assays and pulse field gel electrophoresis (PFGE) analysis using standard techniques. The multiplex PCR assays on biotypes and different toxic genes exhibited similar correlation between the clinical and water isolates, which was further strengthened by PFGE analysis. The planktonic DNA was positive for ctxA gene which established that the environmental water bodies were the reservoirs for virulence genes of V. cholerae serogroups. The detection of environmental reservoirs of V. cholerae serogroups in temporarily stagnant condition of water; partially encircled by stones, and near the bank of the river, nala and stream were the reservoirs which is a rare report from Odisha, India and Globe.
Collapse
Affiliation(s)
- Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, OR, 751023, India
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, OR, 751023, India
| | - Bhagyalaxmi Biswal
- Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, OR, 751023, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, WB, 700120, India
| |
Collapse
|
7
|
Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae - A review. INFECTION GENETICS AND EVOLUTION 2021; 89:104726. [PMID: 33482361 DOI: 10.1016/j.meegid.2021.104726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.
Collapse
Affiliation(s)
- Murari Bhandari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Kalpy J. C, Sabine VN, Aboubakar S. D, lydie N. A, Allico J. D, Mady N, Mireille D. Resistance Profile of Vibrio spp. Strains Collected from Lagoon Bays and Wastewater in the City of Abidjan, Côte d'Ivoire, from January to June 2017. Open Microbiol J 2020. [DOI: 10.2174/1874434602014010297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Lagoons and wastewater constitute aquatics environments which receive or accounts for most domestic discharges. These waters constitute an important ecosystem for the proliferation of microorganisms. The microorganisms that harbor these waters can provide information on the persistence of certain diseases in the human population, including gastrointestinal infections such as Cholera. The genus Vibrio contains pathogenic aquatic bacteria found in lagoon bays and wastewater.
Objective:
The main objectives of this work were to confirm the presence of Vibrio spp. in lagoon bays and sewage of the city of Abidjan over the entire interepidemic period, and to evaluate their sensitivity to commonly used antibiotics.
Methods:
The isolation and identification of the microorganisms were carried out using classical bacteriological techniques (biochemical test, API 20E gallery). When necessary, serotyping was carried out using agglutination tests on slides. Antibiotic susceptibility testing was carried out using the Kirby-Bauer disk diffusion (KBDD) method.
Results:
This study identified 12 bacterial strains, 9/12 (75%) of which were Vibrio sp. strains. Two Vibrio species, namely Vibrio parahaemolyticus 2/9 (22%) and 7/9 Vibrio cholerae (78%) were identified.
V. cholerae was isolated from both sewage and lagoon waters with dominance of serotype O1. The V. cholerae O1 and non-O1 strains showed a high level of resistance to sulfonamides, quinolones, fluoroquinolones, and moderate sensitivity to penicillins and tetracyclines. Resistant V. parahaemolyticus strains were also identified.
Conclusion:
The increased resistance of these bacteria could pose potential problems in the treatment of epidemics and other communicable diseases. The emergence of these multi-drug resistant strains of the genus Vibrio should prompt the Ivorian health authorities to maintain an epidemiological surveillance network for waterborne diseases throughout the country and to continue bacteriological sampling to monitor Vibrio's sensitivity to antibiotics.
Collapse
|
9
|
Moehling TJ, Lee DH, Henderson ME, McDonald MK, Tsang PH, Kaakeh S, Kim ES, Wereley ST, Kinzer-Ursem TL, Clayton KN, Linnes JC. A smartphone-based particle diffusometry platform for sub-attomolar detection of Vibrio cholerae in environmental water. Biosens Bioelectron 2020; 167:112497. [PMID: 32836088 PMCID: PMC7532658 DOI: 10.1016/j.bios.2020.112497] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/30/2022]
Abstract
Each year, 3.4 million people die from waterborne diseases worldwide. Development of a rapid and portable platform for detecting and monitoring waterborne pathogens would significantly aid in reducing the incidence and spread of infectious diseases. By combining optical methods and smartphone technology with molecular assays, the sensitivity required to detect exceedingly low concentrations of waterborne pathogens can readily be achieved. Here, we implement smartphone-based particle diffusometry (PD) detection of loop-mediated isothermal amplification (LAMP) targeting the waterborne pathogen Vibrio cholerae (V. cholerae). By measuring the diffusion of 400 nm streptavidin-coated fluorescent nanoparticles imaged at 68X magnification on a smartphone, we can detect as few as 6 V. cholerae cells per reaction (0.66 aM) in just 35 minutes. In a double-blinded study with 132 pond water samples, we establish a 91.8% sensitivity, 95.2% specificity, and 94.3% accuracy of the smartphone-based PD platform for detection of V. cholerae. Together, these results demonstrate the utility of this smartphone-based PD platform for rapid and sensitive detection of V. cholerae at the point of use.
Collapse
Affiliation(s)
- Taylor J Moehling
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Dong Hoon Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Meghan E Henderson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mariah K McDonald
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Preston H Tsang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Seba Kaakeh
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Eugene S Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Katherine N Clayton
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; OmniVis LLC, Indianapolis, IN, 46201, USA.
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Draft Genome Sequence of an Environmental Vibrio cholerae Strain, 2012Env-25, Obtained Using Nanopore Sequencing Technology. Microbiol Resour Announc 2020; 9:9/32/e00625-20. [PMID: 32763930 PMCID: PMC7409847 DOI: 10.1128/mra.00625-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a halophilic Gram-negative bacterial species and the etiological agent of cholera. Here, we report the draft genome sequence of an environmental V. cholerae strain, 2012Env-25, obtained using Oxford Nanopore Technologies (ONT) to provide insights into the ecology, evolution, and pathogenic potential of this bacterium. Vibrio cholerae is a halophilic Gram-negative bacterial species and the etiological agent of cholera. Here, we report the draft genome sequence of an environmental V. cholerae strain, 2012Env-25, obtained using Oxford Nanopore Technologies (ONT) to provide insights into the ecology, evolution, and pathogenic potential of this bacterium.
Collapse
|
11
|
Toxigenic Vibrio cholerae evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci U S A 2020; 117:7897-7904. [PMID: 32229557 PMCID: PMC7149412 DOI: 10.1073/pnas.1918763117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.
Collapse
|
12
|
Islam MS, Zaman M, Islam MS, Ahmed N, Clemens J. Environmental reservoirs of Vibrio cholerae. Vaccine 2020; 38 Suppl 1:A52-A62. [DOI: 10.1016/j.vaccine.2019.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/27/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
|
13
|
Hamner S, Brown BL, Hasan NA, Franklin MJ, Doyle J, Eggers MJ, Colwell RR, Ford TE. Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071097. [PMID: 30934749 PMCID: PMC6479903 DOI: 10.3390/ijerph16071097] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
The Little Bighorn River is the primary source of water for water treatment plants serving the local Crow Agency population, and has special significance in the spiritual and ceremonial life of the Crow tribe. Unfortunately, the watershed suffers from impaired water quality, with high counts of fecal coliform bacteria routinely measured during run-off events. A metagenomic analysis was carried out to identify potential pathogens in the river water. The Oxford Nanopore MinION platform was used to sequence DNA in near real time to identify both uncultured and a coliform-enriched culture of microbes collected from a popular summer swimming area of the Little Bighorn River. Sequences were analyzed using CosmosID bioinformatics and, in agreement with previous studies, enterohemorrhagic and enteropathogenic Escherichia coli and other E. coli pathotypes were identified. Noteworthy was detection and identification of enteroaggregative E. coli O104:H4 and Vibrio cholerae serotype O1 El Tor, however, cholera toxin genes were not identified. Other pathogenic microbes, as well as virulence genes and antimicrobial resistance markers, were also identified and characterized by metagenomic analyses. It is concluded that metagenomics provides a useful and potentially routine tool for identifying in an in-depth manner microbial contamination of waterways and, thereby, protecting public health.
Collapse
Affiliation(s)
- Steve Hamner
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA 2 Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
| | - Bonnie L Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Nur A Hasan
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Michael J Franklin
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.
| | - John Doyle
- Crow Water Quality Project, Crow Agency, Little Big Horn College, MT 59022, USA.
- Crow Environmental Health Steering Committee, Crow Agency, Little Big Horn College, MT 59022, USA.
| | - Margaret J Eggers
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.
- Crow Environmental Health Steering Committee, Crow Agency, Little Big Horn College, MT 59022, USA.
| | - Rita R Colwell
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Timothy E Ford
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA 2 Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
14
|
Particle Diffusometry: An Optical Detection Method for Vibrio cholerae Presence in Environmental Water Samples. Sci Rep 2019; 9:1739. [PMID: 30741961 PMCID: PMC6370876 DOI: 10.1038/s41598-018-38056-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
There is a need for a rapid, robust, and sensitive biosensor to identify low concentrations of pathogens in their native sample matrix without enrichment or purification. Nucleic acid-based detection methods are widely accepted as the gold standard in diagnostics, but robust detection of low concentrations of pathogens remains challenging. Amplified nucleic acids produce more viscous solutions, which can be measured by combining these products with fluorescent particles and measuring the change in the particle diffusion coefficient using a technique known as particle diffusometry. Here, we utilize Vibrio cholerae (V. cholerae) as a proof-of-concept for our detection system due to its inherently low concentration in environmental water samples. We demonstrate that particle diffusometry can be used to detect down to 1 V. cholerae cell in molecular-grade water in 20 minutes and 10 V. cholerae cells in pond water in just 35 minutes in 25 µL reaction volumes. The detection limit in pond water is environmentally relevant and does not require any enrichment or sample preparation steps. Particle diffusometry is 10-fold more sensitive than current gold standard fluorescence detection of nucleic acid amplification. Therefore, this novel measurement technique is a promising approach to detect low levels of pathogens in their native environments.
Collapse
|
15
|
Rebaudet S, Moore S, Rossignol E, Bogreau H, Gaudart J, Normand AC, Laraque MJ, Adrien P, Boncy J, Piarroux R. Epidemiological and molecular forensics of cholera recurrence in Haiti. Sci Rep 2019; 9:1164. [PMID: 30718586 PMCID: PMC6361935 DOI: 10.1038/s41598-018-37706-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Cholera has affected Haiti with damping waves of outbreaks since October 2010. However, mechanisms behind disease persistence during lull periods remain poorly understood. By mid 2014, cholera transmission seemed to only persist in the northern part of Haiti. Meanwhile, cholera appeared nearly extinct in the capital, Port-au-Prince, where it eventually exploded in September 2014. This study aimed to determine whether this outbreak was caused by local undetected cases or by re-importation of the disease from the north. Applying an integrated approach between November 2013 and November 2014, we assessed the temporal and spatial dynamics of cholera using routine surveillance data and performed population genetics analyses of 178 Vibrio cholerae O1 clinical isolates. The results suggest that the northern part of the country exhibited a persisting metapopulation pattern with roaming oligoclonal outbreaks that could not be effectively controlled. Conversely, undetected and unaddressed autochthonous low-grade transmission persisted in the Port-au-Prince area, which may have been the source of the acute outbreak in late-2014. Cholera genotyping is a simple but powerful tool to adapt control strategies based on epidemic specificities. In Haiti, these data have already yielded significant progress in cholera surveillance, which is a key component of the strategy to eventually eliminate cholera.
Collapse
Affiliation(s)
- Stanislas Rebaudet
- Assistance Publique - Hôpitaux de Marseille, DRCI, Marseille, France. .,Hôpital Européen Marseille, Marseille, France.
| | | | - Emmanuel Rossignol
- Ministry of Public Health and Population, National Public Health Laboratory, Delmas, Haiti
| | - Hervé Bogreau
- Institut de Recherche Biomédicale des Armées, Département des Maladies Infectieuses, Unité de Parasitologie et d'Entomologie, Marseille, France.,Aix Marseille Univ, Institut Hospitalo-Universitaire Méditerranée Infection, VITROME, Marseille, France
| | - Jean Gaudart
- Aix Marseille Univ, APHM, IRD, INSERM, SESSTIM, BioSTIC, Marseille, France
| | - Anne-Cécile Normand
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, F-, 75013, Paris, France
| | - Marie-José Laraque
- Ministry of Public Health and Population, National Public Health Laboratory, Delmas, Haiti
| | - Paul Adrien
- Ministry of Public Health and Population, Directorate of Epidemiology Laboratory and Research, Delmas, Haiti
| | - Jacques Boncy
- Ministry of Public Health and Population, National Public Health Laboratory, Delmas, Haiti
| | - Renaud Piarroux
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, F-, 75013, Paris, France
| |
Collapse
|
16
|
Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infect Dis 2019; 19:76. [PMID: 30665342 PMCID: PMC6341726 DOI: 10.1186/s12879-019-3714-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cholera has been endemic in Ghana since its detection in 1970. It has been shown that long-term survival of the bacteria may be attained in aquatic environments. Consequently, cholera outbreaks may be triggered predominantly in densely populated urban areas. We investigated clinical and environmental isolates of Vibrio cholerae O1 in Accra to determine their virulence genes, antibiotic susceptibility patterns and environmental factors maintaining their persistence in the environment. Methods Water samples from various sources were analyzed for the presence of V. cholerae O1 using culture methods. Forty clinical isolates from a previous cholera outbreak were included in the study for comparison. Antibiotic susceptibility patterns of the bacteria were determined by disc diffusion. Virulence genes were identified by analyzing genes for ctx, tcpA (tcpAEl Tor tcpACl), zot, ompW, rbfO1 and attRS using PCR. Physicochemical characteristics of water were investigated using standard methods. One-way ANOVA and student t - test were employed to analyze the relationship between physicochemical factors and the occurrence of V. cholerae O1. Results Eleven V. cholerae O1 strains were successfully isolated from streams, storage tanks and wells during the study period. All isolates were resistant to one or more of the eight antibiotics used. Multidrug resistance was observed in over 97% of the isolates. All isolates had genes for at least one virulence factor. Vibrio cholerae toxin gene was detected in 82.4% of the isolates. Approximately 81.8% of the isolates were positive for tcpAEl Tor gene, but also harbored the tcpAcl gene. Isolates were grouped into thirteen genotypes based on the genes analyzed. High temperature, salinity, total dissolved solids and conductivity was found to significantly correlate positively with isolation of V. cholerae O1. V. cholerae serotype Ogawa biotype El tor is the main biotype circulating in Ghana with the emergence of a hybrid strain. Conclusions Multidrug resistant V. cholerae O1 with different genotypes and pathogenicity are present in water sources and co-exist with non O1/O139 in the study area. Electronic supplementary material The online version of this article (10.1186/s12879-019-3714-z) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Roy MA, Arnaud JM, Jasmin PM, Hamner S, Hasan NA, Colwell RR, Ford TE. A Metagenomic Approach to Evaluating Surface Water Quality in Haiti. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102211. [PMID: 30309013 PMCID: PMC6209974 DOI: 10.3390/ijerph15102211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
The cholera epidemic that occurred in Haiti post-earthquake in 2010 has resulted in over 9000 deaths during the past eight years. Currently, morbidity and mortality rates for cholera have declined, but cholera cases still occur on a daily basis. One continuing issue is an inability to accurately predict and identify when cholera outbreaks might occur. To explore this surveillance gap, a metagenomic approach employing environmental samples was taken. In this study, surface water samples were collected at two time points from several sites near the original epicenter of the cholera outbreak in the Central Plateau of Haiti. These samples underwent whole genome sequencing and subsequent metagenomic analysis to characterize the microbial community of bacteria, fungi, protists, and viruses, and to identify antibiotic resistance and virulence associated genes. Replicates from sites were analyzed by principle components analysis, and distinct genomic profiles were obtained for each site. Cholera toxin converting phage was detected at one site, and Shiga toxin converting phages at several sites. Members of the Acinetobacter family were frequently detected in samples, including members implicated in waterborne diseases. These results indicate a metagenomic approach to evaluating water samples can be useful for source tracking and the surveillance of pathogens such as Vibrio cholerae over time, as well as for monitoring virulence factors such as cholera toxin.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jean M Arnaud
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Paul M Jasmin
- Equipes mobiles d'intervention rapide (EMIRA) du Ministère de la Santé Publique et de la Population (MSPP), Hinche HT 5111, Haiti.
| | - Steve Hamner
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Nur A Hasan
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Rita R Colwell
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Timothy E Ford
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Abioye OE, Okoh AI. Limpet ( Scutellastra cochlear) Recovered From Some Estuaries in the Eastern Cape Province, South Africa Act as Reservoirs of Pathogenic Vibrio Species. Front Public Health 2018; 6:237. [PMID: 30234084 PMCID: PMC6128111 DOI: 10.3389/fpubh.2018.00237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Limpet (Scutellastra cochlear) serves as seafood recipe and an important member of the aquatic food chain. It is an abundant mollusc in some aquatic environment in South Africa. In this study, we investigated the potential of the molluscs harvested from the Buffalo, Swartkops, and Kowie estuaries in the Eastern Cape Province, South Africa to serve as transient or maintenance reservoir of Vibrio species. The mollusc and source water samples were collected monthly from the rivers between December 2016 and November 2017. The reservoir category of the limpet samples recovered was determined by employing the combination of MPN-PCR method and statistical analysis (comparison of mean and proportion tests). The densities of Vibrio spp. in limpet and their source water samples were determined using MPN-PCR methods. Presumptive isolates were recovered by processing the samples with thiosulfate-citrate-bile salts-sucrose agar and where necessary, samples were enriched with alkaline peptone water. The presumptive isolates were identified using PCR methods with emphasis on six Vibrio species of public health importance. Vibrio spp. were detected in all the limpet samples but not in all the water samples. The densities of Vibrio spp. in the limpet samples were more than the densities of Vibrio species in their source water and these were significant at P < 0.05. In like manner, five out of the six key Vibrio pathogens targeted in this study were more prevalent in limpet samples than in source water samples. Based on our findings, we concluded that our method though could be improved on, is efficient for the determination of reservoir types of bacterial-carrying organisms. We also concluded that the limpet found in the estuaries are not just a transient but a maintenance reservoir of Vibrio spp. which could cause vibrio-related infections.
Collapse
Affiliation(s)
- Oluwatayo E Abioye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department Of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department Of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
19
|
Phillips EA, Moehling TJ, Bhadra S, Ellington AD, Linnes JC. Strand Displacement Probes Combined with Isothermal Nucleic Acid Amplification for Instrument-Free Detection from Complex Samples. Anal Chem 2018; 90:6580-6586. [PMID: 29667809 PMCID: PMC5990927 DOI: 10.1021/acs.analchem.8b00269] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Sensitive
and specific detection of pathogens via nucleic acid
amplification is currently constrained to laboratory settings and
portable equipment with costly fluorescent detectors. Nucleic acid-detecting
lateral flow immunoassay strips (LFIAs) offer a low-cost visual transduction
strategy at points of need. Unfortunately, these LFIAs frequently
detect amplification byproducts that can yield spurious results which
can only be deciphered through statistical analysis. We integrated
customizable strand displacement probes into standard loop mediated
isothermal amplification (LAMP) assays to prevent byproduct capture
on commercial LFIAs. We find that combining strand displacement with
LAMP (SD-LAMP) yields LFIA test band intensities that can be unequivocally
interpreted by human subjects without additional instrumentation,
thereby alleviating the need for a portable reader’s analysis.
Using SD-LAMP, we capture target amplicons on commercially available
LFIAs from as few as 3.5 Vibrio cholerae and 2 750 Escherichia coli bacteria without false positive or false
negative interpretation. Moreover, we demonstrate that LFIA capture
of SD-LAMP products remain specific even in the presence of complex
sample matrixes, providing a significant step toward reliable instrument-free
pathogen detection outside of laboratories.
Collapse
Affiliation(s)
- Elizabeth A Phillips
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Taylor J Moehling
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Sanchita Bhadra
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, and Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, and Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
20
|
Ferdous J, Sultana R, Rashid RB, Tasnimuzzaman M, Nordland A, Begum A, Jensen PKM. A Comparative Analysis of Vibrio cholerae Contamination in Point-of-Drinking and Source Water in a Low-Income Urban Community, Bangladesh. Front Microbiol 2018; 9:489. [PMID: 29616005 PMCID: PMC5867346 DOI: 10.3389/fmicb.2018.00489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae (V. cholerae) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from "point-of-drinking" and "source" in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds (P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14-42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds (p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85-29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19-18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Rebeca Sultana
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark.,International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.,Institute of Health Economics, University of Dhaka, Dhaka, Bangladesh
| | - Ridwan B Rashid
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Tasnimuzzaman
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Andreas Nordland
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Mononen T, Ruokolainen L. Spatial disease dynamics of free-living pathogens under pathogen predation. Sci Rep 2017; 7:7729. [PMID: 28798313 PMCID: PMC5552698 DOI: 10.1038/s41598-017-07983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
The epidemiological dynamics of potentially free-living pathogens are often studied with respect to a specific pathogen species (e.g., cholera) and most studies concentrate only on host-pathogen interactions. Here we show that metacommunity-level interactions can alter conventional spatial disease dynamics. We introduce a pathogen eating consumer species and investigate a deterministic epidemiological model of two habitat patches, where both patches can be occupied by hosts, pathogens, and consumers of free-living pathogens. An isolated habitat patch shows periodic disease outbreaks in the host population, arising from cyclic consumer-pathogen dynamics. On the other hand, consumer dispersal between the patches generate asymmetric disease prevalence, such that the host population in one patch stays disease-free, while disease outbreaks occur in the other patch. Such asymmetry can also arise with host dispersal, where infected hosts carry pathogens to the other patch. This indirect movement of pathogens causes also a counter-intuitive effect: decreasing morbidity in a focal patch under increasing pathogen immigration. Our results underline that community-level interactions influence disease dynamics and consistent spatial asymmetry can arise also in spatially homogeneous systems.
Collapse
Affiliation(s)
- Tommi Mononen
- University of Helsinki, Department of Biosciences, Helsinki, FI-00014, Finland.
| | - Lasse Ruokolainen
- University of Helsinki, Department of Biosciences, Helsinki, FI-00014, Finland
| |
Collapse
|
22
|
Kirpich A, Weppelmann TA, Yang Y, Morris JG, Longini IM. Controlling cholera in the Ouest Department of Haiti using oral vaccines. PLoS Negl Trop Dis 2017; 11:e0005482. [PMID: 28410382 PMCID: PMC5406029 DOI: 10.1371/journal.pntd.0005482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/26/2017] [Accepted: 03/11/2017] [Indexed: 12/17/2022] Open
Abstract
Following the 2010 cholera outbreak in Haiti, a plan was initiated to provide massive improvements to the sanitation and drinking water infrastructure in order to eliminate cholera from the island of Hispaniola by 2023. Six years and a half billion dollars later, there is little evidence that any substantial improvements have been implemented; with increasing evidence that cholera has become endemic. Thus, it is time to explore strategies to control cholera in Haiti using oral cholera vaccines (OCVs). The potential effects of mass administration of OCVs on cholera transmission were assessed using dynamic compartment models fit to cholera incidence data from the Ouest Department of Haiti. The results indicated that interventions using an OCV that was 60% effective could have eliminated cholera transmission by August 2012 if started five weeks after the initial outbreak. A range of analyses on the ability of OCV interventions started January 1, 2017 to eliminate cholera transmission by 2023 were performed by considering different combinations of vaccine efficacies, vaccine administration rates, and durations of protective immunity. With an average of 50 weeks for the waiting time to vaccination and an average duration of three years for the vaccine-induced immunity, all campaigns that used an OCV with a vaccine efficacy of at least 60% successfully eliminated cholera transmission by 2023. The results of this study suggest that even with a relatively wide range of vaccine efficacies, administration rates, and durations of protective immunity, future epidemics could be controlled at a relatively low cost using mass administration of OCVs in Haiti.
Collapse
Affiliation(s)
- Alexander Kirpich
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Thomas A. Weppelmann
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Yang Yang
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - John Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ira M. Longini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Azarian T, Ali A, Johnson JA, Jubair M, Cella E, Ciccozzi M, Nolan DJ, Farmerie W, Rashid MH, Sinha-Ray S, Alam MT, Morris JG, Salemi M. Non-toxigenic environmental Vibrio cholerae O1 strain from Haiti provides evidence of pre-pandemic cholera in Hispaniola. Sci Rep 2016; 6:36115. [PMID: 27786291 PMCID: PMC5081557 DOI: 10.1038/srep36115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2010 cholera epidemic, we isolated two novel non-toxigenic (ctxA/B-negative) Vibrio cholerae O1. These two isolates underwent whole-genome sequencing and were investigated through comparative genomics and Bayesian coalescent analysis. These isolates cluster in the evolutionary tree with strains responsible for clinical cholera, possessing genomic components of 6th and 7th pandemic lineages, and diverge from "modern" cholera strains around 1548 C.E. [95% HPD: 1532-1555]. Vibrio Pathogenicity Island (VPI)-1 was present; however, SXT/R391-family ICE and VPI-2 were absent. Rugose phenotype conversion and vibriophage resistance evidenced adaption for persistence in aquatic environments. The identification of V. cholerae O1 strains in the Haitian environment, which predate the first reported cholera pandemic in 1817, broadens our understanding of the history of pandemics. It also raises the possibility that these and similar environmental strains could acquire virulence genes from the 2010 Haitian epidemic clone, including the cholera toxin producing CTXϕ.
Collapse
Affiliation(s)
- Taj Azarian
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Environmental and Global Health, College of Public Health and Health Profession, University of Florida, Gainesville, Florida, USA
| | - Judith A Johnson
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, USA
| | - Mohammad Jubair
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Environmental and Global Health, College of Public Health and Health Profession, University of Florida, Gainesville, Florida, USA
| | - Eleonora Cella
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.,Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,University Hospital Campus Bio-Medico, Italy
| | - David J Nolan
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, USA
| | - William Farmerie
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Mohammad H Rashid
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | | | - Meer T Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Environmental and Global Health, College of Public Health and Health Profession, University of Florida, Gainesville, Florida, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, USA
| |
Collapse
|
24
|
Baron S, Lesne J, Jouy E, Larvor E, Kempf I, Boncy J, Rebaudet S, Piarroux R. Antimicrobial Susceptibility of Autochthonous Aquatic Vibrio cholerae in Haiti. Front Microbiol 2016; 7:1671. [PMID: 27818656 PMCID: PMC5073147 DOI: 10.3389/fmicb.2016.01671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022] Open
Abstract
We investigated the antimicrobial susceptibility of 50 environmental isolates of Vibrio cholerae non-O1/non-O139 collected in surface waters in Haiti in July 2012, during an active cholera outbreak. A panel of 16 antibiotics was tested on the isolates using the disk diffusion method and PCR detection of seven resistance-associated genes (strA/B, sul1/2, ermA/B, and mefA). All isolates were susceptible to amoxicillin-clavulanic acid, cefotaxime, imipenem, ciprofloxacin, norfloxacin, amikacin, and gentamicin. Nearly a quarter (22.0%) of the isolates were susceptible to all 16 antimicrobials tested and only 8.0% of the isolates (n = 4) were multidrug-resistant. The highest proportions of resistant isolates were observed for sulfonamide (70.0%), amoxicillin (12.0%), and trimethoprim-sulfamethoxazole (10.0%). One strain was resistant to erythromycin and one to doxycycline, two antibiotics used to treat cholera in Haiti. Among the 50 isolates, 78% possessed at least two resistance-associated genes, and the genes sul1, ermA, and strB were detected in all four multidrug-resistant isolates. Our results clearly indicate that the autochthonous population of V. cholerae non-O1/non-O139 found in surface waters in Haiti shows antimicrobial patterns different from that of the outbreak strain. The presence in the Haitian aquatic environment of V. cholerae non-O1/non-O139 with reduced susceptibility or resistance to antibiotics used in human medicine may constitute a mild public health threat.
Collapse
Affiliation(s)
- Sandrine Baron
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Jean Lesne
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Eric Jouy
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Emeline Larvor
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Isabelle Kempf
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Jacques Boncy
- National Public Health Laboratory, Ministry of Public Health and Population Port au Prince, Haiti
| | | | | |
Collapse
|
25
|
Major Shift of Toxigenic V. cholerae O1 from Ogawa to Inaba Serotype Isolated from Clinical and Environmental Samples in Haiti. PLoS Negl Trop Dis 2016; 10:e0005045. [PMID: 27716803 PMCID: PMC5055329 DOI: 10.1371/journal.pntd.0005045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/15/2016] [Indexed: 02/04/2023] Open
Abstract
In October of 2010, an outbreak of cholera was confirmed in Haiti for the first time in more than a century. A single clone of toxigenic Vibrio cholerae O1 biotype El Tor serotype Ogawa strain was implicated as the cause. Five years after the onset of cholera, in October, 2015, we have discovered a major switch (ranging from 7 to 100%) from Ogawa serotype to Inaba serotype. Furthermore, using wbeT gene sequencing and comparative sequence analysis, we now demonstrate that, among 2013 and 2015 Inaba isolates, the wbeT gene, responsible for switching Ogawa to Inaba serotype, sustained a unique nucleotide mutation not found in isolates obtained from Haiti in 2012. Moreover, we show that, environmental Inaba isolates collected in 2015 have the identical mutations found in the 2015 clinical isolates. Our data indicate that toxigenic V. cholerae O1 serotype Ogawa can rapidly change its serotype to Inaba, and has the potential to cause disease in individuals who have acquired immunity against Ogawa serotype. Our findings highlight the importance of monitoring of toxigenic V. cholerae O1 and cholera in countries with established endemic disease. For the first time in 100 years, in October 2010, cholera caused by toxigenic strains of V. cholerae was introduced in Haiti. Conventional and genetic analysis revealed that a single clone of V. cholerae O1 biotype El Tor, serotype Ogawa strain was brought to Haiti by Nepalese Peace-Keeping troops. These troops arrived in January of that year to provide humanitarian assistance following Haiti’s deadliest earthquake. Subsequently our team has monitored the cholera epidemic by acquiring clinical and environmental samples to assess whether or not the pathogen was able to establish its environmental reservoirs within the country, and whether V. cholerae could undergo evolutionary changes in order to adapt to the stressors imparted by human gastrointestinal tract and environmental aquatic reservoirs. In this study we show that over the past 5 years the initially-introduced and circulating V. cholerae Ogawa serotype has significantly shifted to Inaba serotype by sustaining multiple mutations in wbeT gene, the gene known to mediate serotype shift. Our findings suggest that the new Inaba serotype may be replacing the Ogawa serotype in order to evade Ogawa-induced host immunity and thereby causing cholera potentially among individuals who may previously have suffered from cholera. Our study highlights the importance of ongoing monitoring of cholera in Haiti.
Collapse
|
26
|
Li L, Brumback BA, Weppelmann TA, Morris JG, Ali A. Adjusting for unmeasured confounding due to either of two crossed factors with a logistic regression model. Stat Med 2016; 35:3179-88. [PMID: 26892025 DOI: 10.1002/sim.6916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 11/12/2022]
Abstract
Motivated by an investigation of the effect of surface water temperature on the presence of Vibrio cholerae in water samples collected from different fixed surface water monitoring sites in Haiti in different months, we investigated methods to adjust for unmeasured confounding due to either of the two crossed factors site and month. In the process, we extended previous methods that adjust for unmeasured confounding due to one nesting factor (such as site, which nests the water samples from different months) to the case of two crossed factors. First, we developed a conditional pseudolikelihood estimator that eliminates fixed effects for the levels of each of the crossed factors from the estimating equation. Using the theory of U-Statistics for independent but non-identically distributed vectors, we show that our estimator is consistent and asymptotically normal, but that its variance depends on the nuisance parameters and thus cannot be easily estimated. Consequently, we apply our estimator in conjunction with a permutation test, and we investigate use of the pigeonhole bootstrap and the jackknife for constructing confidence intervals. We also incorporate our estimator into a diagnostic test for a logistic mixed model with crossed random effects and no unmeasured confounding. For comparison, we investigate between-within models extended to two crossed factors. These generalized linear mixed models include covariate means for each level of each factor in order to adjust for the unmeasured confounding. We conduct simulation studies, and we apply the methods to the Haitian data. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Li Li
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, 32611, FL, U.S.A
| | - Babette A Brumback
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, 32611, FL, U.S.A
| | - Thomas A Weppelmann
- Emerging Pathogens Institute, University of Florida, Gainesville, 32611, FL, U.S.A
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, 32611, FL, U.S.A
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, 32611, FL, U.S.A.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, 32611, FL, U.S.A
| |
Collapse
|
27
|
Forbes JD, Van Domselaar G, Sargent M, Green C, Springthorpe S, Krause DO, Bernstein CN. Microbiome profiling of drinking water in relation to incidence of inflammatory bowel disease. Can J Microbiol 2016; 62:781-93. [PMID: 27420183 DOI: 10.1139/cjm-2016-0219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The etiology of inflammatory bowel disease (IBD) is unknown; current research is focused on determining environmental factors. One consideration is drinking water: water systems harbour considerable microbial diversity, with bacterial concentrations estimated at 10(6)-10(8) cells/L. Perhaps differences in microbial ecology of water sources may impact differential incidence rates of IBD. Regions of Manitoba were geographically mapped according to incidence rates of IBD and identified as high (HIA) or low (LIA) incidence areas. Bulk water, filter material, and pipe wall samples were collected from public buildings in different jurisdictions and their population structure analyzed using 16S rDNA sequencing. At the phylum level, Proteobacteria were observed significantly less frequently (P = 0.02) in HIA versus LIA. The abundance of Proteobacteria was also found to vary according to water treatment distribution networks. Gammaproteobacteria was the most abundant class of bacteria and was observed more frequently (P = 0.006) in LIA. At the genus level, microbes found to associate with HIA include Bradyrhizobium (P = 0.02) and Pseudomonas (P = 0.02). Particular microbes were found to associate with LIA or HIA, based on sample location and (or) type. This work lays out a basis for further studies exploring water as a potential environmental source for IBD triggers.
Collapse
Affiliation(s)
- Jessica D Forbes
- a Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,b National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gary Van Domselaar
- a Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,b National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael Sargent
- c Department of Internal Medicine and the University of Manitoba IBD Clinical and Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Chris Green
- d Department of Community Health Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Susan Springthorpe
- e Centre for Research on Environmental Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Denis O Krause
- a Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles N Bernstein
- c Department of Internal Medicine and the University of Manitoba IBD Clinical and Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
28
|
Curtis A, Blackburn JK, Smiley SL, Yen M, Camilli A, Alam MT, Ali A, Morris JG. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:187. [PMID: 26848672 PMCID: PMC4772207 DOI: 10.3390/ijerph13020187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/21/2022]
Abstract
The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains) to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens.
Collapse
Affiliation(s)
- Andrew Curtis
- GIS, Health & Hazards Lab, Department of Geography, Kent State University, Kent, OH 44242, USA.
| | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Sarah L Smiley
- GIS, Health & Hazards Lab, Department of Geography, Kent State University at Salem, Salem, OH 44460, USA.
| | - Minmin Yen
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Meer Taifur Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Khan SJ, Deere D, Leusch FDL, Humpage A, Jenkins M, Cunliffe D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? WATER RESEARCH 2015; 85:124-36. [PMID: 26311274 DOI: 10.1016/j.watres.2015.08.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 05/23/2023]
Abstract
Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents.
Collapse
Affiliation(s)
- Stuart J Khan
- School of Civil & Environmental Engineering, University of New South Wales, NSW, Australia.
| | | | - Frederic D L Leusch
- Smart Water Research Centre, School of Environment, Griffith University, QLD, Australia.
| | | | | | | |
Collapse
|
30
|
Cholera Transmission in Ouest Department of Haiti: Dynamic Modeling and the Future of the Epidemic. PLoS Negl Trop Dis 2015; 9:e0004153. [PMID: 26488620 PMCID: PMC4619523 DOI: 10.1371/journal.pntd.0004153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/19/2015] [Indexed: 12/12/2022] Open
Abstract
In the current study, a comprehensive, data driven, mathematical model for cholera transmission in Haiti is presented. Along with the inclusion of short cycle human-to-human transmission and long cycle human-to-environment and environment-to-human transmission, this novel dynamic model incorporates both the reported cholera incidence and remote sensing data from the Ouest Department of Haiti between 2010 to 2014. The model has separate compartments for infectious individuals that include different levels of infectivity to reflect the distribution of symptomatic and asymptomatic cases in the population. The environmental compartment, which serves as a source of exposure to toxigenic V. cholerae, is also modeled separately based on the biology of causative bacterium, the shedding of V. cholerae O1 by humans into the environment, as well as the effects of precipitation and water temperature on the concentration and survival of V. cholerae in aquatic reservoirs. Although the number of reported cholera cases has declined compared to the initial outbreak in 2010, the increase in the number of susceptible population members and the presence of toxigenic V. cholerae in the environment estimated by the model indicate that without further improvements to drinking water and sanitation infrastructures, intermittent cholera outbreaks are likely to continue in Haiti. Based on the model-fitted trend and the observed incidence, there is evidence that after an initial period of intense transmission, the cholera epidemic in Haiti stabilized during the third year of the outbreak and became endemic. The model estimates indicate that the proportion of the population susceptible to infection is increasing and that the presence of toxigenic V. cholerae in the environment remains a potential source of new infections. Given the lack of adequate improvements to drinking water and sanitation infrastructure, these conditions could facilitate ongoing, seasonal cholera epidemics in Haiti.
Collapse
|
31
|
Rebaudet S, Piarroux R. Monitoring water sources for environmental reservoirs of toxigenic Vibrio cholerae O1, Haiti. Emerg Infect Dis 2015; 21:169-70. [PMID: 25531032 PMCID: PMC4285276 DOI: 10.3201/eid2101.140627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Blackburn JK, Diamond U, Kracalik IT, Widmer J, Brown W, Morrissey BD, Alexander KA, Curtis AJ, Ali A, Morris JG. Household-level spatiotemporal patterns of incidence of cholera, Haiti, 2011. Emerg Infect Dis 2015; 20:1516-9. [PMID: 25148590 PMCID: PMC4178390 DOI: 10.3201/eid2009.131882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A cholera outbreak began in Haiti during October, 2010. Spatiotemporal patterns of household-level cholera in Ouest Department showed that the initial clusters tended to follow major roadways; subsequent clusters occurred further inland. Our data highlight transmission pathway complexities and the need for case and household-level analysis to understand disease spread and optimize interventions.
Collapse
|
33
|
Alam MT, Weppelmann TA, Longini I, De Rochars VMB, Morris JG, Ali A. Increased isolation frequency of toxigenic Vibrio cholerae O1 from environmental monitoring sites in Haiti. PLoS One 2015; 10:e0124098. [PMID: 25853552 PMCID: PMC4390201 DOI: 10.1371/journal.pone.0124098] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Since the identification of the first cholera case in 2010, the disease has spread in epidemic form throughout the island nation of Haiti; as of 2014, about 700,000 cholera cases have been reported, with over 8,000 deaths. While case numbers have declined, the more fundamental question of whether the causative bacterium, Vibrio cholerae has established an environmental reservoir in the surface waters of Haiti remains to be elucidated. In a previous study conducted between April 2012 and March 2013, we reported the isolation of toxigenic V. cholerae O1 from surface waters in the Ouest Department. After a second year of surveillance (April 2013 to March 2014) using identical methodology, we observed a more than five-fold increase in the number of water samples containing culturable V. cholerae O1 compared to the previous year (1.7% vs 8.6%), with double the number of sites having at least one positive sample (58% vs 20%). Both seasonal water temperatures and precipitation were significantly related to the frequency of isolation. Our data suggest that toxigenic V. cholerae O1 are becoming more common in surface waters in Haiti; while the basis for this increase is uncertain, our findings raise concerns that environmental reservoirs are being established.
Collapse
Affiliation(s)
- Meer T. Alam
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Thomas A. Weppelmann
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Ira Longini
- Department of Biostatistics, Colleges of Medicine and Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - Valery Madsen Beau De Rochars
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Health Services Research Management and Policy, University of Florida, College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - John Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Afsar Ali
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kahler AM, Haley BJ, Chen A, Mull BJ, Tarr CL, Turnsek M, Katz LS, Humphrys MS, Derado G, Freeman N, Boncy J, Colwell RR, Huq A, Hill VR. Environmental surveillance for toxigenic Vibrio cholerae in surface waters of Haiti. Am J Trop Med Hyg 2015; 92:118-25. [PMID: 25385860 PMCID: PMC4347365 DOI: 10.4269/ajtmh.13-0601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 09/10/2014] [Indexed: 11/07/2022] Open
Abstract
Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic Vibrio cholerae in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. Vibrio cholerae was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic V. cholerae was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for V. cholerae O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic V. cholerae could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic.
Collapse
Affiliation(s)
- Amy M Kahler
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Bradd J Haley
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Arlene Chen
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Bonnie J Mull
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Cheryl L Tarr
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Maryann Turnsek
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Lee S Katz
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Michael S Humphrys
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Gordana Derado
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Nicole Freeman
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Jacques Boncy
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Rita R Colwell
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Anwar Huq
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Vincent R Hill
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| |
Collapse
|
35
|
Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 2014; 5:mBio.01824-14. [PMID: 25538191 PMCID: PMC4278535 DOI: 10.1128/mbio.01824-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.
Collapse
|
36
|
High-frequency rugose exopolysaccharide production by Vibrio cholerae strains isolated in Haiti. PLoS One 2014; 9:e112853. [PMID: 25390633 PMCID: PMC4229229 DOI: 10.1371/journal.pone.0112853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R) phenotype, 80 (46.5%) of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010) were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R) differed from that of a typical El Tor rugose strain (N16961R) by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental) strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.
Collapse
|
37
|
Widmer JM, Weppelmann TA, Alam MT, Morrissey BD, Redden E, Rashid MH, Diamond U, Ali A, De Rochars MB, Blackburn JK, Johnson JA, Morris JG. Water-related infrastructure in a region of post-earthquake Haiti: high levels of fecal contamination and need for ongoing monitoring. Am J Trop Med Hyg 2014; 91:790-797. [PMID: 25071005 PMCID: PMC4183406 DOI: 10.4269/ajtmh.14-0165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km2) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - J. Glenn Morris
- *Address correspondence to J. Glenn Morris Jr., Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL 32610. E-mail:
| |
Collapse
|