1
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
2
|
Gut mycobiota dysbiosis in drug-naïve, first-episode schizophrenia. Schizophr Res 2022; 250:76-86. [PMID: 36370535 DOI: 10.1016/j.schres.2022.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/23/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022]
Abstract
Bacterial dysbiosis has been demonstrated in patients with schizophrenia (SCH). The aim of the present study was to investigate alterations in mycobiota composition and fungi-bacteria correlation network in drug-naïve, first episode SCH. We recruited 205 SCH patients and 125 healthy controls (HCs), whose gut bacterial and fungal compositions were characterized by 16S and 18S ribosomal RNA gene amplicon sequencing, respectively. Fungal-bacterial relative correlation network analysis was performed using the Spearman's test and distance correlation. We also computed relative networks connectedness, which represents the ratio of significant interactions (edges) and taxa (nodes) in the network. SCH patients showed lower fungal α-diversity compared with that of HCs. Furthermore, we identified 29 differential fungal markers at multiple taxonomies between SCH patients and HCs. SCH patients also showed a significantly lower fungi-to-bacteria α-diversity ratio compared with that of HCs (p = 1.81 × 10-8). In risk prediction models, we observed that combining bacterial and fungal markers achieved higher accuracy than that of bacterial markers alone (AUC = 0.847 vs AUC = 0.739; p = 0.043). Fungal-bacterial correlation network was denser in HCs than in SCH patients and was characterized by a high number of neighbors (p < 0.05). In addition, an increased abundance of Purpureocillium was associated with more severe psychiatric symptoms and poorer cognitive function in SCH patients (p < 0.05). Our study demonstrated a disrupted and weakened fungi-bacteria network in SCH patients, which might be associated with their clinical manifestations. Future research on fungal-bacterial correlation network is warranted to advance our understanding about the role of mycobiota in the etiology of SCH and to explore novel intervention approaches.
Collapse
|
3
|
Sigera L, Ahmed SA, Al-Hatmi AM, Welagedara P, Jayasekera P, de Hoog S. Actinomortierella wolfii: Identity and pathology. Med Mycol Case Rep 2022; 38:48-52. [DOI: 10.1016/j.mmcr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022] Open
|
4
|
Liu Z, Sun J, Kong D, Wang Y, Tong X, Cao Y, Bi X, Meng F. Insights into gut microbiota communities of Poecilobdella manillensis, a prevalent Asian medicinal leech. J Appl Microbiol 2022; 133:1402-1413. [PMID: 35262268 DOI: 10.1111/jam.15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
AIMS Medicinal leeches (Annelida: Hirudinea) are fresh water ectoparasitic species which have been applied as traditional therapy. However, gut microbiota could bring high risks of opportunistic infections after leeching, and arouses great interests. Here gut bacterial and fungal communities of an Asian prevalent leech Poecilobdella manillensis, were characterized and analyzed through culture-independent sequencing. METHODS AND RESULTS With high coverage in 18 samples (>0.999), a more complicated community was apparent after comparing with previous leech studies. A total of 779/939 OTUs of bacteria and fungi were detected from leech guts. The bacterial community was dominated by phylum Bacteroidetes and Synergistetes. Genera Mucinivorans and Fretibacterium accounted mostly at the genus level. And genus Aeromonas showed an extremely low abundance (2.02%) on average. The fungal community was dominated by phylum Ascomycota and Basidiomycota. At the genus level, the dominant OTUs included Mortierella, Geminibasidium and Fusarium. The analysis of core taxa included those above dominant genera and some low-abundance genera (>1%). The functional annotation of bacterial community showed a close correlation with metabolism (34.8 ± 0.6%). Some fungal species were predicted as opportunistic human pathogens including Fusarium and Chaetomiaceae. CONCLUSIONS The present study provides fundamental rationales for further studies of such issues as bacteria-fungi-host interactions, host fitness, potential pathogens and infecting risks after leeching. It shall facilitate in-depth explorations on a safe utilization of leech therapy. SIGNIFICANCE AND IMPACT OF STUDY Present paper is the first-ever exploration on microbiota of a prevalent Asian medicinal leech based on culture-independent technical. And it is also the first report of gut fungi community of medicinal leech. The diversity and composition of bacteria in P. manillensis was far different from that of the European leech. The main components and core OTUs indicate a particular gut environment of medicinal leech. Unknown bacterial and fungal species were also recovered from leech gut.
Collapse
Affiliation(s)
- Zichao Liu
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Jianwei Sun
- Department of Medical Ultrasonography, Fifth Affiliated Hospital, Kunming Medical University, Gejiu, 661000, China
| | - Dejun Kong
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Yuxin Wang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Xiangrong Tong
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Yanru Cao
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Xiaoxu Bi
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Fanming Meng
- Department of Medical Parasitology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Samson R, Dharne M. COVID-19 associated mucormycosis: evolving technologies for early and rapid diagnosis. 3 Biotech 2022; 12:6. [PMID: 34900512 PMCID: PMC8647065 DOI: 10.1007/s13205-021-03080-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The post-coronavirus disease (COVID-19) mucormycosis is a deadly addition to the pandemic spectrum. Although it’s a rare, aggressive, and opportunistic disease, the associated morbidity and mortality are significant. The complex interplay of factors aggravating CAM is uncontrolled diabetes, irrational and excessive use of antibiotics, steroids, and an impaired immune system. Recently, India has been witnessing a rapid surge in the cases of coronavirus disease-associated mucormycosis (CAM), since the second wave of COVID-19. The devastating and lethal implications of CAM had now become a matter of global attention. A delayed diagnosis is often associated with a poor prognosis. Therefore, the rapid and early diagnosis of infection would be life-saving. Prevention and effective management of mucormycosis depend upon its early and accurate diagnosis followed by a multimodal therapeutic approach. The current review summarizes an array of detection methods and highlights certain evolving technologies for early and rapid diagnosis of CAM. Furthermore, several potential management strategies have also been discussed, which would aid in tackling the neglected yet fatal crisis of mucormycosis associated with COVID-19.
Collapse
|
6
|
Karunarathna SC, Dong Y, Karasaki S, Tibpromma S, Hyde KD, Lumyong S, Xu J, Sheng J, Mortimer PE. Discovery of novel fungal species and pathogens on bat carcasses in a cave in Yunnan Province, China. Emerg Microbes Infect 2021; 9:1554-1566. [PMID: 32573334 PMCID: PMC7473127 DOI: 10.1080/22221751.2020.1785333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Virulent infectious fungal diseases, in natural and managed landscapes, are increasing. Fungal diseases in humans, animals and plants have caused die-off and extinction events and have become a threat to food security. A caving expedition in Yunnan Province, China, revealed two bat carcasses covered in fungal mycelia. Eleven fungal isolates were obtained from these bat carcasses, and morphological observations and multigene phylogenetic analyses revealed they were Fusarium incarnatum, Mucor hiemalis and Trichoderma harzianum and four new species, Mortierella rhinolophicola, M. multispora, M. yunnanensis and Neocosmospora pallidimors. One of the more alarming findings is that a number of infections related to Neocosmospora, previously associated with human and animal mycotoxicoses, are reported to be increasing, and here we present a new species from this genus, isolated from dead bats. Due to the ecosystem services provided by bats, and the close relationship between bats and humans, future research should focus on the impacts and significance of N. pallidimors to human and animal health, examining its pathogenicity and secondary metabolites. Taxonomic descriptions, color images of the habitat, in situ samples, microstructures and cultures are presented. SEM photographs of microstructures and phylogenetic trees showing the placement of new and known species are also provided.
Collapse
Affiliation(s)
- Samantha Chandranath Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, People's Republic of China
| | - Seigi Karasaki
- Energy and Resources Group, University of California, Berkeley, CA, USA
| | - Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Kevin David Hyde
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chinag Rai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, People's Republic of China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Peter Edward Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
7
|
Lily Therese K, Lakshmipathy M, Lakshmipathy D. First report of Mortierella wolfii causing fungal keratitis from a tertiary eye hospital in India. Indian J Ophthalmol 2020; 68:2272-2274. [PMID: 32971689 PMCID: PMC7727982 DOI: 10.4103/ijo.ijo_2136_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A young 33 year old male presented with non-resolving corneal infiltrate for 2 month duration in the right eye. KOH/ Calcoflour wet mount revealed sparsely septate fungal hyphae. Post therapeutic penetrating keratoplasty 3 doses of intracameral voriconazole(100μg/0.1ml) was administered suspecting recurrence. Fungal culture revealed non sporulating mould on SDA. PCR based DNA sequencing targeting the ITS region identified the fungal isolate as Mortierella wolfii (M. wolfii) belonging to zygomycetes. To the best of our knowledge, this is the first report of human fungal keratitis caused by M. wolfii.
Collapse
Affiliation(s)
- Kulandai Lily Therese
- L and T Microbiology Research Centre, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Meena Lakshmipathy
- C J Shah Cornea Services, Medical Research Foundation, Chennai, Tamil Nadu, India
| | - Dhanurekha Lakshmipathy
- Sankara Nethralya Referral Laboratory, Medical Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Murgia M, Fiamma M, Barac A, Deligios M, Mazzarello V, Paglietti B, Cappuccinelli P, Al‐Qahtani A, Squartini A, Rubino S, Al‐Ahdal MN. Biodiversity of fungi in hot desert sands. Microbiologyopen 2019; 8:e00595. [PMID: 29504263 PMCID: PMC6341031 DOI: 10.1002/mbo3.595] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
The fungal community of six sand samples from Saudi Arabia and Jordan deserts was characterized by culture-independent analysis via next generation sequencing of the 18S rRNA genes and by culture-dependent methods followed by sequencing of internal transcribed spacer (ITS) region. By 18S sequencing were identified from 163 to 507 OTUs per sample, with a percentage of fungi ranging from 3.5% to 82.7%. The identified fungal Phyla were Ascomycota, Basal fungi, and Basidiomycota and the most abundant detected classes were Dothideomycetes, Pezizomycetes, and Sordariomycetes. A total of 11 colonies of filamentous fungi were isolated and cultured from six samples, and the ITS sequencing pointed toward five different species of the class Sordariomycetes, belonging to genera Fusarium (F. redolens, F. solani, F. equiseti), Chaetomium (C. madrasense), and Albifimbria (A. terrestris). The results of this study show an unexpectedly large fungal biodiversity in the Middle East desert sand and their possible role and implications on human health.
Collapse
Affiliation(s)
- Manuela Murgia
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Maura Fiamma
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Aleksandra Barac
- Clinic for Infectious and Tropical DiseasesClinical Centre of SerbiaFaculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Massimo Deligios
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | | | - Bianca Paglietti
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | | | - Ahmed Al‐Qahtani
- Department of Infection and ImmunityKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Andrea Squartini
- Department of Agronomy Animals, Food, Natural Resources and EnvironmentDAFNAEUniversity of PadovaPadovaItaly
| | - Salvatore Rubino
- Department of Biomedical SciencesUniversity of SassariSassariItaly
- Department of Infection and ImmunityKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Mohammed N. Al‐Ahdal
- Department of Infection and ImmunityKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| |
Collapse
|
9
|
Jayasudha R, Chakravarthy SK, Prashanthi GS, Sharma S, Garg P, Murthy SI, Shivaji S. Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye. J Biosci 2018; 43:835-856. [PMID: 30541945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dysbiosis, or imbalance in the gut microbiome, has been implicated in auto-immune, inflammatory, neurological diseases as well as in cancers. More recently it has also been shown to be associated with ocular diseases. In the present study, the association of gut microbiome dysbiosis with bacterial Keratitis, an inflammatory eye disease which significantly contributes to corneal blindness, was investigated. Bacterial and fungal gut microbiomes were analysed using fecal samples of healthy controls (HC, n = 21) and bacterial Keratitis patients (BK, n = 19). An increase in abundance of several antiinflammatory organisms including Dialister, Megasphaera, Faecalibacterium, Lachnospira, Ruminococcus and Mitsuokella and members of Firmicutes, Veillonellaceae, Ruminococcaceae and Lachnospiraceae was observed in HC compared to BK patients in the bacterial microbiome. In the fungal microbiome, a decrease in the abundance of Mortierella, Rhizopus, Kluyveromyces, Embellisia and Haematonectria and an increase in the abundance of pathogenic fungi Aspergillus and Malassezia were observed in BK patients compared to HC. In addition, heatmaps, PCoA plots and inferred functional profiles also indicated significant variations between the HC and BK microbiomes, which strongly suggest dysbiosis in the gut microbiome of BK patients. This is the first study demonstrating the association of gut microbiome with the pathophysiology of BK and thus supports the gut-eye axis hypothesis. Considering that Keratitis affects about 1 million people annually across the globe, the data could be the basis for developing alternate strategies for treatment like use of probiotics or fecal transplantation to restore the healthy microbiome as a treatment protocol for Keratitis.
Collapse
Affiliation(s)
- Rajagopalaboopathi Jayasudha
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad 500 034, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye. J Biosci 2018. [DOI: 10.1007/s12038-018-9798-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Benny GL, Smith ME, Kirk PM, Tretter ED, White MM. Challenges and Future Perspectives in the Systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. BIOLOGY OF MICROFUNGI 2016. [DOI: 10.1007/978-3-319-29137-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Molecular Detection and Identification of Fungal Pathogens. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|