1
|
Hall V, Cardona C, Mendoza K, Torchetti M, Lantz K, Bueno I, Franzen-Klein D. Surveillance for highly pathogenic avian influenza A (H5N1) in a raptor rehabilitation center-2022. PLoS One 2024; 19:e0299330. [PMID: 38683799 PMCID: PMC11057742 DOI: 10.1371/journal.pone.0299330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
An ongoing, severe outbreak of highly pathogenic avian influenza virus (HPAI) A H5N1 clade 2.3.4.4b has been circulating in wild and domestic bird populations throughout the world, reaching North America in 2021. This HPAI outbreak has exhibited unique characteristics when compared to previous outbreaks. The global distribution of disease, prolonged duration, extensive number of species and individual wild birds affected, and the large impact on the global poultry industry have all exceeded historical impacts of previous outbreaks in North America. In this study, we describe the results of HPAI surveillance conducted at The Raptor Center, a wildlife rehabilitation hospital at University of Minnesota (Saint Paul, MN, U.S.A.), from March 28th-December 31, 2022. All wild raptors admitted to the facility were tested for avian influenza viruses using polymerase chain reaction (PCR) testing. All non-negative samples were submitted to the United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) National Veterinary Services Laboratories for confirmatory HPAI testing and genetic sequencing. During the study period, 996 individual birds representing 20 different species were tested for avian influenza, and 213 birds were confirmed HPAI positive. Highly pathogenic avian influenza surveillance conducted at The Raptor Center contributed 75% of the HPAI positive raptor detections within the state of Minnesota, located within the Mississippi flyway, significantly augmenting state wildlife surveillance efforts. The viral genotypes observed in birds sampled at The Raptor Center were representative of what was seen in wild bird surveillance within the Mississippi flyway during the same time frame. Wildlife rehabilitation centers provide an opportune situation to augment disease surveillance at the human, wildlife and domestic animal interface during ongoing infectious disease outbreaks.
Collapse
Affiliation(s)
- Victoria Hall
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Kristelle Mendoza
- College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Mia Torchetti
- United States Department of Agriculture Animal and Plant Health Inspection Services, National Veterinary Services Laboratories, Veterinary Services, Ames, Iowa, United States of America
| | - Kristina Lantz
- United States Department of Agriculture Animal and Plant Health Inspection Services, National Veterinary Services Laboratories, Veterinary Services, Ames, Iowa, United States of America
| | - Irene Bueno
- Bristol Veterinary School, University of Bristol, Langford, Bristol, England
| | - Dana Franzen-Klein
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
2
|
Li Y, An Q, Sun Z, Gao X, Wang H. Multifaceted analysis of temporal and spatial distribution and risk factors of global poultry HPAI-H5N1, 2005-2023. Animal 2024; 18:101085. [PMID: 38364655 DOI: 10.1016/j.animal.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
The purpose of this study was to analyze the characteristics of occurrence and spread of highly pathogenic avian influenza H5N1 (HPAI-H5N1) globally, understand its spatiotemporal characteristics, investigate the risk factors influencing outbreaks, and identify high-risk areas for disease occurrence. We collected the data on global poultry HPAI-H5N1 outbreaks from January 2005 to April 2023, and conducted a thorough analysis of the spatial and temporal characteristics of the disease through time series decomposition and directional distribution analysis. Additionally, an ecological niche model was established to explore the major factors influencing the occurrence of HPAI-H5N1 and to pinpoint high-risk areas. Our findings revealed that HPAI-H5N1 outbreaks were cyclical, and seasonal, exhibiting a rising trend, with a predominant northwest-southeast transmission direction. The ecological niche model highlighted that species factors and economic trade factors are critical in influencing the outbreak of HPAI-H5N1. Variables such as chicken and duck density, population density, isothermality, and road density, contributed to importantly risk of outbreaks. High-risk areas for HPAI-H5N1 occurrence were primarily identified in Europe, West Africa, Southeast Asia, and Southeast China. This study provided valuable insights into the spatial and temporal distribution characteristics and risk factors of global poultry HPAI-H5N1 outbreaks. The identification of high-risk areas provides essential information that can be used to develop more effective prevention and control policies.
Collapse
Affiliation(s)
- Yuepeng Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qi An
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhuo Sun
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiang Gao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hongbin Wang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
3
|
Marhaev AG, Soloviev SA, Soloviev FS, Alekseev AY. Most recent composition of the ornithofauna of the Middle Irtysh region, Russia. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2023. [DOI: 10.18470/1992-1098-2023-1-17-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aim. The work was to compile a list of bird species and their status in the forest-steppe and steppe of the Middle Irtysh region at the present time and to analyse their potential ability in terms of the transmission of influenza viruses that pose a danger to humans and farm animals.Materials and Methods. The study of avifauna and their status in the forest-steppe and steppe of the Middle Irtysh region has been conducted by us from 1973 to the present. The analysis of literary sources has been carried out since the time of P.S. Pallas's travels in the region in 1871. In addition, information on the wetlands of the Irtysh region which is freely available on the Internet was used.Results. At the beginning of the 20th century, about 200 species of birds were recorded in the vicinity of Omsk, 125 of them being breeding species. At present about 150 species of birds have been recorded in Omsk and its environs. Of the 290 bird species of the Middle Irtysh region, 48 species (16.6%) belong among the natural hosts of influenza A viruses. Of these, at least 40 species are migratory and 25 species nest there. In addition to the prinicipal influenza virus host species, the list of birds of the Middle Irtysh region includes several species of scavengers and predators, as well as synanthropic bird species. These species may share habitat or food resources with the main host species of influenza viruses. Influenza A viruses can be transmitted between species either by direct or indirect contact through mechanical propagation or contamination of nutritional resources.Conclusion. As the 3 largest bird migratory flyways run through the Middle Irtysh region where there is a significant number of wetlands, the prerequisites are created for a mass simultaneous accumulation of different populations and species of migratory birds carrying viruses and, accordingly, a high probability of exchanging viral genomes with each other and their further spread to new regions.
Collapse
|
4
|
Hall JS, Grear DA, Krauss S, Seiler JP, Dusek RJ, Nashold SW, Webster RG. Highly pathogenic avian influenza virus H5N2 (clade 2.3.4.4) challenge of mallards age appropriate to the 2015 midwestern poultry outbreak. Influenza Other Respir Viruses 2021; 15:767-777. [PMID: 34323380 PMCID: PMC8542950 DOI: 10.1111/irv.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022] Open
Abstract
Background The 2015 highly pathogenic avian influenza virus (HPAIV) H5N2 clade 2.3.4.4 outbreak in upper midwestern U.S. poultry operations was not detected in wild birds to any great degree during the outbreak, despite wild waterfowl being implicated in the introduction, reassortment, and movement of the virus into North America from Asia. This outbreak led to the demise of over 50 million domestic birds and occurred mainly during the northward spring migration of adult avian populations. Objectives There have been no experimental examinations of the pathogenesis, transmission, and population impacts of this virus in adult wild waterfowl with varying exposure histories—the most relevant age class. Methods We captured, housed, and challenged adult wild mallards (Anas platyrhynchos) with HPAIV H5N2 clade 2.3.4.4 and measured viral infection, viral excretion, and transmission to other mallards. Results All inoculated birds became infected and excreted moderate amounts of virus, primarily orally, for up to 14 days. Cohoused, uninoculated birds also all became infected. Serological status had no effect on susceptibility. There were no obvious clinical signs of disease, and all birds survived to the end of the study (14 days). Conclusions Based on these results, adult mallards are viable hosts of HPAIV H5N2 regardless of prior exposure history and are capable of transporting the virus over short and long distances. These findings have implications for surveillance efforts. The capture and sampling of wild waterfowl in the spring, when most surveillance programs are not operating, are important to consider in the design of future HPAIV surveillance programs.
Collapse
Affiliation(s)
- Jeffrey S Hall
- United States Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - Daniel A Grear
- United States Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - Scott Krauss
- Infectious Disease Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Patrick Seiler
- Infectious Disease Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Dusek
- United States Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - Sean W Nashold
- United States Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - Robert G Webster
- Infectious Disease Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
6
|
A Review of Avian Influenza A Virus Associations in Synanthropic Birds. Viruses 2020; 12:v12111209. [PMID: 33114239 PMCID: PMC7690888 DOI: 10.3390/v12111209] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Avian influenza A viruses (IAV) have received significant attention due to the threat they pose to human, livestock, and wildlife health. In this review, we focus on what is known about IAV dynamics in less common avian species that may play a role in trafficking IAVs to poultry operations. Specifically, we focus on synanthropic bird species. Synanthropic species, otherwise known as peridomestic, are species that are ecologically associated with humans and anthropogenically modified landscapes, such as agricultural and urban areas. Aquatic birds such as waterfowl and shorebirds are the species most commonly associated with avian IAVs, and are generally considered the reservoir or maintenance hosts in the natural ecology of these viruses. Waterfowl and shorebirds are occasionally associated with poultry facilities, but are uncommon or absent in many areas, especially large commercial operations. In these cases, spillover hosts that share resources with both maintenance hosts and target hosts such as poultry may play an important role in introducing wild bird viruses onto farms. Consequently, our focus here is on what is known about IAV dynamics in synanthropic hosts that are commonly found on both farms and in nearby habitats, such as fields, lakes, wetlands, or riparian areas occupied by waterfowl or shorebirds.
Collapse
|
7
|
Wu JY, Li JJ, Wang DF, Wei YR, Meng XX, Tuerxun G, Bolati H, Liu KK, Muhan M, Shahan A, Dilixiati D, Yang XY. Seroprevalence of Five Zoonotic Pathogens in Wild Ruminants in Xinjiang, Northwest China. Vector Borne Zoonotic Dis 2020; 20:882-887. [PMID: 32936059 DOI: 10.1089/vbz.2020.2630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wild ruminants are at risk for zoonotic pathogen infection as a result of interactions with domestic animals and humans. One way to assess the level of a wild ruminant disease in a population is to determine the seroprevalence of the pathogen of interest. The objective of this study was to determine the seroprevalence of five zoonotic pathogens in wild ruminants in Xinjiang, Northwest China. In 2009 and 2011-2015, 258 wild ruminant sera samples were collected from various species. Samples were obtained from 30 Siberian ibexes, 94 goitered gazelles, 6 Tibetan antelopes, 32 argali sheep, 16 roe deer, 20 blue sheep, 56 red deer, and 4 wild yaks, in 10 regions of Xinjiang. Samples were tested using antibodies against Brucella spp., Chlamydophila abortus, Coxiella burnetii, Toxoplasma gondii, and West Nile virus. Seropositivity was detected for all five pathogens, with detection rates of Brucella spp., C. abortus, C. burnetii, T. gondii, and West Nile virus of 2.3% (95% confidence interval [CI], 0.5-4.2%), 6.2% (95% CI, 3.3-9.1%), 7.8% (95% CI, 4.5-11.0%), 2.3% (95% CI, 0.5-4.2%), and 0.8% (95% CI, 0-1.8%), respectively. The level of pathogens differed for different species and different regions. The results indicate that seropositivity to zoonotic pathogens is common among wild ruminants in Xinjiang, Northwest China, with C. burnetii and C. abortus detected at the highest levels. This study provides a baseline for future assessment of spillover events.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Jian-Jun Li
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Deng-Feng Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Yu-Rong Wei
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Xiao-Xiao Meng
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Gunuer Tuerxun
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Hongduzi Bolati
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Kang-Kang Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Masha Muhan
- Wildlife Focus Disease Monitoring Station of Xinjiang, Urumqi, China
| | | | | | - Xue-Yun Yang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| |
Collapse
|
8
|
Froberg T, Cuthbert F, Jennelle CS, Cardona C, Culhane M. Avian Influenza Prevalence and Viral Shedding Routes in Minnesota Ring-Billed Gulls ( Larus delawarensis). Avian Dis 2020; 63:120-125. [PMID: 31131567 DOI: 10.1637/11848-041718-reg.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/20/2018] [Indexed: 11/05/2022]
Abstract
Birds within the orders Charadriiformes (shorebirds, gulls) and Anseriformes (waterfowl) are reservoir hosts for avian influenza (AI) viruses, but their role in the transmission dynamics of AI viruses is unclear. To date, waterfowl have been the predominant focal species for most surveillance and epidemiological studies, yet gulls, in particular, have been shown to harbor reassortant AI viruses of both North American and Eurasian lineages and are underrepresented in North American surveillance efforts. To address this gap in surveillance, 1346 ring-billed gulls (Larus delawarensis) were sampled during spring and fall migrations and at three breeding sites in 2017 across Minnesota. Results indicate noticeable age-cohort dynamics in AI virus prevalence within ring-billed gulls in Minnesota. Immunologically naïve juveniles represented the cohort with the highest prevalence rate (57.8%). Regardless of age, more gulls had AI virus detected in oropharyngeal (OP) than in cloacal (CL) swabs. The high AI virus prevalence within ring-billed gulls, particularly in immunologically naïve birds, warrants further targeted surveillance efforts of ring-billed gulls and other closely related species.
Collapse
Affiliation(s)
- Todd Froberg
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, Saint Paul, MN 55108
| | - Francesca Cuthbert
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, Saint Paul, MN 55108
| | | | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108.,Corresponding author. E-mail:
| |
Collapse
|
9
|
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 2020; 30:e2099. [PMID: 32135031 PMCID: PMC9285678 DOI: 10.1002/rmv.2099] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023]
Abstract
The panzootic caused by A/goose/Guangdong/1/96‐lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human‐to‐human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human‐to‐human transmissibility and impact on human health should such human‐to‐human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Magdi D Saad
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Swayne
- Department of Agriculture, OIE Collaborating Centre for Research on Emerging Avian Diseases, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China
| | - Frank Y K Wong
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenqing Zhang
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| |
Collapse
|
10
|
Humphreys JM, Ramey AM, Douglas DC, Mullinax JM, Soos C, Link P, Walther P, Prosser DJ. Waterfowl occurrence and residence time as indicators of H5 and H7 avian influenza in North American Poultry. Sci Rep 2020; 10:2592. [PMID: 32054908 PMCID: PMC7018751 DOI: 10.1038/s41598-020-59077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/15/2020] [Indexed: 01/25/2023] Open
Abstract
Avian influenza (AI) affects wild aquatic birds and poses hazards to human health, food security, and wildlife conservation globally. Accordingly, there is a recognized need for new methods and tools to help quantify the dynamic interaction between wild bird hosts and commercial poultry. Using satellite-marked waterfowl, we applied Bayesian joint hierarchical modeling to concurrently model species distributions, residency times, migration timing, and disease occurrence probability under an integrated animal movement and disease distribution modeling framework. Our results indicate that migratory waterfowl are positively related to AI occurrence over North America such that as waterfowl occurrence probability or residence time increase at a given location, so too does the chance of a commercial poultry AI outbreak. Analyses also suggest that AI occurrence probability is greatest during our observed waterfowl northward migration, and less during the southward migration. Methodologically, we found that when modeling disparate facets of disease systems at the wildlife-agriculture interface, it is essential that multiscale spatial patterns be addressed to avoid mistakenly inferring a disease process or disease-environment relationship from a pattern evaluated at the improper spatial scale. The study offers important insights into migratory waterfowl ecology and AI disease dynamics that aid in better preparing for future outbreaks.
Collapse
Affiliation(s)
- John M Humphreys
- Michigan State University, East Lansing, Michigan, USA.
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, USA.
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - David C Douglas
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | | | - Catherine Soos
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Saskatchewan, Canada
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana, USA
| | - Patrick Walther
- U.S. Fish and Wildlife Service, Texas Chenier Plain Refuge Complex, Anahuac, Texas, USA
| | - Diann J Prosser
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, USA
| |
Collapse
|
11
|
LIMITED DETECTION OF ANTIBODIES TO CLADE 2.3.4.4 A/GOOSE/GUANGDONG/1/1996 LINEAGE HIGHLY PATHOGENIC H5 AVIAN INFLUENZA VIRUS IN NORTH AMERICAN WATERFOWL. J Wildl Dis 2019. [PMID: 31556839 DOI: 10.7589/2019-01-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During 2014, highly pathogenic (HP) influenza A viruses (IAVs) of the A/Goose/Guangdong/1/1996 lineage (GsGD-HP-H5), originating from Asia, were detected in domestic poultry and wild birds in Canada and the US. These clade 2.3.4.4 GsGD-HP-H5 viruses included reassortants possessing North American lineage gene segments; were detected in wild birds in the Pacific, Central, and Mississippi flyways; and caused the largest HP IAV outbreak in poultry in US history. To determine if an antibody response indicative of previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV could be detected in North American wild waterfowl sampled before, during, and after the 2014-15 outbreak, sera from 2,793 geese and 3,715 ducks were tested by blocking enzyme-linked immunosorbent assay and hemagglutination inhibition (HI) tests using both clade 2.3.4.4 GsGD-HPH5 and North American lineage low pathogenic (LP) H5 IAV antigens. We detected an antibody response meeting a comparative titer-based criteria (HI titer observed with 2.3.4.4 GsGD-HP-H5 antigens exceeded the titer observed for LP H5 antigen by two or more dilutions) for previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV in only five birds, one Blue-winged Teal (Spatula discors) sampled during the outbreak and three Mallards (Anas platyrhynchos) and one Canada Goose (Branta canadensis) sampled during the post-outbreak period. These serologic results are consistent with the spatiotemporal extent of the outbreak in wild birds in North America during 2014 and 2015 and limited exposure of waterfowl to GsGD-HP-H5 IAV, particularly in the central and eastern US.
Collapse
|
12
|
Lee DH, Torchetti MK, Hicks J, Killian ML, Bahl J, Pantin-Jackwood M, Swayne DE. Transmission Dynamics of Highly Pathogenic Avian Influenza Virus A(H5Nx) Clade 2.3.4.4, North America, 2014-2015. Emerg Infect Dis 2019; 24:1840-1848. [PMID: 30226167 PMCID: PMC6154162 DOI: 10.3201/eid2410.171891] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eurasia highly pathogenic avian influenza virus (HPAIV) H5 clade 2.3.4.4 emerged in North America at the end of 2014 and caused outbreaks affecting >50 million poultry in the United States before eradication in June 2015. We investigated the underlying ecologic and epidemiologic processes associated with this viral spread by performing a comparative genomic study using 268 full-length genome sequences and data from outbreak investigations. Reassortant HPAIV H5N2 circulated in wild birds along the Pacific flyway before several spillover events transmitting the virus to poultry farms. Our analysis suggests that >3 separate introductions of HPAIV H5N2 into Midwest states occurred during March–June 2015; transmission to Midwest poultry farms from Pacific wild birds occurred ≈1.7–2.4 months before detection. Once established in poultry, the virus rapidly spread between turkey and chicken farms in neighboring states. Enhanced biosecurity is required to prevent the introduction and dissemination of HPAIV across the poultry industry.
Collapse
|
13
|
Houston DD, Azeem S, Lundy CW, Sato Y, Guo B, Blanchong JA, Gauger PC, Marks DR, Yoon KJ, Adelman JS. Evaluating the role of wild songbirds or rodents in spreading avian influenza virus across an agricultural landscape. PeerJ 2017; 5:e4060. [PMID: 29255648 PMCID: PMC5732541 DOI: 10.7717/peerj.4060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human activities are thought to spread the virus into domestic populations. Consequently, biosecurity measures have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United States, which occurred among poultry operations with strict biosecurity controls, suggests that alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus from areas of high waterfowl and shorebird densities. METHODS Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling period, we also present results from surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated Department of Agriculture. RESULTS Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals, internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species were captured at both wetland and poultry sites, the overall community structure of wild species differed significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A via qPCR. DISCUSSION These results suggest that even though influenza A viruses were present on the Iowa landscape at the time of our sampling, small, wild birds and rodents were unlikely to be frequent bridge hosts.
Collapse
Affiliation(s)
- Derek D. Houston
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
- Department of Natural and Environmental Sciences, Western State Colorado University, Gunnison, CO, United States of America
| | - Shahan Azeem
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States of America
| | - Coady W. Lundy
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
- Animal and Plant Health Inspection Service, Wildlife Services, United States Department of Agriculture, Urbandale, IA, United States of America
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - Julie A. Blanchong
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - David R. Marks
- Animal and Plant Health Inspection Service, Wildlife Services, United States Department of Agriculture, Urbandale, IA, United States of America
| | - Kyoung-Jin Yoon
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States of America
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - James S. Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
14
|
Grear DA, Hall JS, Dusek RJ, Ip HS. Inferring epidemiologic dynamics from viral evolution: 2014-2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America. Evol Appl 2017; 11:547-557. [PMID: 29636805 PMCID: PMC5891053 DOI: 10.1111/eva.12576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low‐pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self‐sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time‐rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.
Collapse
Affiliation(s)
- Daniel A Grear
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Jeffrey S Hall
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Robert J Dusek
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Hon S Ip
- United States Geological Survey National Wildlife Health Center Madison WI USA
| |
Collapse
|
15
|
Wells SJ, Kromm MM, VanBeusekom ET, Sorley EJ, Sundaram ME, VanderWaal K, Bowers JWJ, Papinaho PA, Osterholm MT, Bender J. Epidemiologic Investigation of Highly Pathogenic H5N2 Avian Influenza Among Upper Midwest U.S. Turkey Farms, 2015. Avian Dis 2017; 61:198-204. [PMID: 28665726 DOI: 10.1637/11543-112816-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In 2015, an outbreak of H5N2 highly pathogenic avian influenza (HPAI) occurred in the United States, severely impacting the turkey industry in the upper midwestern United States. Industry, government, and academic partners worked together to conduct a case-control investigation of the outbreak on turkey farms in the Upper Midwest. Case farms were confirmed to have HPAI-infected flocks, and control farms were farms with noninfected turkey flocks at a similar stage of production. Both case and control farms were affiliated with a large integrated turkey company. A questionnaire administered to farm managers and supervisors assessed farm biosecurity, litter handling, dead bird disposal, farm visitor and worker practices, and presence of wild birds on operations during the 2 wk prior to HPAI confirmation on case premises and the corresponding time frame for control premises. Sixty-three farms, including 37 case farms and 26 control farms were included in the analysis. We identified several factors significantly associated with the odds of H5N2 case farm status and that may have contributed to H5N2 transmission to and from operations. Factors associated with increased risk included close proximity to other turkey operations, soil disruption (e.g., tilling) in a nearby field within 14 days prior to the outbreak, and rendering of dead birds. Observation of wild mammals near turkey barns was associated with reduced risk. When analyses focused on farms identified with H5N2 infection before April 22 (Period 1), associations with H5N2-positive farm status included soil disruption in a nearby field within 14 days prior to the outbreak and a high level of visitor biosecurity. High level of worker biosecurity had a protective effect. During the study period after April 22 (Period 2), factors associated with HPAI-positive farm status included nonasphalt roads leading to the farm and use of a vehicle wash station or spray area. Presence of wild birds near dead bird disposal areas was associated with reduced risk. Study results indicated that the initial introduction and spread of H5N2 virus likely occurred by both environmental and between-farm pathways. Transmission dynamics appeared to change with progression of the outbreak. Despite enhanced biosecurity protocols, H5N2 transmission continued, highlighting the need to review geographic/topologic factors such as farm proximity and potential dust or air transmission associated with soil disruption. It is likely that biosecurity improvements will reduce the extent and speed of spread of future outbreaks, but our results suggest that environmental factors may also play a significant role in farms becoming infected with HPAI.
Collapse
Affiliation(s)
- S J Wells
- A Center for Animal Health and Food Safety, University of Minnesota, 1354 Eckles Avenue, St. Paul, MN 55108.,B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| | - M M Kromm
- C Jennie-O Turkey Store, Willmar, MN 56201
| | | | - E J Sorley
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - M E Sundaram
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - K VanderWaal
- B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| | | | | | - M T Osterholm
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414.,E Department of Environmental Health, University of Minnesota School of Public Health, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - J Bender
- A Center for Animal Health and Food Safety, University of Minnesota, 1354 Eckles Avenue, St. Paul, MN 55108.,B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| |
Collapse
|
16
|
Layton DS, Choudhary A, Bean AGD. Breaking the chain of zoonoses through biosecurity in livestock. Vaccine 2017; 35:5967-5973. [PMID: 28826750 DOI: 10.1016/j.vaccine.2017.07.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Increases in global travel, trade and urbanisation are leading to greater incidence of zoonotic disease, and livestock are often a key link in the spread of disease to humans. As such, livestock vaccination strategies, as a part of broader biosecurity solutions, are critical to both animal and human health. Importantly, approaches that restrict infectious agents in livestock, not only protects their economic value but should reduce the potential for spill over infections in humans. Biosecurity solutions to livestock health can take a number of different forms and are generally heavily weighted towards prevention of infection rather than treatment. Therefore, vaccination can provide an effective component of a strategic approach, particularly as production economics dictate the use of cost effective solutions. Furthermore, in an evolving global environment there is a need for vaccines that accommodate for lower socioeconomic and rapidly emerging zoonotics.
Collapse
Affiliation(s)
- Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia
| | - Anupma Choudhary
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia
| | - Andrew G D Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia.
| |
Collapse
|
17
|
Papp Z, Clark RG, Parmley EJ, Leighton FA, Waldner C, Soos C. The ecology of avian influenza viruses in wild dabbling ducks (Anas spp.) in Canada. PLoS One 2017; 12:e0176297. [PMID: 28475626 PMCID: PMC5419510 DOI: 10.1371/journal.pone.0176297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
Avian influenza virus (AIV) occurrence and transmission remain important wildlife and human health issues in much of the world, including in North America. Through Canada’s Inter-Agency Wild Bird Influenza Survey, close to 20,000 apparently healthy, wild dabbling ducks (of seven species) were tested for AIV between 2005 and 2011. We used these data to identify and evaluate ecological and demographic correlates of infection with low pathogenic AIVs in wild dabbling ducks (Anas spp.) across Canada. Generalized linear mixed effects model analyses revealed that risk of AIV infection was higher in hatch-year birds compared to adults, and was positively associated with a high proportion of hatch-year birds in the population. Males were more likely to be infected than females in British Columbia and in Eastern Provinces of Canada, but more complex relationships among age and sex cohorts were found in the Prairie Provinces. A species effect was apparent in Eastern Canada and British Columbia, where teal (A. discors and/or A. carolinensis) were less likely to be infected than mallards (A. platyrhynchos). Risk of AIV infection increased with the density of the breeding population, in both Eastern Canada and the Prairie Provinces, and lower temperatures preceding sampling were associated with a higher probability of AIV infection in Eastern Canada. Our results provide new insights into the ecological and demographic factors associated with AIV infection in waterfowl.
Collapse
Affiliation(s)
- Zsuzsanna Papp
- Environment and Climate Change Canada, Science and Technology Branch, Saskatoon, Saskatchewan, Canada
| | - Robert G. Clark
- Environment and Climate Change Canada, Science and Technology Branch, Saskatoon, Saskatchewan, Canada
| | - E. Jane Parmley
- Canadian Wildlife Health Cooperative, University of Guelph, Guelph, Ontario, Canada
| | - Frederick A. Leighton
- Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Canadian Wildlife Health Cooperative, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cheryl Waldner
- Department of Large Animal Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Catherine Soos
- Environment and Climate Change Canada, Science and Technology Branch, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|