1
|
Munson E. Biographical Feature: Charles Y. Chiu, M.D., Ph.D. J Clin Microbiol 2024; 62:e0140523. [PMID: 38619264 PMCID: PMC11077958 DOI: 10.1128/jcm.01405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
3
|
Gilbert RK, Petersen LR, Honein MA, Moore CA, Rasmussen SA. Zika virus as a cause of birth defects: Were the teratogenic effects of Zika virus missed for decades? Birth Defects Res 2023; 115:265-274. [PMID: 36513609 PMCID: PMC10552063 DOI: 10.1002/bdr2.2134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) was identified as a teratogen in 2016 when an increase in severe microcephaly and other brain defects was observed in fetuses and newborns following outbreaks in French Polynesia (2013-2014) and Brazil (2015-2016) and among travelers to other countries experiencing outbreaks. Some have questioned why ZIKV was not recognized as a teratogen before these outbreaks: whether novel genetic changes in ZIKV had increased its teratogenicity or whether its association with birth defects had previously been undetected. Here we examine the evidence for these two possibilities. We describe evidence for specific mutations that arose before the French Polynesia outbreak that might have increased ZIKV teratogenicity. We also present information on children born with findings consistent with congenital Zika syndrome (CZS) as early as 2009 and epidemiological evidence that suggests increases in CZS-type birth defects before 2013. We also explore reasons why a link between ZIKV and birth defects might have been missed, including issues with surveillance of ZIKV infections and of birth defects, challenges to ZIKV diagnostic testing, and the susceptibility of different populations to ZIKV infection at the time of pregnancy. Although it is not possible to prove definitively that ZIKV had teratogenic properties before 2013, several pieces of evidence support the hypothesis that its teratogenicity had been missed in the past. These findings emphasize the need for further investments in global surveillance for emerging infections and for birth defects so that infectious teratogens can be identified more expeditiously in the future.
Collapse
Affiliation(s)
- Rachel K. Gilbert
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lyle R. Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Margaret A. Honein
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt Professional Services, LLC, Chesapeake, Virginia, USA
| | - Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals (Basel) 2022; 15:ph15091149. [PMID: 36145370 PMCID: PMC9502241 DOI: 10.3390/ph15091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a group of natural compounds that have been described in the literature as having anti-inflammatory, antioxidant, and neuroprotective compounds. Although they are considered versatile molecules, little has been discussed about their antiviral activities for neurotropic viruses. Hence, the present study aimed to investigate the pharmacological potential of flavonoids in the face of viruses that can affect the central nervous system (CNS). We carried out research from 2011 to 2021 using the Pubmed platform. The following were excluded: articles not in the English language, letters to editors, review articles and papers that did not include any experimental or clinical tests, and papers that showed antiviral activities against viruses that do not infect human beings. The inclusion criteria were in silico predictions and preclinical pharmacological studies, in vitro, in vivo and ex vivo, and clinical studies with flavonoids, flavonoid fractions and extracts that were active against neurotropic viruses. The search resulted in 205 articles that were sorted per virus type and discussed, considering the most cited antiviral activities. Our investigation shows the latest relevant data about flavonoids that have presented a wide range of actions against viruses that affect the CNS, mainly influenza, hepatitis C and others, such as the coronavirus, enterovirus, and arbovirus. Considering that these molecules present well-known anti-inflammatory and neuroprotective activities, using flavonoids that have demonstrated both neuroprotective and antiviral effects could be viewed as an alternative for therapy in the course of CNS infections.
Collapse
|
5
|
Hilt EE, Ferrieri P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes (Basel) 2022; 13:genes13091566. [PMID: 36140733 PMCID: PMC9498426 DOI: 10.3390/genes13091566] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have become increasingly available for use in the clinical microbiology diagnostic environment. There are three main applications of these technologies in the clinical microbiology laboratory: whole genome sequencing (WGS), targeted metagenomics sequencing and shotgun metagenomics sequencing. These applications are being utilized for initial identification of pathogenic organisms, the detection of antimicrobial resistance mechanisms and for epidemiologic tracking of organisms within and outside hospital systems. In this review, we analyze these three applications and provide a comprehensive summary of how these applications are currently being used in public health, basic research, and clinical microbiology laboratory environments. In the public health arena, WGS is being used to identify and epidemiologically track food borne outbreaks and disease surveillance. In clinical hospital systems, WGS is used to identify multi-drug-resistant nosocomial infections and track the transmission of these organisms. In addition, we examine how metagenomics sequencing approaches (targeted and shotgun) are being used to circumvent the traditional and biased microbiology culture methods to identify potential pathogens directly from specimens. We also expand on the important factors to consider when implementing these technologies, and what is possible for these technologies in infectious disease diagnosis in the next 5 years.
Collapse
|
6
|
Schuele L, Lizarazo-Forero E, Strutzberg-Minder K, Schütze S, Löbert S, Lambrecht C, Harlizius J, Friedrich AW, Peter S, Rossen JWA, Couto N. Application of shotgun metagenomics sequencing and targeted sequence capture to detect circulating porcine viruses in the Dutch-German border region. Transbound Emerg Dis 2021; 69:2306-2319. [PMID: 34347385 PMCID: PMC9540031 DOI: 10.1111/tbed.14249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Porcine viruses have been emerging in recent decades, threatening animal and human health, as well as economic stability for pig farmers worldwide. Next‐generation sequencing (NGS) can detect and characterize known and unknown viruses but has limited sensitivity when an unbiased approach, such as shotgun metagenomics sequencing, is used. To increase the sensitivity of NGS for the detection of viruses, we applied and evaluated a broad viral targeted sequence capture (TSC) panel and compared it to an unbiased shotgun metagenomic approach. A cohort of 36 pooled porcine nasal swab and blood serum samples collected from both sides of the Dutch–German border region were evaluated. Overall, we detected 46 different viral species using TSC, compared to 40 viral species with a shotgun metagenomics approach. Furthermore, we performed phylogenetic analysis on recovered influenza A virus (FLUAV) genomes from Germany and revealed a close similarity to a zoonotic influenza strain previously detected in the Netherlands. Although TSC introduced coverage bias within the detected viruses, it improved sensitivity, genome sequence depth and contig length. In‐depth characterization of the swine virome, coupled with developing new enrichment techniques, can play a crucial role in the surveillance of circulating porcine viruses and emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Leonard Schuele
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Erley Lizarazo-Forero
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Sabine Schütze
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Sandra Löbert
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Claudia Lambrecht
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Jürgen Harlizius
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
7
|
Pardy RD, Valbon SF, Cordeiro B, Krawczyk CM, Richer MJ. An epidemic Zika virus isolate suppresses antiviral immunity by disrupting antigen presentation pathways. Nat Commun 2021; 12:4051. [PMID: 34193875 PMCID: PMC8245533 DOI: 10.1038/s41467-021-24340-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) has emerged as an important global health threat, with the recently acquired capacity to cause severe neurological symptoms and to persist within host tissues. We previously demonstrated that an early Asian lineage ZIKV isolate induces a highly activated CD8 T cell response specific for an immunodominant epitope in the ZIKV envelope protein in wild-type mice. Here we show that a contemporary ZIKV isolate from the Brazilian outbreak severely limits CD8 T cell immunity in mice and blocks generation of the immunodominant CD8 T cell response. This is associated with a more sustained infection that is cleared between 7- and 14-days post-infection. Mechanistically, we demonstrate that infection with the Brazilian ZIKV isolate reduces the cross-presentation capacity of dendritic cells and fails to fully activate the immunoproteasome. Thus, our study provides an isolate-specific mechanism of host immune evasion by one Brazilian ZIKV isolate, which differs from the early Asian lineage isolate and provides potential insight into viral persistence associated with recent ZIKV outbreaks. The CD8 T cell response to Zika virus is known to be a critical component of the host immune response to infection. Here the authors show a Zika virus isolate specific disruption of antigen processing that impacts the host response and impairs viral clearance providing evidence of isolate specific impacts on the immune response to infection
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.,Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Stefanie F Valbon
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.,Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Brendan Cordeiro
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada. .,Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Development of a capture sequencing assay for enhanced detection and genotyping of tick-borne pathogens. Sci Rep 2021; 11:12384. [PMID: 34117323 PMCID: PMC8196166 DOI: 10.1038/s41598-021-91956-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Inadequate sensitivity has been the primary limitation for implementing high-throughput sequencing for studies of tick-borne agents. Here we describe the development of TBDCapSeq, a sequencing assay that uses hybridization capture probes that cover the complete genomes of the eleven most common tick-borne agents found in the United States. The probes are used for solution-based capture and enrichment of pathogen nucleic acid followed by high-throughput sequencing. We evaluated the performance of TBDCapSeq to surveil samples that included human whole blood, mouse tissues, and field-collected ticks. For Borrelia burgdorferi and Babesia microti, the sensitivity of TBDCapSeq was comparable and occasionally exceeded the performance of agent-specific quantitative PCR and resulted in 25 to > 10,000-fold increase in pathogen reads when compared to standard unbiased sequencing. TBDCapSeq also enabled genome analyses directly within vertebrate and tick hosts. The implementation of TBDCapSeq could have major impact in studies of tick-borne pathogens by improving detection and facilitating genomic research that was previously unachievable with standard sequencing approaches.
Collapse
|
9
|
Mori A, Pomari E, Deiana M, Perandin F, Caldrer S, Formenti F, Mistretta M, Orza P, Ragusa A, Piubelli C. Molecular techniques for the genomic viral RNA detection of West Nile, Dengue, Zika and Chikungunya arboviruses: a narrative review. Expert Rev Mol Diagn 2021; 21:591-612. [PMID: 33910444 DOI: 10.1080/14737159.2021.1924059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Molecular technology has played an important role in arboviruses diagnostics. PCR-based methods stand out in terms of sensitivity, specificity, cost, robustness, and accessibility, and especially the isothermal amplification (IA) method is ideal for field-adaptable diagnostics in resource-limited settings (RLS).Areas covered: In this review, we provide an overview of the various molecular methods for West Nile, Zika, Dengue and Chikungunya. We summarize literature works reporting the assessment and use of in house and commercial assays. We describe limitations and challenges in the usage of methods and opportunities for novel approaches such as NNext-GenerationSequencing (NGS).Expert opinion: The rapidity and accuracy of differential diagnosis is essential for a successful clinical management, particularly in co-circulation area of arboviruses. Several commercial diagnostic molecular assays are available, but many are not affordable by RLS and not usable as Point-of-care/Point-of-need (POC/PON) such as RReal-TimeRT-PCR, Array-based methods and NGS. In contrast, the IA-based system fits better for POC/PON but it is still not ideal for the multiplexing detection system. Improvement in the characterization and validation of current molecular assays is needed to optimize their translation to the point of care.
Collapse
Affiliation(s)
- Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Michela Deiana
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Francesca Perandin
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Sara Caldrer
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Fabio Formenti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Manuela Mistretta
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Pierantonio Orza
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Andrea Ragusa
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
10
|
Deng X, Achari A, Federman S, Yu G, Somasekar S, Bártolo I, Yagi S, Mbala-Kingebeni P, Kapetshi J, Ahuka-Mundeke S, Muyembe-Tamfum JJ, Ahmed AA, Ganesh V, Tamhankar M, Patterson JL, Ndembi N, Mbanya D, Kaptue L, McArthur C, Muñoz-Medina JE, Gonzalez-Bonilla CR, López S, Arias CF, Arevalo S, Miller S, Stone M, Busch M, Hsieh K, Messenger S, Wadford DA, Rodgers M, Cloherty G, Faria NR, Thézé J, Pybus OG, Neto Z, Morais J, Taveira N, R Hackett J, Chiu CY. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol 2020; 5:443-454. [PMID: 31932713 PMCID: PMC7047537 DOI: 10.1038/s41564-019-0637-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Metagenomic next-generation sequencing (mNGS), the shotgun sequencing of RNA and DNA from clinical samples, has proved useful for broad-spectrum pathogen detection and the genomic surveillance of viral outbreaks. An additional target enrichment step is generally needed for high-sensitivity pathogen identification in low-titre infections, yet available methods using PCR or capture probes can be limited by high cost, narrow scope of detection, lengthy protocols and/or cross-contamination. Here, we developed metagenomic sequencing with spiked primer enrichment (MSSPE), a method for enriching targeted RNA viral sequences while simultaneously retaining metagenomic sensitivity for other pathogens. We evaluated MSSPE for 14 different viruses, yielding a median tenfold enrichment and mean 47% (±16%) increase in the breadth of genome coverage over mNGS alone. Virus detection using MSSPE arboviral or haemorrhagic fever viral panels was comparable in sensitivity to specific PCR, demonstrating 95% accuracy for the detection of Zika, Ebola, dengue, chikungunya and yellow fever viruses in plasma samples from infected patients. Notably, sequences from re-emerging and/or co-infecting viruses that have not been specifically targeted a priori, including Powassan and Usutu, were successfully enriched using MSSPE. MSSPE is simple, low cost, fast and deployable on either benchtop or portable nanopore sequencers, making this method directly applicable for diagnostic laboratory and field use. This study describes a new method that improves the sensitivity of viral detection compared with next-generation sequencing and enables the detection of emerging flaviviruses not specifically targeted a priori. Metagenomic sequencing with spiked primer enrichment is simple, low cost, fast and deployable on either benchtop or portable nanopore sequencers, making it applicable for diagnostic laboratory and field use.
Collapse
Affiliation(s)
- Xianding Deng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Asmeeta Achari
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Scot Federman
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Guixia Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Sneha Somasekar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Inês Bártolo
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Shigeo Yagi
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | | | - Jimmy Kapetshi
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | | | - Asim A Ahmed
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vijay Ganesh
- Massachussetts General Hospital, Boston, MA, USA
| | - Manasi Tamhankar
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicaise Ndembi
- Institute for Human Virology Nigeria, Abuja, Nigeria.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dora Mbanya
- Universite de Yaoundé I, Yaoundé, Cameroon.,University of Bamenda, Bamenda, Cameroon
| | | | | | | | | | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Shaun Arevalo
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steve Miller
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Michael Busch
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Kristina Hsieh
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Sharon Messenger
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Debra A Wadford
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | | | | | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Zoraima Neto
- Angolan National Institute of Health Research, Luanda, Angola
| | - Joana Morais
- Angolan National Institute of Health Research, Luanda, Angola
| | - Nuno Taveira
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, Portugal
| | | | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA. .,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA. .,Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Black A, Moncla LH, Laiton-Donato K, Potter B, Pardo L, Rico A, Tovar C, Rojas DP, Longini IM, Halloran ME, Peláez-Carvajal D, Ramírez JD, Mercado-Reyes M, Bedford T. Genomic epidemiology supports multiple introductions and cryptic transmission of Zika virus in Colombia. BMC Infect Dis 2019; 19:963. [PMID: 31718580 PMCID: PMC6852897 DOI: 10.1186/s12879-019-4566-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colombia was the second most affected country during the American Zika virus (ZIKV) epidemic, with over 109,000 reported cases. Despite the scale of the outbreak, limited genomic sequence data were available from Colombia. We sought to sequence additional samples and use genomic epidemiology to describe ZIKV dynamics in Colombia. METHODS We sequenced ZIKV genomes directly from clinical diagnostic specimens and infected Aedes aegypti samples selected to cover the temporal and geographic breadth of the Colombian outbreak. We performed phylogeographic analysis of these genomes, along with other publicly-available ZIKV genomes from the Americas, to estimate the frequency and timing of ZIKV introductions to Colombia. RESULTS We attempted PCR amplification on 184 samples; 19 samples amplified sufficiently to perform sequencing. Of these, 8 samples yielded sequences with at least 50% coverage. Our phylogeographic reconstruction indicates two separate introductions of ZIKV to Colombia, one of which was previously unrecognized. We find that ZIKV was first introduced to Colombia in February 2015 (95%CI: Jan 2015 - Apr 2015), corresponding to 5 to 8 months of cryptic ZIKV transmission prior to confirmation in September 2015. Despite the presence of multiple introductions, we find that the majority of Colombian ZIKV diversity descends from a single introduction. We find evidence for movement of ZIKV from Colombia into bordering countries, including Peru, Ecuador, Panama, and Venezuela. CONCLUSIONS Similarly to genomic epidemiological studies of ZIKV dynamics in other countries, we find that ZIKV circulated cryptically in Colombia. More accurately dating when ZIKV was circulating refines our definition of the population at risk. Additionally, our finding that the majority of ZIKV transmission within Colombia was attributable to transmission between individuals, rather than repeated travel-related importations, indicates that improved detection and control might have succeeded in limiting the scale of the outbreak within Colombia.
Collapse
Affiliation(s)
- Allison Black
- Department of Epidemiology, University of Washington, Seattle, Washington, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
| | - Louise H Moncla
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
| | - Katherine Laiton-Donato
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
| | - Lissethe Pardo
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Angelica Rico
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Catalina Tovar
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Diana P Rojas
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States
| | - Ira M Longini
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States
| | - M Elizabeth Halloran
- Department of Epidemiology, University of Washington, Seattle, Washington, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States.,Department of Biostatistics, University of Washington, Seattle, Washington, United States
| | - Dioselina Peláez-Carvajal
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan D Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Mercado-Reyes
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, Washington, United States. .,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States.
| |
Collapse
|
12
|
Metagenomic Next-Generation Sequencing of the 2014 Ebola Virus Disease Outbreak in the Democratic Republic of the Congo. J Clin Microbiol 2019; 57:JCM.00827-19. [PMID: 31315955 PMCID: PMC6711896 DOI: 10.1128/jcm.00827-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
We applied metagenomic next-generation sequencing (mNGS) to detect Zaire Ebola virus (EBOV) and other potential pathogens from whole-blood samples from 70 patients with suspected Ebola hemorrhagic fever during a 2014 outbreak in Boende, Democratic Republic of the Congo (DRC) and correlated these findings with clinical symptoms. Twenty of 31 patients (64.5%) tested in Kinshasa, DRC, were EBOV positive by quantitative reverse transcriptase PCR (qRT-PCR). We applied metagenomic next-generation sequencing (mNGS) to detect Zaire Ebola virus (EBOV) and other potential pathogens from whole-blood samples from 70 patients with suspected Ebola hemorrhagic fever during a 2014 outbreak in Boende, Democratic Republic of the Congo (DRC) and correlated these findings with clinical symptoms. Twenty of 31 patients (64.5%) tested in Kinshasa, DRC, were EBOV positive by quantitative reverse transcriptase PCR (qRT-PCR). Despite partial degradation of sample RNA during shipping and handling, mNGS followed by EBOV-specific capture probe enrichment in a U.S. genomics laboratory identified EBOV reads in 22 of 70 samples (31.4%) versus in 21 of 70 (30.0%) EBOV-positive samples by repeat qRT-PCR (overall concordance = 87.1%). Reads from Plasmodium falciparum (malaria) were detected in 21 patients, of which at least 9 (42.9%) were coinfected with EBOV. Other positive viral detections included hepatitis B virus (n = 2), human pegivirus 1 (n = 2), Epstein-Barr virus (n = 9), and Orungo virus (n = 1), a virus in the Reoviridae family. The patient with Orungo virus infection presented with an acute febrile illness and died rapidly from massive hemorrhage and dehydration. Although the patient’s blood sample was negative by EBOV qRT-PCR testing, identification of viral reads by mNGS confirmed the presence of EBOV coinfection. In total, 9 new EBOV genomes (3 complete genomes, and an additional 6 ≥50% complete) were assembled. Relaxed molecular clock phylogenetic analysis demonstrated a molecular evolutionary rate for the Boende strain 4 to 10× slower than that of other Ebola lineages. These results demonstrate the utility of mNGS in broad-based pathogen detection and outbreak surveillance.
Collapse
|
13
|
Abstract
Clinical metagenomic next-generation sequencing (mNGS), the comprehensive analysis of microbial and host genetic material (DNA and RNA) in samples from patients, is rapidly moving from research to clinical laboratories. This emerging approach is changing how physicians diagnose and treat infectious disease, with applications spanning a wide range of areas, including antimicrobial resistance, the microbiome, human host gene expression (transcriptomics) and oncology. Here, we focus on the challenges of implementing mNGS in the clinical laboratory and address potential solutions for maximizing its impact on patient care and public health.
Collapse
Affiliation(s)
- Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, USA.
| | - Steven A Miller
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Application of a targeted-enrichment methodology for full-genome sequencing of Dengue 1-4, Chikungunya and Zika viruses directly from patient samples. PLoS Negl Trop Dis 2019; 13:e0007184. [PMID: 31022183 PMCID: PMC6504110 DOI: 10.1371/journal.pntd.0007184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/07/2019] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
The frequency of epidemics caused by Dengue viruses 1-4, Zika virus and Chikungunya viruses have been on an upward trend in recent years driven primarily by uncontrolled urbanization, mobility of human populations and geographical spread of their shared vectors, Aedes aegypti and Aedes albopictus. Infections by these viruses present with similar clinical manifestations making them challenging to diagnose; this is especially difficult in regions of the world hyperendemic for these viruses. In this study, we present a targeted-enrichment methodology to simultaneously sequence the complete viral genomes for each of these viruses directly from clinical samples. Additionally, we have also developed a customized computational tool (BaitMaker) to design these enrichment baits. This methodology is robust in its ability to capture diverse sequences and is amenable to large-scale epidemiological studies. We have applied this methodology to two large cohorts: a febrile study based in Colombo, Sri Lanka taken during the 2009-2015 dengue epidemic (n = 170) and another taken during the 2016 outbreak of Zika virus in Singapore (n = 162). Results from these studies indicate that we were able to cover an average of 97.04% ± 0.67% of the full viral genome from samples in these cohorts. We also show detection of one DENV3/ZIKV co-infected patient where we recovered full genomes for both viruses.
Collapse
|
15
|
Shean RC, Makhsous N, Stoddard GD, Lin MJ, Greninger AL. VAPiD: a lightweight cross-platform viral annotation pipeline and identification tool to facilitate virus genome submissions to NCBI GenBank. BMC Bioinformatics 2019; 20:48. [PMID: 30674273 PMCID: PMC6343335 DOI: 10.1186/s12859-019-2606-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/04/2019] [Indexed: 11/11/2022] Open
Abstract
Background With sequencing technologies becoming cheaper and easier to use, more groups are able to obtain whole genome sequences of viruses of public health and scientific importance. Submission of genomic data to NCBI GenBank is a requirement prior to publication and plays a critical role in making scientific data publicly available. GenBank currently has automatic prokaryotic and eukaryotic genome annotation pipelines but has no viral annotation pipeline beyond influenza virus. Annotation and submission of viral genome sequence is a non-trivial task, especially for groups that do not routinely interact with GenBank for data submissions. Results We present Viral Annotation Pipeline and iDentification (VAPiD), a portable and lightweight command-line tool for annotation and GenBank deposition of viral genomes. VAPiD supports annotation of nearly all unsegmented viral genomes. The pipeline has been validated on human immunodeficiency virus, human parainfluenza virus 1–4, human metapneumovirus, human coronaviruses (229E/OC43/NL63/HKU1/SARS/MERS), human enteroviruses/rhinoviruses, measles virus, mumps virus, Hepatitis A-E Virus, Chikungunya virus, dengue virus, and West Nile virus, as well the human polyomaviruses BK/JC/MCV, human adenoviruses, and human papillomaviruses. The program can handle individual or batch submissions of different viruses to GenBank and correctly annotates multiple viruses, including those that contain ribosomal slippage or RNA editing without prior knowledge of the virus to be annotated. VAPiD is programmed in Python and is compatible with Windows, Linux, and Mac OS systems. Conclusions We have created a portable, lightweight, user-friendly, internet-enabled, open-source, command-line genome annotation and submission package to facilitate virus genome submissions to NCBI GenBank. Instructions for downloading and installing VAPiD can be found at https://github.com/rcs333/VAPiD.
Collapse
Affiliation(s)
- Ryan C Shean
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Negar Makhsous
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Graham D Stoddard
- Department of Neurobiology, University of Washington, Seattle, WA, USA
| | - Michelle J Lin
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA. .,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
16
|
Coelho KEFA, Silva GLCC, Pinho SF, de Carvalho AL, Petter CM, Brandi IV. Congenital Zika syndrome phenotype in a child born in Brazil in December 2011. Clin Case Rep 2018; 6:2053-2056. [PMID: 30455890 PMCID: PMC6230596 DOI: 10.1002/ccr3.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022] Open
Abstract
We report a case of a Brazilian child born in 2011 with congenital Zika syndrome phenotype. Zika virus (ZIKV) may have been circulating in Brazil more than 4 years before the outbreak. ZIKV infection might be considered in children with this phenotype even without known circulation of ZIKV.
Collapse
Affiliation(s)
| | | | - Suely F. Pinho
- Pediatrics DepartmentHospital Sarah SalvadorSalvadorBahiaBrazil
| | | | | | - Ivar V. Brandi
- Neurology DepartmentHospital Sarah SalvadorSalvadorBahiaBrazil
| |
Collapse
|
17
|
Thézé J, Li T, du Plessis L, Bouquet J, Kraemer MUG, Somasekar S, Yu G, de Cesare M, Balmaseda A, Kuan G, Harris E, Wu CH, Ansari MA, Bowden R, Faria NR, Yagi S, Messenger S, Brooks T, Stone M, Bloch EM, Busch M, Muñoz-Medina JE, González-Bonilla CR, Wolinsky S, López S, Arias CF, Bonsall D, Chiu CY, Pybus OG. Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host Microbe 2018; 23:855-864.e7. [PMID: 29805095 PMCID: PMC6006413 DOI: 10.1016/j.chom.2018.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
The Zika virus (ZIKV) epidemic in the Americas established ZIKV as a major public health threat and uncovered its association with severe diseases, including microcephaly. However, genetic epidemiology in some at-risk regions, particularly Central America and Mexico, remains limited. We report 61 ZIKV genomes from this region, generated using metagenomic sequencing with ZIKV-specific enrichment, and combine phylogenetic, epidemiological, and environmental data to reconstruct ZIKV transmission. These analyses revealed multiple independent ZIKV introductions to Central America and Mexico. One introduction, likely from Brazil via Honduras, led to most infections and the undetected spread of ZIKV through the region from late 2014. Multiple lines of evidence indicate biannual peaks of ZIKV transmission in the region, likely driven by varying local environmental conditions for mosquito vectors and herd immunity. The spatial and temporal heterogeneity of ZIKV transmission in Central America and Mexico challenges arbovirus surveillance and disease control measures.
Collapse
Affiliation(s)
- Julien Thézé
- Department of Zoology, University of Oxford, Oxford, UK
| | - Tony Li
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | | | - Jerome Bouquet
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Moritz U G Kraemer
- Department of Zoology, University of Oxford, Oxford, UK; Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Sneha Somasekar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Guixia Yu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Mariateresa de Cesare
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Angel Balmaseda
- Laboratory Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Chieh-Hsi Wu
- Department of Statistics, University of Oxford, Oxford, UK
| | - M Azim Ansari
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rory Bowden
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK
| | - Shigeo Yagi
- California Department of Public Health, Richmond, CA, USA
| | | | - Trevor Brooks
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medcine, Baltimore, MD, USA
| | - Michael Busch
- Blood Systems Research Institute, San Francisco, CA, USA
| | - José E Muñoz-Medina
- División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cesar R González-Bonilla
- División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Steven Wolinsky
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Bonsall
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA; Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, USA.
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis 2018; 18:61. [PMID: 29382300 PMCID: PMC5791178 DOI: 10.1186/s12879-018-2976-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/23/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In Colombia, the dengue virus (DENV) has been endemic for decades, and with the recent entry of the chikungunya virus (CHIKV) (2014) and the Zika virus (ZIKV) (2015), health systems are overloaded because the diagnosis of these three diseases is based on clinical symptoms, and the three diseases share a symptomatology of febrile syndrome. Thus, the objective of this study was to use molecular methods to identify their co-circulation as well as the prevalence of co-infections, in a cohort of patients at the Colombian-Venezuelan border. METHODS A total of 157 serum samples from patients with febrile syndrome consistent with DENV were collected after informed consent and processed for the identification of DENV (conventional PCR and real-time PCR), CHIKV (conventional PCR), and ZIKV (real-time PCR). DENV-positive samples were serotyped, and some of those positive for DENV and CHIKV were sequenced. RESULTS Eighty-two patients were positive for one or more viruses: 33 (21.02%) for DENV, 47 (29.94%) for CHIKV, and 29 (18.47%) for ZIKV. The mean age range of the infected population was statistically higher in the patients infected with ZIKV (29.72 years) than in those infected with DENV or CHIKV (21.09 years). Both co-circulation and co-infection of these three viruses was found. The prevalence of DENV/CHIKV, DENV/ZIKV, and CHIKV/ZIKV co-infection was 7.64%, 6.37%, and 5.10%, with attack rates of 14.90, 12.42, and 9.93 cases per 100,000 inhabitants, respectively. Furthermore, three patients were found to be co-infected with all three viruses (prevalence of 1.91%), with an attack rate of 4.96 cases per 100,000 inhabitants. CONCLUSION Our results demonstrate the simultaneous co-circulation of DENV, CHIKV, ZIKV and their co-infections at the Colombian-Venezuelan border. Moreover, it is necessary to improve the differential diagnosis in patients with acute febrile syndrome and to study the possible consequences of this epidemiological overview of the clinical outcomes of these diseases in endemic regions.
Collapse
Affiliation(s)
- Marlen Yelitza Carrillo-Hernández
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Calle 30A #, 33-51, Bucaramanga, Colombia.,Universidad de Santander UDES, Facultad de Ciencias de la Salud, Programa de Bacteriología y Laboratorio clínico, Grupo de investigación en manejo clínico - CLINIUDES, Bucaramanga, Colombia.,Maestría en Investigación en Enfermedades Infecciosas, Universidad de Santander, Bucaramanga, Colombia.,Doctorado en Ciencias Básicas Biomedicas, Universidad de Antioquia, Medellin, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Calle 30A #, 33-51, Bucaramanga, Colombia
| | - Lucy Jaimes Villamizar
- Laboratorio Clínico, E.S.E. Jorge Cristo Sahium Hospital, Norte de Santander, Cúcuta, Colombia
| | - Sergio Yebrail Gómez-Rangel
- Universidad de Santander UDES, Facultad de Ciencias de la Salud, Programa de Bacteriología y Laboratorio clínico, Grupo de investigación en manejo clínico - CLINIUDES, Bucaramanga, Colombia
| | - Marlen Martínez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Calle 30A #, 33-51, Bucaramanga, Colombia.
| |
Collapse
|
19
|
Higher Cytopathic Effects of a Zika Virus Brazilian Isolate from Bahia Compared to a Canadian-Imported Thai Strain. Viruses 2018; 10:v10020053. [PMID: 29382068 PMCID: PMC5850360 DOI: 10.3390/v10020053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 12/27/2022] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen from the Flaviviridae family. It represents a significant threat to global health due to its neurological and fetal pathogenesis (including microcephaly and congenital malformations), and its rapid dissemination across Latin America in recent years. The virus has spread from Africa to Asia, the Pacific islands and the Americas with limited knowledge about the pathogenesis associated with infection in recent years. Herein, we compared the ability of the Canadian-imported Thai strain PLCal_ZV and the Brazilian isolate HS-2015-BA-01 from Bahia to produce infectious ZIKV particles and cytopathic effects in a cell proliferation assay. We also compared the intracellular viral RNA accumulation of the two strains by quantitative RT-PCR (reverse transcription polymerase chain reaction) analyses. Our observations show that HS-2015-BA-01 is more cytopathic than PLCal_ZV in proliferation assays in Vero, Human Embryonic Kidney HEK 293T and neuroblastoma SH-SY5Y cells. Quantitative RT-PCR shows that the level of viral RNA is higher with HS-2015-BA-01 than with PLCal_ZV in two cell lines, but similar in a neuroblastoma cell line. The two strains have 13 amino acids polymorphisms and we analyzed their predicted protein secondary structure. The increased cytopathicity and RNA accumulation of the Brazilian ZIKV isolate compared to the Thai isolate could contribute to the increased pathogenicity observed during the Brazilian epidemic.
Collapse
|
20
|
Greninger AL. A decade of RNA virus metagenomics is (not) enough. Virus Res 2018; 244:218-229. [PMID: 29055712 PMCID: PMC7114529 DOI: 10.1016/j.virusres.2017.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
It is hard to overemphasize the role that metagenomics has had on our recent understanding of RNA virus diversity. Metagenomics in the 21st century has brought with it an explosion in the number of RNA virus species, genera, and families far exceeding that following the discovery of the microscope in the 18th century for eukaryotic life or culture media in the 19th century for bacteriology or the 20th century for virology. When the definition of success in organism discovery is measured by sequence diversity and evolutionary distance, RNA viruses win. This review explores the history of RNA virus metagenomics, reasons for the successes so far in RNA virus metagenomics, and methodological concerns. In addition, the review briefly covers clinical metagenomics and environmental metagenomics and highlights some of the critical accomplishments that have defined the fast pace of RNA virus discoveries in recent years. Slightly more than a decade in, the field is exhausted from its discoveries but knows that there is yet even more out there to be found.
Collapse
Affiliation(s)
- Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
21
|
Shean RC, Greninger AL. Private collection: high correlation of sample collection and patient admission date in clinical microbiological testing complicates sharing of phylodynamic metadata. Virus Evol 2018; 4:vey005. [PMID: 29511571 PMCID: PMC5829646 DOI: 10.1093/ve/vey005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infectious pathogens are known for their rapid evolutionary rates with new mutations arising over days to weeks. The ability to rapidly recover whole genome sequences and analyze the spread and evolution of pathogens using genetic information and pathogen collection dates has lead to interest in real-time tracking of infectious transmission and outbreaks. However, the level of temporal resolution afforded by these analyses may conflict with definitions of what constitutes protected health information (PHI) and privacy requirements for de-identification for publication and public sharing of research data and metadata. In the United States, dates and locations associated with patient care that provide greater resolution than year or the first three digits of the zip code are generally considered patient identifiers. Admission and discharge dates are specifically named as identifiers in Department of Health and Human Services guidance. To understand the degree to which one can impute admission dates from specimen collection dates, we examined sample collection dates and patient admission dates associated with more than 270,000 unique microbiological results from the University of Washington Laboratory Medicine Department between 2010 and 2017. Across all positive microbiological tests, the sample collection date exactly matched the patient admission date in 68.8% of tests. Collection dates and admission dates were identical from emergency department and outpatient testing 86.7% and 96.5% of the time, respectively, with >99% of tests collected within 1 day from the patient admission date. Samples from female patients were significantly more likely to be collected closer to admission date that those from male patients. We show that PHI-associated dates such as admission date can confidently be imputed from deposited collection date. We suggest that publicly depositing microbiological collection dates at greater resolution than the year may not meet routine Safe Harbor-based requirements for patient de-identification. We recommend the use of Expert Determination to determine PHI for a given study and/or direct patient consent if clinical laboratories or phylodynamic practitioners desire to make these data available.
Collapse
Affiliation(s)
- Ryan C Shean
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 320, Seattle, WA 98102, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 320, Seattle, WA 98102, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Eastlake Avenue East, Seattle, WA 98102, USA
| |
Collapse
|
22
|
Faria NR, da Costa AC, Lourenço J, Loureiro P, Lopes ME, Ribeiro R, Alencar CS, Kraemer MUG, Villabona-Arenas CJ, Wu CH, Thézé J, Khan K, Brent SE, Romano C, Delwart E, Custer B, Busch MP, Pybus OG, Sabino EC. Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil. Sci Rep 2017; 7:15216. [PMID: 29123142 PMCID: PMC5680240 DOI: 10.1038/s41598-017-15152-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/20/2017] [Indexed: 01/20/2023] Open
Abstract
Outbreaks caused by Dengue, Zika and Chikungunya viruses can spread rapidly in immunologically naïve populations. By analysing 92 newly generated viral genome sequences from blood donors and recipients, we assess the dynamics of dengue virus serotype 4 during the 2012 outbreak in Rio de Janeiro. Phylogenetic analysis indicates that the outbreak was caused by genotype II, although two isolates of genotype I were also detected for the first time in Rio de Janeiro. Evolutionary analysis and modelling estimates are congruent, indicating a reproduction number above 1 between January and June, and at least two thirds of infections being unnoticed. Modelling analysis suggests that viral transmission started in early January, which is consistent with multiple introductions, most likely from the northern states of Brazil, and with an increase in within-country air travel to Rio de Janeiro. The combination of genetic and epidemiological data from blood donor banks may be useful to anticipate epidemic spread of arboviruses.
Collapse
Affiliation(s)
- Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Antonio Charlys da Costa
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil. .,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paula Loureiro
- Faculdade de Ciências Médicas, Fundação Hemope, Recife, Brazil
| | | | - Roberto Ribeiro
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Chieh-Hsi Wu
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kamran Khan
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E Brent
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Camila Romano
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Brian Custer
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ester C Sabino
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil. .,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
23
|
Lourenço J, Maia de Lima M, Faria NR, Walker A, Kraemer MU, Villabona-Arenas CJ, Lambert B, Marques de Cerqueira E, Pybus OG, Alcantara LC, Recker M. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. eLife 2017; 6:29820. [PMID: 28887877 PMCID: PMC5638629 DOI: 10.7554/elife.29820] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/04/2017] [Indexed: 12/29/2022] Open
Abstract
The Zika virus has emerged as a global public health concern. Its rapid geographic expansion is attributed to the success of Aedes mosquito vectors, but local epidemiological drivers are still poorly understood. Feira de Santana played a pivotal role in the Chikungunya epidemic in Brazil and was one of the first urban centres to report Zika infections. Using a climate-driven transmission model and notified Zika case data, we show that a low observation rate and high vectorial capacity translated into a significant attack rate during the 2015 outbreak, with a subsequent decline in 2016 and fade-out in 2017 due to herd-immunity. We find a potential Zika-related, low risk for microcephaly per pregnancy, but with significant public health impact given high attack rates. The balance between the loss of herd-immunity and viral re-importation will dictate future transmission potential of Zika in this urban setting. Mosquitoes can transmit viruses that cause Zika, dengue and several other tropical diseases that affect humans. Zika virus usually causes mild symptoms, but it is thought that infection during pregnancy can lead to brain abnormalities, including microcephaly, where babies are born with an abnormally small head. Recent studies have shed light on how the Zika virus spread from Africa to reach South America, the Caribbean and North America. However, much less is known about the ecological factors that contribute to the spread of the virus within towns, cities and other local areas. In 2015, Brazil was struck by an outbreak of the Zika virus that led to an international public health emergency. Lourenço et al. used a mathematical model to explore the local conditions within Feira de Santana (a major urban center in Brazil) that contributed to the outbreak. The model took into account numerous factors, including temperature, humidity, rainfall and the mosquito life-cycle, which made it possible to reconstruct the history of the virus over the past three years and to make projections for the next decades. It revealed that most of the infections occured during 2015, with approximately 65% of the population infected. The incidences of new infections declined in 2016, as increasing numbers of local people had already been exposed to the virus and became immune. Temperature and humidity appeared to have played a critical role in sustaining the mosquito population carrying the Zika virus. Further analysis suggests that the risk of Zika virus causing microcephaly is very low – only 0.3–0.5% of the pregnant women in Feira de Santana who were infected with Zika gave birth to a baby with the condition. What therefore makes Zika a public health concern is the combination of a low risk with very high infection rates, which can affect a large number of pregnancies. This study will help researchers and policy makers to predict how the Zika virus will behave in the coming years. It also highlights the limitations and successes of the current system of surveillance. Moreover, it will help to identify critical time periods in the year when mosquito control strategies should be implemented to limit the spread of this virus. In future, this could help shape new local strategies to control Zika virus, dengue and other diseases carried by mosquitoes.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Maricelia Maia de Lima
- Laboratory of Haematology, Genetics and Computational Biology, FIOCRUZ, SalvadorBahia, Brazil
| | | | - Andrew Walker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Christian Julian Villabona-Arenas
- Institut de Recherche pour le Développement, UMI 233, INSERM U1175 and Institut de Biologie Computationnelle, LIRMM, Université de Montpellier, Montpellier, France
| | - Ben Lambert
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Erenilde Marques de Cerqueira
- Centre of PostGraduation in Collective Health, Department of Health, Universidade Estadual de Feira de Santana, Feira de SantanaBahia, Brazil
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Luiz Cj Alcantara
- Laboratory of Haematology, Genetics and Computational Biology, FIOCRUZ, SalvadorBahia, Brazil
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
24
|
Theys K, Libin P, Dallmeier K, Pineda-Peña AC, Vandamme AM, Cuypers L, Abecasis AB. Zika genomics urgently need standardized and curated reference sequences. PLoS Pathog 2017; 13:e1006528. [PMID: 28880955 PMCID: PMC5589256 DOI: 10.1371/journal.ppat.1006528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kristof Theys
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- * E-mail:
| | - Pieter Libin
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- Artificial Intelligence Lab, Department of computer science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kai Dallmeier
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Andrea-Clemencia Pineda-Peña
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Basic Sciences Department, Universidad del Rosario, Bogotá, Colombia
- Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, University Nova de Lisboa, UNL, Lisbon, Portugal
| | - Anne-Mieke Vandamme
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, University Nova de Lisboa, UNL, Lisbon, Portugal
| | - Lize Cuypers
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ana B. Abecasis
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, University Nova de Lisboa, UNL, Lisbon, Portugal
| |
Collapse
|
25
|
Ayllón T, Campos RDM, Brasil P, Morone FC, Câmara DCP, Meira GLS, Tannich E, Yamamoto KA, Carvalho MS, Pedro RS, Schmidt-Chanasit J, Cadar D, Ferreira DF, Honório NA. Early Evidence for Zika Virus Circulation among Aedes aegypti Mosquitoes, Rio de Janeiro, Brazil. Emerg Infect Dis 2017. [PMID: 28628464 PMCID: PMC5547780 DOI: 10.3201/eid2308.162007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During 2014-2016, we conducted mosquito-based Zika virus surveillance in Rio de Janeiro, Brazil. Results suggest that Zika virus was probably introduced into the area during May-November 2013 via multiple in-country sources. Furthermore, our results strengthen the hypothesis that Zika virus in the Americas originated in Brazil during October 2012-May 2013.
Collapse
|
26
|
Sharma S, Tandel K, Dash PK, Parida M. Zika virus: A public health threat. J Med Virol 2017; 89:1693-1699. [PMID: 28369961 DOI: 10.1002/jmv.24822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/12/2017] [Indexed: 12/19/2022]
Abstract
The resurgence of Zika virus as public health emergency of an international concern with increased incidence of microcephaly has drawn attention of scientific community for its detailed understanding with regard to virus evolution, epidemiology, geographical spread, pathogenesis, etc. The scope of the present review is to discuss the detailed updated information in respect of Zika virus evolution since its inception.
Collapse
Affiliation(s)
- Shashi Sharma
- Virology Division, Defence Research and Development Establishment (DRDE), Gwalior, Madhya Pradesh, India
| | - Kundan Tandel
- Virology Division, Defence Research and Development Establishment (DRDE), Gwalior, Madhya Pradesh, India
| | - Paban K Dash
- Virology Division, Defence Research and Development Establishment (DRDE), Gwalior, Madhya Pradesh, India
| | - Manmohan Parida
- Virology Division, Defence Research and Development Establishment (DRDE), Gwalior, Madhya Pradesh, India
| |
Collapse
|
27
|
Brody T, Yavatkar AS, Park DS, Kuzin A, Ross J, Odenwald WF. Flavivirus and Filovirus EvoPrinters: New alignment tools for the comparative analysis of viral evolution. PLoS Negl Trop Dis 2017. [PMID: 28622346 PMCID: PMC5489223 DOI: 10.1371/journal.pntd.0005673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging. We report here a new approach for the comparative analysis of these hemorrhagic fever viruses that can superimpose an unlimited number of one-on-one alignments to identify important features within genomes of interest. Methodology/Principal finding We have adapted EvoPrinter alignment algorithms for the rapid comparative analysis of Flavivirus or Filovirus sequences including Zika and Ebola strains. The user can input a full genome or partial viral sequence and then view either individual comparisons or generate color-coded readouts that superimpose hundreds of one-on-one alignments to identify unique or shared identity SNPs that reveal ancestral relationships between strains. The user can also opt to select a database genome in order to access a library of pre-aligned genomes of either 1,094 Flaviviruses or 460 Filoviruses for rapid comparative analysis with all database entries or a select subset. Using EvoPrinter search and alignment programs, we show the following: 1) superimposing alignment data from many related strains identifies lineage identity SNPs, which enable the assessment of sublineage complexity within viral outbreaks; 2) whole-genome SNP profile screens uncover novel Dengue2 and Zika recombinant strains and their parental lineages; 3) differential SNP profiling identifies host cell A-to-I hyper-editing within Ebola and Marburg viruses, and 4) hundreds of superimposed one-on-one Ebola genome alignments highlight ultra-conserved regulatory sequences, invariant amino acid codons and evolutionarily variable protein-encoding domains within a single genome. Conclusions/Significance EvoPrinter allows for the assessment of lineage complexity within Flavivirus or Filovirus outbreaks, identification of recombinant strains, highlights sequences that have undergone host cell A-to-I editing, and identifies unique input and database SNPs within highly conserved sequences. EvoPrinter’s ability to superimpose alignment data from hundreds of strains onto a single genome has allowed us to identify unique Zika virus sublineages that are currently spreading in South, Central and North America, the Caribbean, and in China. This new set of integrated alignment programs should serve as a useful addition to existing tools for the comparative analysis of these viruses. Flaviviruses, including Zika and Dengue viruses, and Filoviruses, including Ebola and Marburg viruses, are significant global public health threats. Genetic surveillance of viral isolates provides important insights into the origin of outbreaks, reveals lineage heterogeneity and diversification, and facilitates identification of novel recombinant strains and host cell modified viral genomes. We report the development of EvoPrinter, a web-accessed alignment tool for the rapid comparative analysis of viral genomes. EvoPrinter superimposes alignment data from multiple pairwise comparisons onto a single reference sequence of interest, to reveal both similarities and differences detected in hundreds of selected viral isolates. Evoprinter databases provide easy access to hundreds of non-redundant Flavivirus and Filovirus genomes. allowing the user to distinguish between sublineage identity SNPs and unique strain-specific SNPs, thus facilitating analysis of the history of viral diversification during an epidemic. EvoPrinter also proves useful in identifying recombinant strains and their parental lineages and detecting host-cell genomic editing. EvoPrinter should serve as a useful addition to existing tools for the comparative analysis of these viruses.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
- * E-mail: (TB); (WFO)
| | - Amarendra S. Yavatkar
- Division of Intramural Research Information Technology Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Dong Sun Park
- Division of Intramural Research Information Technology Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Jermaine Ross
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
- * E-mail: (TB); (WFO)
| |
Collapse
|
28
|
Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG, Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LC, Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 2017; 12:1261-1276. [PMID: 28538739 PMCID: PMC5902022 DOI: 10.1038/nprot.2017.066] [Citation(s) in RCA: 718] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.
Collapse
Affiliation(s)
- Joshua Quick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Steven T Pullan
- Public Health England, National Infection Service, Porton Down, Salisbury, UK
| | - Ingra M Claro
- Department of Infectious Disease and Institute of Tropical Medicine, University of Saõ Paulo, Saõ Paulo, Brazil
| | - Andrew D Smith
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Glenn Oliveira
- Scripps Translational Science Institute, La Jolla, California, USA
| | | | - Thomas F Rogers
- The Scripps Research Institute, La Jolla, California, USA
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | - Marta Giovanetti
- Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- University of Rome, Tor Vergata, Italy
| | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford, UK
| | - Allison Black
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Miles W Carroll
- Public Health England, National Infection Service, Porton Down, Salisbury, UK
- University of Southampton, South General Hospital, Southampton, UK
| | | | | | - Ester C Sabino
- Department of Infectious Disease and Institute of Tropical Medicine, University of Saõ Paulo, Saõ Paulo, Brazil
| | | | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK
| | - Matthew Loose
- DeepSeq, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Kristian G Andersen
- The Scripps Research Institute, La Jolla, California, USA
- Scripps Translational Science Institute, La Jolla, California, USA
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Faria NR, Quick J, Claro IM, Thézé J, de Jesus JG, Giovanetti M, Kraemer MUG, Hill SC, Black A, da Costa AC, Franco LC, Silva SP, Wu CH, Raghwani J, Cauchemez S, du Plessis L, Verotti MP, de Oliveira WK, Carmo EH, Coelho GE, Santelli ACFS, Vinhal LC, Henriques CM, Simpson JT, Loose M, Andersen KG, Grubaugh ND, Somasekar S, Chiu CY, Muñoz-Medina JE, Gonzalez-Bonilla CR, Arias CF, Lewis-Ximenez LL, Baylis SA, Chieppe AO, Aguiar SF, Fernandes CA, Lemos PS, Nascimento BLS, Monteiro HAO, Siqueira IC, de Queiroz MG, de Souza TR, Bezerra JF, Lemos MR, Pereira GF, Loudal D, Moura LC, Dhalia R, França RF, Magalhães T, Marques ET, Jaenisch T, Wallau GL, de Lima MC, Nascimento V, de Cerqueira EM, de Lima MM, Mascarenhas DL, Neto JPM, Levin AS, Tozetto-Mendoza TR, Fonseca SN, Mendes-Correa MC, Milagres FP, Segurado A, Holmes EC, Rambaut A, Bedford T, Nunes MRT, Sabino EC, Alcantara LCJ, Loman NJ, Pybus OG. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 2017; 546:406-410. [PMID: 28538727 DOI: 10.1038/nature22401] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022]
Abstract
Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.
Collapse
Affiliation(s)
- N R Faria
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK.,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - J Quick
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - I M Claro
- Department of Infectious Disease, School of Medicine &Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - J Thézé
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - J G de Jesus
- Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - M Giovanetti
- Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil.,University of Rome Tor Vergata, Rome, Italy
| | - M U G Kraemer
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK.,Harvard Medical School, Boston, Massachusetts, USA.,Boston Children's Hospital, Boston, Massachusetts, USA
| | - S C Hill
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - A Black
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - A C da Costa
- Department of Infectious Disease, School of Medicine &Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - L C Franco
- Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - S P Silva
- Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - C-H Wu
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - J Raghwani
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - S Cauchemez
- Mathematical Modelling of Infectious Diseases and Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, URA3012, Paris, France
| | - L du Plessis
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - M P Verotti
- Coordenação dos Laboratórios de Saúde (CGLAB/DEVIT/SVS), Ministry of Health, Brasília, Brazil
| | - W K de Oliveira
- Coordenação Geral de Vigilância e Resposta às Emergências em Saúde Pública (CGVR/DEVIT), Ministry of Health, Brasília, Brazil.,Center of Data and Knowledge Integration for Health (CIDACS), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - E H Carmo
- Departamento de Vigilância das Doenças Transmissíveis, Ministry of Health, Brasilia, Brazil
| | - G E Coelho
- Coordenação Geral dos Programas de Controle e Prevenção da Malária e das Doenças Transmitidas pelo Aedes, Ministry of Health, Brasília, Brazil.,Pan American Health Organization (PAHO), Buenos Aires, Argentina
| | - A C F S Santelli
- Coordenação Geral dos Programas de Controle e Prevenção da Malária e das Doenças Transmitidas pelo Aedes, Ministry of Health, Brasília, Brazil.,Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - L C Vinhal
- Coordenação Geral dos Programas de Controle e Prevenção da Malária e das Doenças Transmitidas pelo Aedes, Ministry of Health, Brasília, Brazil
| | - C M Henriques
- Departamento de Vigilância das Doenças Transmissíveis, Ministry of Health, Brasilia, Brazil
| | - J T Simpson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - M Loose
- University of Nottingham, Nottingham, UK
| | - K G Andersen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - N D Grubaugh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - S Somasekar
- Departments of Laboratory Medicine and Medicine &Infectious Diseases, University of California, San Francisco, California, USA
| | - C Y Chiu
- Departments of Laboratory Medicine and Medicine &Infectious Diseases, University of California, San Francisco, California, USA
| | - J E Muñoz-Medina
- División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - C R Gonzalez-Bonilla
- División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - C F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - A O Chieppe
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro, Brazil
| | - S F Aguiar
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro, Brazil
| | - C A Fernandes
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro, Brazil
| | - P S Lemos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - B L S Nascimento
- Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - H A O Monteiro
- Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - I C Siqueira
- Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - M G de Queiroz
- Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte, Natal, Brazil
| | - T R de Souza
- Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte, Natal, Brazil.,Universidade Potiguar do Rio Grande do Norte, Natal, Brazil
| | - J F Bezerra
- Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte, Natal, Brazil.,Faculdade Natalense de Ensino e Cultura, Rio Grande do Norte, Natal, Brazil
| | - M R Lemos
- Laboratório Central de Saúde Pública do Estado da Paraíba, João Pessoa, Brazil
| | - G F Pereira
- Laboratório Central de Saúde Pública do Estado da Paraíba, João Pessoa, Brazil
| | - D Loudal
- Laboratório Central de Saúde Pública do Estado da Paraíba, João Pessoa, Brazil
| | - L C Moura
- Laboratório Central de Saúde Pública do Estado da Paraíba, João Pessoa, Brazil
| | - R Dhalia
- Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco, Brazil
| | - R F França
- Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco, Brazil
| | - T Magalhães
- Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco, Brazil.,Department of Microbiology, Immunology &Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - E T Marques
- Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco, Brazil
| | - T Jaenisch
- Section Clinical Tropical Medicine, Department for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - G L Wallau
- Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco, Brazil
| | - M C de Lima
- Laboratório Central de Saúde Pública do Estado de Alagoas, Maceió, Brazil
| | - V Nascimento
- Laboratório Central de Saúde Pública do Estado de Alagoas, Maceió, Brazil
| | - E M de Cerqueira
- Laboratório Central de Saúde Pública do Estado de Alagoas, Maceió, Brazil
| | - M M de Lima
- Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - D L Mascarenhas
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - A S Levin
- Department of Infectious Disease, School of Medicine &Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - T R Tozetto-Mendoza
- Department of Infectious Disease, School of Medicine &Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - S N Fonseca
- Hospital São Francisco, Ribeirão Preto, Brazil
| | - M C Mendes-Correa
- Department of Infectious Disease, School of Medicine &Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - F P Milagres
- Universidade Federal do Tocantins, Palmas, Brazil
| | - A Segurado
- Department of Infectious Disease, School of Medicine &Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | | - A Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK.,Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - T Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - M R T Nunes
- Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - E C Sabino
- Department of Infectious Disease, School of Medicine &Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | | - N J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - O G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK.,Metabiota, San Francisco, California 94104, USA
| |
Collapse
|
30
|
Rather IA, Lone JB, Bajpai VK, Park YH. Zika Virus Infection during Pregnancy and Congenital Abnormalities. Front Microbiol 2017; 8:581. [PMID: 28421065 PMCID: PMC5378815 DOI: 10.3389/fmicb.2017.00581] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
The presence of the Zika virus (ZIKV) infection has gone ahead to be a threat to people based on its adverse impacts. More specifically, the pregnant women have been discouraged from traveling to the areas affected by the ZIKV because of the likelihood of the virus causing congenital abnormalities especially the microcephaly. The pregnant women probably attracted the virus during their first trimester while visiting ZIKV affected territories. Although the ZIKV infected cases have reduced in some parts of countries, the global risk assessment has not been changed. The virus continues to spread geographically to areas where competent vectors are present. At present, there is still no treatment of ZIKV related illness, especially microcephaly.
Collapse
Affiliation(s)
- Irfan A. Rather
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Jameel B. Lone
- Department of Biotechnology, Daegu UniversityGyungsan, South Korea
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Yong-Ha Park
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
31
|
Salehuddin AR, Haslan H, Mamikutty N, Zaidun NH, Azmi MF, Senin MM, Syed Ahmad Fuad SB, Thent ZC. Zika virus infection and its emerging trends in Southeast Asia. ASIAN PAC J TROP MED 2017; 10:211-219. [DOI: 10.1016/j.apjtm.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 02/18/2017] [Indexed: 10/20/2022] Open
|
32
|
Abstract
Whole-genome sequencing (WGS) of pathogens is becoming increasingly important not only for basic research but also for clinical science and practice. In virology, WGS is important for the development of novel treatments and vaccines, and for increasing the power of molecular epidemiology and evolutionary genomics. In this Opinion article, we suggest that WGS of viruses in a clinical setting will become increasingly important for patient care. We give an overview of different WGS methods that are used in virology and summarize their advantages and disadvantages. Although there are only partially addressed technical, financial and ethical issues in regard to the clinical application of viral WGS, this technique provides important insights into virus transmission, evolution and pathogenesis.
Collapse
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Infection, UK; and the Division of Biological Anthropology, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, University of Cambridge, Cambridge CB2 3QG, UK.,
- and the Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK.,
| | - Mathew A. Beale
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
- and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
| |
Collapse
|
33
|
Genome Sequences of Three Novel Bunyaviruses, Two Novel Rhabdoviruses, and One Novel Nyamivirus from Washington State Moths. GENOME ANNOUNCEMENTS 2017; 5:5/7/e01668-16. [PMID: 28209840 PMCID: PMC5313632 DOI: 10.1128/genomea.01668-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report draft genome sequences of three novel bunyaviruses, two novel rhabdoviruses, and one novel nyamivirus identified metagenomically from 10 moths in Washington state.
Collapse
|
34
|
Rapid Metagenomic Next-Generation Sequencing during an Investigation of Hospital-Acquired Human Parainfluenza Virus 3 Infections. J Clin Microbiol 2016; 55:177-182. [PMID: 27795347 PMCID: PMC5228228 DOI: 10.1128/jcm.01881-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is increasingly used for the unbiased detection of viruses, bacteria, fungi, and eukaryotic parasites in clinical samples. Whole-genome sequencing (WGS) of clinical bacterial isolates has been shown to inform hospital infection prevention practices, but this technology has not been utilized during potential respiratory virus outbreaks. Here, we report on the use of mNGS to inform the real-time infection prevention response to a cluster of hospital-acquired human parainfluenza 3 virus (HPIV3) infections at a children's hospital. Samples from 3 patients with hospital-acquired HPIV3 identified over a 12-day period on a general medical unit and 10 temporally associated samples from patients with community-acquired HPIV3 were analyzed. Our sample-to-sequencer time was <24 h, while our sample-to-answer turnaround time was <60 h with a hands-on time of approximately 6 h. Eight (2 cases and 6 controls) of 13 samples had sufficient sequencing coverage to yield the whole genome for HPIV3, while 10 (2 cases and 8 controls) of 13 samples gave partial genomes and all 13 samples had >1 read for HPIV3. Phylogenetic clustering revealed the presence of identical HPIV3 genomic sequence in the two of the cases with hospital-acquired infection, consistent with the concern for recent transmission within the medical unit. Adequate sequence coverage was not recovered for the third case. This work demonstrates the promise of mNGS for providing rapid information for infection prevention in addition to microbial detection.
Collapse
|
35
|
Affiliation(s)
- J. E. Levi
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Fundação Pró-Sangue/Hemocentro de São Paulo; São Paulo Brazil
| |
Collapse
|
36
|
Coinfections of Zika and Chikungunya Viruses in Bahia, Brazil, Identified by Metagenomic Next-Generation Sequencing. J Clin Microbiol 2016; 54:2348-53. [PMID: 27413190 DOI: 10.1128/jcm.00877-16] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/24/2016] [Indexed: 12/25/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) of samples from 15 patients with documented Zika virus (ZIKV) infection in Bahia, Brazil, from April 2015 to January 2016 identified coinfections with chikungunya virus (CHIKV) in 2 of 15 ZIKV-positive cases by PCR (13.3%). While generally nonspecific, the clinical presentation corresponding to these two CHIKV/ZIKV coinfections reflected infection by the virus present at a higher titer. Aside from CHIKV and ZIKV, coinfections of other viral pathogens were not detected. The mNGS approach is promising for differential diagnosis of acute febrile illness and identification of coinfections, although targeted arbovirus screening may be sufficient in the current ZIKV outbreak setting.
Collapse
|