1
|
Liu Q, Zeng H, Wu X, Yang X, Wang G. Global Prevalence and Hemagglutinin Evolution of H7N9 Avian Influenza Viruses from 2013 to 2022. Viruses 2023; 15:2214. [PMID: 38005891 PMCID: PMC10674656 DOI: 10.3390/v15112214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
H7N9 avian influenza viruses have caused severe harm to the global aquaculture industry and human health. For further understanding of the characteristics of prevalence and hemagglutinin evolution of H7N9 avian influenza viruses, we generated the global epidemic map of H7N9 viruses from 2013 to 2022, constructed a phylogenetic tree, predicted the glycosylation sites and compared the selection pressure of the hemagglutinin. The results showed that although H7N9 avian influenza appeared sporadically in other regions worldwide, China had concentrated outbreaks from 2013 to 2017. The hemagglutinin genes were classified into six distinct lineages: A, B, C, D, E and F. After 2019, H7N9 viruses from the lineages B, E and F persisted, with the lineage B being the dominant. The hemagglutinin of highly pathogenic viruses in the B lineage has an additional predicted glycosylation site, which may account for their persistent pandemic, and is under more positive selection pressure. The most recent ancestor of the H7N9 avian influenza viruses originated in September 1991. The continuous evolution of hemagglutinin has led to an increase in virus pathogenicity in both poultry and humans, and sustained human-to-human transmission. This study provides a theoretical basis for better prediction and control of H7N9 avian influenza.
Collapse
Affiliation(s)
- Qianshuo Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.L.); (H.Z.); (X.W.)
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Haowen Zeng
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.L.); (H.Z.); (X.W.)
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Xinghui Wu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.L.); (H.Z.); (X.W.)
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Xuelian Yang
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Guiqin Wang
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| |
Collapse
|
2
|
Utility of Human In Vitro Data in Risk Assessments of Influenza A Virus Using the Ferret Model. J Virol 2023; 97:e0153622. [PMID: 36602361 PMCID: PMC9888249 DOI: 10.1128/jvi.01536-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As influenza A viruses (IAV) continue to cross species barriers and cause human infection, the establishment of risk assessment rubrics has improved pandemic preparedness efforts. In vivo pathogenicity and transmissibility evaluations in the ferret model represent a critical component of this work. As the relative contribution of in vitro experimentation to these rubrics has not been closely examined, we sought to evaluate to what extent viral titer measurements over the course of in vitro infections are predictive or correlates of nasal wash and tissue measurements for IAV infections in vivo. We compiled data from ferrets inoculated with an extensive panel of over 50 human and zoonotic IAV (inclusive of swine-origin and high- and low-pathogenicity avian influenza viruses associated with human infection) under a consistent protocol, with all viruses concurrently tested in a human bronchial epithelial cell line (Calu-3). Viral titers in ferret nasal wash specimens and nasal turbinate tissue correlated positively with peak titer in Calu-3 cells, whereas additional phenotypic and molecular determinants of influenza virus virulence and transmissibility in ferrets varied in their association with in vitro viral titer measurements. Mathematical modeling was used to estimate more generalizable key replication kinetic parameters from raw in vitro viral titers, revealing commonalities between viral infection progression in vivo and in vitro. Meta-analyses inclusive of IAV that display a diverse range of phenotypes in ferrets, interpreted with mathematical modeling of viral kinetic parameters, can provide critical information supporting a more rigorous and appropriate contextualization of in vitro experiments toward pandemic preparedness. IMPORTANCE Both in vitro and in vivo models are employed for assessing the pandemic potential of novel and emerging influenza A viruses in laboratory settings, but systematic examinations of how well viral titer measurements obtained in vitro align with results from in vivo experimentation are not frequently performed. We show that certain viral titer measurements following infection of a human bronchial epithelial cell line are positively correlated with viral titers in specimens collected from virus-inoculated ferrets and employ mathematical modeling to identify commonalities between viral infection progression between both models. These analyses provide a necessary first step in enhanced interpretation and incorporation of in vitro-derived data in risk assessment activities and highlight the utility of employing mathematical modeling approaches to more closely examine features of virus replication not identifiable by experimental studies alone.
Collapse
|
3
|
Belser JA, Sun X, Brock N, Pulit-Penaloza JA, Jones J, Zanders N, Davis CT, Tumpey TM, Maines TR. Mammalian pathogenicity and transmissibility of low pathogenic avian influenza H7N1 and H7N3 viruses isolated from North America in 2018. Emerg Microbes Infect 2021; 9:1037-1045. [PMID: 32449503 PMCID: PMC8284977 DOI: 10.1080/22221751.2020.1764396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Low pathogenic avian influenza (LPAI) H7 subtype viruses are infrequently, but persistently, associated with outbreaks in poultry in North America. These LPAI outbreaks provide opportunities for the virus to develop enhanced virulence and transmissibility in mammals and have previously resulted in both occasional acquisition of a highly pathogenic avian influenza (HPAI) phenotype in birds and sporadic cases of human infection. Two notable LPAI H7 subtype viruses caused outbreaks in 2018 in North America: LPAI H7N1 virus in chickens and turkeys, representing the first confirmed H7N1 infection in poultry farms in the United States, and LPAI H7N3 virus in turkeys, a virus subtype often associated with LPAI-to-HPAI phenotypes. Here, we investigated the replication capacity of representative viruses from these outbreaks in human respiratory tract cells and mammalian pathogenicity and transmissibility in the mouse and ferret models. We found that the LPAI H7 viruses replicated to high titre in human cells, reaching mean peak titres generally comparable to HPAI H7 viruses. Replication was efficient in both mammalian species, causing mild infection, with virus primarily limited to respiratory tract tissues. The H7 viruses demonstrated a capacity to transmit to naïve ferrets in a direct contact setting. These data support the need to perform routine risk assessments of LPAI H7 subtype viruses, even in the absence of confirmed human infection.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicole Brock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joyce Jones
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Natosha Zanders
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Zhang C, Cui H, Wang Z, Dong S, Zhang C, Li J, Meng K, Sun Y, Liu J, Guo Z, Chen L. Pathogenicity and transmissibility assessment of two strains of human influenza virus isolated in China in 2018. J Int Med Res 2021; 49:300060520982832. [PMID: 33472481 PMCID: PMC7829534 DOI: 10.1177/0300060520982832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Influenza season occurs every year in China, but its presentation was unusual in the period from December 2017 to early 2018. During this period, influenza activity was increasing across the country and was much greater than during the same period in previous years, with great harm to people's health. METHODS In this study, we isolated two human influenza virus strains-A/Hebei/F076/2018(H1N1) and B/Hebei/16275B/2018-from patients with severe influenza in Hebei, China, during the flu season in January 2018, and explored their genetic characteristics, pathogenicity, and transmissibility. RESULTS A/Hebei/F076/2018(H1N1) belongs to the human-like H1N1 influenza virus lineage, whereas B/Hebei/16275B/2018 belongs to the Victoria lineage and is closely related to the World Health Organization reference strain B/Brisbane/60/2008. Pathogenicity tests revealed that A/Hebei/F076/2018(H1N1) replicated much more strongly in mice, with mice exhibiting 40% mortality, whereas B/Hebei/16275B/2018 was not lethal. Both viruses could be transmitted through direct contact and by the aerosol route between guinea pigs, but the H1N1 strain exhibited higher airborne transmissibility. CONCLUSIONS These results may contribute to the monitoring of influenza mutation and the prevention of an influenza outbreak.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Zhongyi Wang
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Chunmao Zhang
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Jiaming Li
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Keyin Meng
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Yucheng Sun
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Zhendong Guo
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| |
Collapse
|
5
|
Belser JA, Eckert AM, Huynh T, Gary JM, Ritter JM, Tumpey TM, Maines TR. A Guide for the Use of the Ferret Model for Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:11-24. [PMID: 31654637 DOI: 10.1016/j.ajpath.2019.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/09/2022]
Abstract
As influenza viruses continue to jump species barriers to cause human infection, assessments of disease severity and viral replication kinetics in vivo provide crucial information for public health professionals. The ferret model is a valuable resource for evaluating influenza virus pathogenicity; thus, understanding the most effective techniques for sample collection and usage, as well as the full spectrum of attainable data after experimental inoculation in this species, is paramount. This is especially true for scheduled necropsy of virus-infected ferrets, a standard component in evaluation of influenza virus pathogenicity, as necropsy findings can provide important information regarding disease severity and pathogenicity that is not otherwise available from the live animal. In this review, we describe the range of influenza viruses assessed in ferrets, the measures of experimental disease severity in this model, and optimal sample collection during necropsy of virus-infected ferrets. Collectively, this information is critical for assessing systemic involvement after influenza virus infection in mammals.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.
| | - Alissa M Eckert
- Division of Communication Services, Office of the Associate Director for Communication, Atlanta, Georgia
| | - Thanhthao Huynh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joy M Gary
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
6
|
Olsen SJ, Rooney JA, Blanton L, Rolfes MA, Nelson DI, Gomez TM, Karli SA, Trock SC, Fry AM. Estimating Risk to Responders Exposed to Avian Influenza A H5 and H7 Viruses in Poultry, United States, 2014-2017. Emerg Infect Dis 2019; 25:1011-1014. [PMID: 30741630 PMCID: PMC6478193 DOI: 10.3201/eid2505.181253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the United States, outbreaks of avian influenza H5 and H7 virus infections in poultry have raised concern about the risk for infections in humans. We reviewed the data collected during 2014-2017 and found no human infections among 4,555 exposed responders who were wearing protection.
Collapse
|
7
|
Powell JD, Abente EJ, Torchetti MK, Killian ML, Vincent AL. An avian influenza virus A(H7N9) reassortant that recently emerged in the United States with low pathogenic phenotype does not efficiently infect swine. Influenza Other Respir Viruses 2019; 13:288-291. [PMID: 30761746 PMCID: PMC6468088 DOI: 10.1111/irv.12631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 11/26/2022] Open
Abstract
In 2017, outbreaks of low and highly pathogenic avian H7N9 viruses were reported in four States in the United States. In total, over 270 000 birds died or were culled, causing significant economic loss. The potential for avian‐to‐swine transmission of the U.S. avian H7N9 was unknown. In an experimental challenge in swine using a representative low pathogenic H7N9 (A/chicken/Tennessee/17‐007431‐3/2017; LPAI TN/17) isolated from these events, no infectious virus in the upper and minimal virus in the lower respiratory tract was detected, nor was lung pathology or evidence of transmission in pigs observed, indicating that the virus cannot efficiently infect swine.
Collapse
Affiliation(s)
- Joshua D Powell
- Virus and Prion Research Unit, Agricultural Research Service, National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa
| | - Eugenio J Abente
- Virus and Prion Research Unit, Agricultural Research Service, National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa
| | - Mary L Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa
| | - Amy L Vincent
- Virus and Prion Research Unit, Agricultural Research Service, National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa
| |
Collapse
|
8
|
Gustafson L, Jones R, Dufour-Zavala L, Jensen E, Malinak C, McCarter S, Opengart K, Quinn J, Slater T, Delgado A, Talbert M, Garber L, Remmenga M, Smeltzer M. Expert Elicitation Provides a Rapid Alternative to Formal Case-Control Study of an H7N9 Avian Influenza Outbreak in the United States. Avian Dis 2018; 62:201-209. [DOI: 10.1637/11801-011818-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- L. Gustafson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - R. Jones
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - L. Dufour-Zavala
- Georgia Poultry Laboratory Network, 3235 Abit Massey Way, Gainesville, GA 30507
| | - E. Jensen
- Aviagen North America, 920 Explorer Boulevard NW, Huntsville, AL 35806
| | - C. Malinak
- Peco Foods, Inc., 145 2nd Avenue NW, Gordo, AL 35466
| | - S. McCarter
- Tyson Foods, Inc., 649 Sherwood Road NE, Atlanta, GA 30324
| | - K. Opengart
- Global Sustainability & Animal Welfare, Keystone Foods, 6767 Old Madison Pike, Huntsville, AL 35806
| | - J. Quinn
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, District 1 Field Office for North Carolina–West Virginia, 920 Main Campus Drive, Suite 200, Raleigh, NC 27606
| | - T. Slater
- Hinton Mitchem Poultry Diagnostic Laboratory, Alabama Department of Agriculture and Industries, P.O. Box 409, Hanceville, AL 35077
| | - A. Delgado
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - M. Talbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - L. Garber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - M. Remmenga
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - M. Smeltzer
- Georgia Poultry Laboratory Network, 3235 Abit Massay Way, Gainesville, GA 30507
| |
Collapse
|