1
|
Kang H, Auzenbergs M, Clapham H, Maure C, Kim JH, Salje H, Taylor CG, Lim A, Clark A, Edmunds WJ, Sahastrabuddhe S, Brady OJ, Abbas K. Chikungunya seroprevalence, force of infection, and prevalence of chronic disability after infection in endemic and epidemic settings: a systematic review, meta-analysis, and modelling study. THE LANCET. INFECTIOUS DISEASES 2024; 24:488-503. [PMID: 38342105 DOI: 10.1016/s1473-3099(23)00810-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Chikungunya is an arboviral disease transmitted by Aedes aegypti and Aedes albopictus mosquitoes with a growing global burden linked to climate change and globalisation. We aimed to estimate chikungunya seroprevalence, force of infection (FOI), and prevalence of related chronic disability and hospital admissions in endemic and epidemic settings. METHODS In this systematic review, meta-analysis, and modelling study, we searched PubMed, Ovid, and Web of Science for articles published from database inception until Sept 26, 2022, for prospective and retrospective cross-sectional studies that addressed serological chikungunya virus infection in any geographical region, age group, and population subgroup and for longitudinal prospective and retrospective cohort studies with data on chronic chikungunya or hospital admissions in people with chikungunya. We did a systematic review of studies on chikungunya seroprevalence and fitted catalytic models to each survey to estimate location-specific FOI (ie, the rate at which susceptible individuals acquire chikungunya infection). We performed a meta-analysis to estimate the proportion of symptomatic patients with laboratory-confirmed chikungunya who had chronic chikungunya or were admitted to hospital following infection. We used a random-effects model to assess the relationship between chronic sequelae and follow-up length using linear regression. The systematic review protocol is registered online on PROSPERO, CRD42022363102. FINDINGS We identified 60 studies with data on seroprevalence and chronic chikungunya symptoms done across 76 locations in 38 countries, and classified 17 (22%) of 76 locations as endemic settings and 59 (78%) as epidemic settings. The global long-term median annual FOI was 0·007 (95% uncertainty interval [UI] 0·003-0·010) and varied from 0·0001 (0·00004-0·0002) to 0·113 (0·07-0·20). The highest estimated median seroprevalence at age 10 years was in south Asia (8·0% [95% UI 6·5-9·6]), followed by Latin America and the Caribbean (7·8% [4·9-14·6]), whereas median seroprevalence was lowest in the Middle East (1·0% [0·5-1·9]). We estimated that 51% (95% CI 45-58) of people with laboratory-confirmed symptomatic chikungunya had chronic disability after infection and 4% (3-5) were admitted to hospital following infection. INTERPRETATION We inferred subnational heterogeneity in long-term average annual FOI and transmission dynamics and identified both endemic and epidemic settings across different countries. Brazil, Ethiopia, Malaysia, and India included both endemic and epidemic settings. Long-term average annual FOI was higher in epidemic settings than endemic settings. However, long-term cumulative incidence of chikungunya can be similar between large outbreaks in epidemic settings with a high FOI and endemic settings with a relatively low FOI. FUNDING International Vaccine Institute.
Collapse
Affiliation(s)
- Hyolim Kang
- London School of Hygiene and Tropical Medicine, London, UK; Seoul National University College of Medicine School, Seoul, South Korea.
| | | | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Clara Maure
- International Vaccine Institute, Seoul, South Korea
| | | | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge, UK
| | | | - Ahyoung Lim
- London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | - W John Edmunds
- London School of Hygiene and Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Sushant Sahastrabuddhe
- International Vaccine Institute, Seoul, South Korea; Centre International de Recherche en Infectiologie, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, Saint-Etienne, France
| | - Oliver J Brady
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kaja Abbas
- London School of Hygiene and Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Matson Z, Cooley G, Parameswaran N, Simon A, Bankamp B, Coughlin MM. shinyMBA: a novel R shiny application for quality control of the multiplex bead assay for serosurveillance studies. Sci Rep 2024; 14:7442. [PMID: 38548772 PMCID: PMC10978933 DOI: 10.1038/s41598-024-57652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
The multiplex bead assay (MBA) based on Luminex xMAP technology can be used as a tool to measure seroprevalence as part of population immunity evaluations to multiple antigens in large-scale serosurveys. However, multiplexing several antigens presents challenges for quality control (QC) assessments of the data because multiple parameters must be evaluated for each antigen. MBA QC parameters include monitoring bead counts and median fluorescence intensity (MFI) for each antigen in plate wells, and performance of assay controls included on each plate. Analyzing these large datasets to identify plates failing QC standards presents challenges for many laboratories. We developed a novel R Shiny application, shinyMBA, to expedite the MBA QC processes and reduce the risk of user error. The app allows users to rapidly merge multi-plate assay outputs to evaluate bead count, MFI, and performance of assay controls using statistical process control charts for all antigen targets simultaneously. The utility of the shinyMBA application and its various outputs are demonstrated using data from 32 synthetic xPONENT files with 3 multiplex antigens and two population serosurveillance studies that evaluated 1200 and 3871 samples, respectively, for 20 multiplexed antigens. The shinyMBA open-source code is available for download and modification at https://github.com/CDCgov/shinyMBA . Incorporation of shinyMBA into Luminex serosurveillance workflows can vastly improve the speed and accuracy of QC processes.
Collapse
Affiliation(s)
- Zachary Matson
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Gretchen Cooley
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nishanth Parameswaran
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ashley Simon
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bettina Bankamp
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa M Coughlin
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
Anjos RO, Portilho MM, Jacob-Nascimento LC, Carvalho CX, Moreira PSS, Sacramento GA, Nery Junior NRR, de Oliveira D, Cruz JS, Cardoso CW, Argibay HD, Plante KS, Plante JA, Weaver SC, Kitron UD, Reis MG, Ko AI, Costa F, Ribeiro GS. Dynamics of chikungunya virus transmission in the first year after its introduction in Brazil: A cohort study in an urban community. PLoS Negl Trop Dis 2023; 17:e0011863. [PMID: 38150470 PMCID: PMC10775974 DOI: 10.1371/journal.pntd.0011863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/09/2024] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND The first chikungunya virus (CHIKV) outbreaks during the modern scientific era were identified in the Americas in 2013, reaching high attack rates in Caribbean countries. However, few cohort studies have been performed to characterize the initial dynamics of CHIKV transmission in the New World. METHODOLOGY/PRINCIPAL FINDINGS To describe the dynamics of CHIKV transmission shortly after its introduction in Brazil, we performed semi-annual serosurveys in a long-term community-based cohort of 652 participants aged ≥5 years in Salvador, Brazil, between Feb-Apr/2014 and Nov/2016-Feb/2017. CHIKV infections were detected using an IgG ELISA. Cumulative seroprevalence and seroincidence were estimated and spatial aggregation of cases was investigated. The first CHIKV infections were identified between Feb-Apr/2015 and Aug-Nov/2015 (incidence: 10.7%) and continued to be detected at low incidence in subsequent surveys (1.7% from Aug-Nov/2015 to Mar-May/2016 and 1.2% from Mar-May/2016 to Nov/206-Feb/2017). The cumulative seroprevalence in the last survey reached 13.3%. It was higher among those aged 30-44 and 45-59 years (16.1% and 15.6%, respectively), compared to younger (12.4% and 11.7% in <15 and 15-29 years, respectively) or older (10.3% in ≥60 years) age groups, but the differences were not statistically significant. The cumulative seroprevalence was similar between men (14.7%) and women (12.5%). Yet, among those aged 15-29 years, men were more often infected than women (18.1% vs. 7.4%, respectively, P = 0.01), while for those aged 30-44, a non-significant opposite trend was observed (9.3% vs. 19.0%, respectively, P = 0.12). Three spatial clusters of cases were detected in the study site and an increased likelihood of CHIKV infection was detected among participants who resided with someone with CHIKV IgG antibodies. CONCLUSIONS/SIGNIFICANCE Unlike observations in other settings, the initial spread of CHIKV in this large urban center was limited and focal in certain areas, leaving a high proportion of the population susceptible to further outbreaks. Additional investigations are needed to elucidate the factors driving CHIKV spread dynamics, including understanding differences with respect to dengue and Zika viruses, in order to guide prevention and control strategies for coping with future outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nivison R. R. Nery Junior
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Hernan D. Argibay
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Kenneth S. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jessica A. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Uriel D. Kitron
- Emory University, Atlanta, Georgia, United States of America
| | - Mitermayer G. Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Yale University, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Yale University, New Haven, Connecticut, United States of America
| | - Federico Costa
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
- Yale University, New Haven, Connecticut, United States of America
- University of Liverpool, Liverpool, United Kingdom
- Lancaster University, Lancaster, United Kingdom
| | - Guilherme S. Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Skalinski LM, Santos AES, Paixão E, Itaparica M, Barreto F, da Conceição Nascimento Costa M, Teixeira MG. Chikungunya seroprevalence in population-based studies: a systematic review and meta-analysis. Arch Public Health 2023; 81:80. [PMID: 37127721 PMCID: PMC10150504 DOI: 10.1186/s13690-023-01081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Seroprevalence studies about chikungunya infection are usually conducted after epidemics to estimate the magnitude of the attack. This study aimed to estimate the seroprevalence of CHIKV by WHO region, considering the periods of introduction of the virus in these regions and its potential to lead to epidemics. METHODS We systematically reviewed Medline/Pubmed, Embase, Lilacs, Scopus and Web of Science for original articles published up to 2020. Cohort, case-control and cross-sectional studies were eligible for inclusion, based on the results of laboratory diagnosis of previous or previous and recent infection. Those conducted with symptomatic individuals were excluded. RESULTS 596 articles were identified, 197 full-text were reviewed and 64 were included, resulting in 71 seroprevalences. Most were cross-sectional studies (92%), between 2001 and 2020 (92%), with population of all ages (55%), conducted in Kenya (10.9%), Brazil (9.4%) and French Polynesia (7.8%). The pooled estimates were 24% (95%CI 19-29; I2 = 99.7%; p < 0.00), being 21% (95%CI 13-30; I2 = 99.5%; p < 0.00) for adults, 7% (95%CI 0-23; I2 = 99.7%; p < 0.00) for children and 30% (95%CI 23-38; I2 = 99.7%; p < 0.00) for all ages. The higher seroprevalences were found in African, the Americas and South-East Asian Regions. CONCLUSIONS The great heterogeneity of seroprevalences points to the persistence of viral circulation. Even where the seroprevalence is high, the population replacement and the absence of vaccines mean that the risk of virus spread and epidemics remains. REGISTRATION PROSPERO CRD42020166227.
Collapse
Affiliation(s)
- Lacita Menezes Skalinski
- Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, s/n, Salobrinho, Ilhéus, CEP 45662-900, BA, Brasil.
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil.
| | - Aline Elena Sacramento Santos
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Enny Paixão
- London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Martha Itaparica
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Florisneide Barreto
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | | | - Maria Glória Teixeira
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| |
Collapse
|
5
|
Whitley CS, Mitchell TC. Monobiotinylated Proteins Tethered to Microspheres for Detection of Antigen-Specific Serum Antibodies. J Biol Methods 2022; 8:e164. [PMID: 36438426 PMCID: PMC9682163 DOI: 10.14440/jbm.2022.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Surface modified microspheres have been leveraged as a useful way to immobilize antigen for serological studies. The use of carboxyl modified microspheres for this purpose is well-established, but commonly associated with technical challenges. Streptavidin modified microspheres require little technical expertise and thus address some of the shortcomings of carboxyl microspheres. An additional feature of streptavidin microspheres is the use of mono-biotinylated proteins, which contain a single biotinylation motif at the C-terminus. However, the relative performance of streptavidin and carboxyl microspheres is unknown. Here, we performed a head-to-head comparison of streptavidin and carboxyl microspheres. We compared antigen binding, orientation, and staining quality and found that both microspheres perform similarly based on these defined parameters. We also evaluated the utility of streptavidin microspheres bound to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD), to reliably detect RBD-specific IgG1, IgG3, and IgA1 produced in individuals recently immunized with Pfizer/BioNTech mRNA coronavirus disease (COVID) vaccine as 'proof-of-concept'. We provide evidence that each of the antibody targets are detectable in serum using RBD-coated microspheres, Ig-specific 'detector' monoclonal antibodies (mAbs), and flow cytometry. We found that cross-reactivity of the detector mAbs can be minimized by antibody titration to improve differentiation between IgG1 and IgG3. We also coated streptavidin microspheres with SARS-CoV-2 delta variant RBD to determine if the streptavidin microsphere approach revealed any differences in binding of immune serum antibodies to wild-type (Wuhan) versus variant RBD (Delta). Overall, our results show that streptavidin microspheres loaded with mono-biotinylated antigen is a robust alternative to chemically cross-linking antigen to carboxyl microspheres for use in serological assays.
Collapse
Affiliation(s)
| | - Thomas C. Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 505 S. Hancock St., Louisville KY 40202
| |
Collapse
|
6
|
Adaptation to a Multiplex Bead Assay and Seroprevalence to Rift Valley Fever N Protein: Nampula Province, Mozambique, 2013-2014. J Virol 2022; 96:e0067222. [PMID: 35894603 PMCID: PMC9400480 DOI: 10.1128/jvi.00672-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rift Valley fever virus (RVFV) is endemic in sub-Saharan Africa (SSA), with outbreaks reported in the Arabian Peninsula and throughout SSA. The natural reservoir for RVFV are ruminants, with livestock populations exceeding 50% exposure rates in some areas of SSA. Transmission to humans can occur through exposure to infected livestock products or multiple species of mosquito vectors. In 2013 and 2014, cross-sectional surveys occurred in two districts of Nacala-a-Velha and Mecubúri in northern Mozambique, and participants provided blood samples for later serological assays. IgG against the N protein of RVFV was detected through multiplex bead assay (MBA). Of the 2,278 persons enrolled between the two surveys and study sites, 181 (7.9%, 95% confidence interval (CI): 6.9%-9.1%) were found to be IgG seropositive with increasing seroprevalence with older age and significantly higher seroprevalence in Nacala-a-Velha (10.5%, 8.8%-12.5%) versus Mecubúri (5.7%, 4.5%-7.1%). Seroprevalence estimates were not significantly different between the 2013 and 2014 surveys. Significant spatial clustering of IgG positive persons were consistent among surveys and within the two districts, pointing toward the consistency of serology data for making population-level assumptions regarding RVFV seroprevalence. A subset of persons (n = 539) provided samples for both the 2013 and 2014 surveys, and a low percentage (0.81%) of these were found to seroconvert between these two surveys. Including the RVFV N protein in an MBA antigen panel could assist elucidate RVFV exposure in SSA. IMPORTANCE Due to sporadic transmission, human contact with Rift Valley Fever Virus (RVFV) is difficult to ascertain at a population level. Detection of antibodies against RVFV antigens assist in estimating exposure as antibodies remain in the host long after the virus has been cleared. In this study, we show that antibodies against RVFV N protein can be detected from dried blood spot (DBS) samples being assayed by multiplex bead assay. DBS from two districts in northern Mozambique were tested for IgG against the N protein, and 7.9% of all enrolled persons were seropositive. Older persons, males, and persons residing closer to the coast had higher RVFV N protein seroprevalence. Spatial clustering of IgG positive persons was noted in both districts. These results show low exposure rates to RVFV in these two northern districts in Mozambique, and the ability to perform serology for the RVFV N protein from dried blood samples.
Collapse
|
7
|
Chan Y, Martin D, Mace KE, Jean SE, Stresman G, Drakeley C, Chang MA, Lemoine JF, Udhayakumar V, Lammie PJ, Priest JW, Rogier EW. Multiplex Serology for Measurement of IgG Antibodies Against Eleven Infectious Diseases in a National Serosurvey: Haiti 2014-2015. Front Public Health 2022; 10:897013. [PMID: 35757611 PMCID: PMC9218545 DOI: 10.3389/fpubh.2022.897013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Integrated surveillance for multiple diseases can be an efficient use of resources and advantageous for national public health programs. Detection of IgG antibodies typically indicates previous exposure to a pathogen but can potentially also serve to assess active infection status. Serological multiplex bead assays have recently been developed to simultaneously evaluate exposure to multiple antigenic targets. Haiti is an island nation in the Caribbean region with multiple endemic infectious diseases, many of which have a paucity of data for population-level prevalence or exposure. Methods A nationwide serosurvey occurred in Haiti from December 2014 to February 2015. Filter paper blood samples (n = 4,438) were collected from participants in 117 locations and assayed for IgG antibodies on a multiplex bead assay containing 15 different antigens from 11 pathogens: Plasmodium falciparum, Toxoplasma gondii, lymphatic filariasis roundworms, Strongyloides stercoralis, chikungunya virus, dengue virus, Chlamydia trachomatis, Treponema pallidum, enterotoxigenic Escherichia coli, Entamoeba histolytica, and Cryptosporidium parvum. Results Different proportions of the Haiti study population were IgG seropositive to the different targets, with antigens from T. gondii, C. parvum, dengue virus, chikungunya virus, and C. trachomatis showing the highest rates of seroprevalence. Antibody responses to T. pallidum and lymphatic filariasis were the lowest, with <5% of all samples IgG seropositive to antigens from these pathogens. Clear trends of increasing seropositivity and IgG levels with age were seen for all antigens except those from chikungunya virus and E. histolytica. Parametric models were able to estimate the rate of seroconversion and IgG acquisition per year for residents of Haiti. Conclusions Multiplex serological assays can provide a wealth of information about population exposure to different infectious diseases. This current Haitian study included IgG targets for arboviral, parasitic, and bacterial infectious diseases representing multiple different modes of host transmission. Some of these infectious diseases had a paucity or complete absence of published serological studies in Haiti. Clear trends of disease burden with respect to age and location in Haiti can be used by national programs and partners for follow-up studies, resource allocation, and intervention planning.
Collapse
Affiliation(s)
- YuYen Chan
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Diana Martin
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kimberly E Mace
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Samuel E Jean
- Population Services International/Organization Haïtienne de Marketing Social Pour la Santé, Port-au-Prince, Haiti
| | - Gillian Stresman
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michelle A Chang
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jean F Lemoine
- Programme National de Contrôle de la Malaria/MSPP, Port-au-Prince, Haiti
| | - Venkatachalam Udhayakumar
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Patrick J Lammie
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeffrey W Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eric William Rogier
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
8
|
Determining seropositivity-A review of approaches to define population seroprevalence when using multiplex bead assays to assess burden of tropical diseases. PLoS Negl Trop Dis 2021; 15:e0009457. [PMID: 34181665 PMCID: PMC8270565 DOI: 10.1371/journal.pntd.0009457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/09/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background Serological surveys with multiplex bead assays can be used to assess seroprevalence to multiple pathogens simultaneously. However, multiple methods have been used to generate cut-off values for seropositivity and these may lead to inconsistent interpretation of results. A literature review was conducted to describe the methods used to determine cut-off values for data generated by multiplex bead assays. Methodology/Principal findings A search was conducted in PubMed that included articles published from January 2010 to January 2020, and 308 relevant articles were identified that included the terms “serology”, “cut-offs”, and “multiplex bead assays”. After application of exclusion of articles not relevant to neglected tropical diseases (NTD), vaccine preventable diseases (VPD), or malaria, 55 articles were examined based on their relevance to NTD or VPD. The most frequently applied approaches to determine seropositivity included the use of presumed unexposed populations, mixture models, receiver operating curves (ROC), and international standards. Other methods included the use of quantiles, pre-exposed endemic cohorts, and visual inflection points. Conclusions/Significance For disease control programmes, seropositivity is a practical and easily interpretable health metric but determining appropriate cut-offs for positivity can be challenging. Considerations for optimal cut-off approaches should include factors such as methods recommended by previous research, transmission dynamics, and the immunological backgrounds of the population. In the absence of international standards for estimating seropositivity in a population, the use of consistent methods that align with individual disease epidemiological data will improve comparability between settings and enable the assessment of changes over time. Serological surveys can provide information regarding population-level disease exposure by assessing immune responses created during infection. Multiplex bead assays (MBAs) allow for an integrated serological platform to monitor antibody responses to multiple pathogens concurrently. As programs adopt integrated disease control strategies, MBAs are especially advantageous since many of these diseases may be present in the same population and antibodies against all pathogens of interest can be detected simultaneously from a single blood sample. Interpreting serological data in a programmatic context typically involves classifying individuals as seronegative or seropositive using a ‘cut-off’, whereby anyone with a response above the defined threshold is considered to be seropositive. Although studies increasingly test blood samples with MBAs, published studies have applied different methods of determining seropositivity cut-offs, making results difficult to compare across settings and over time. The lack of harmonized methods for defining seropositivity is due to the absence of international standards, pathogen biology, or assay-specific methods that may impact resulting data. This review highlights the need for a standardized approach for which cut-off methods to use per pathogen when applied to integrated disease surveillance using platforms such as MBAs.
Collapse
|
9
|
Anjos RO, Mugabe VA, Moreira PSS, Carvalho CX, Portilho MM, Khouri R, Sacramento GA, Nery NRR, Reis MG, Kitron UD, Ko AI, Costa F, Ribeiro GS. Transmission of Chikungunya Virus in an Urban Slum, Brazil. Emerg Infect Dis 2021; 26:1364-1373. [PMID: 32568045 PMCID: PMC7323528 DOI: 10.3201/eid2607.190846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
After a chikungunya outbreak in Salvador, Brazil, we performed a cross-sectional, community-based study of 1,776 inhabitants to determine chikungunya virus (CHIKV) seroprevalence, identify factors associated with exposure, and estimate the symptomatic infection rate. From November 2016 through February 2017, we collected sociodemographic and clinical data by interview and tested serum samples for CHIKV IgG. CHIKV seroprevalence was 11.8% (95% CI 9.8%–13.7%), and 15.3% of seropositive persons reported an episode of fever and arthralgia. Infections were independently and positively associated with residences served by unpaved streets, a presumptive clinical diagnosis of chikungunya, and recall of an episode of fever with arthralgia in 2015–2016. Our findings indicate that the chikungunya outbreak in Salvador may not have conferred sufficient herd immunity to preclude epidemics in the near future. The unusually low frequency of symptomatic disease points to a need for further longitudinal studies to better investigate these findings.
Collapse
|
10
|
Curlier E, Fagour L, Herrmann-Storck C, Staelen A, Vingadassalom I, Breurec S, Abel S, Pierre-François S, Jean-Marie J, Laouénan C, Césaire R, Hoen B, Cabié A. Seroprevalence of chikungunya virus infection among HIV-infected adults in French Caribbean Islands of Martinique and Guadeloupe in 2015: A cross-sectional study. PLoS Negl Trop Dis 2021; 15:e0009267. [PMID: 33836004 PMCID: PMC8059839 DOI: 10.1371/journal.pntd.0009267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/21/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In 2014, a first outbreak of chikungunya hit the Caribbean area where chikungunya virus (CHIKV) had never circulated before. METHODOLOGY/PRINCIPAL FINDINGS We conducted a cross-sectional study to measure the seroprevalence of CHIKV immediately after the end of the 2014 outbreak in HIV-infected people followed up in two clinical cohorts at the University hospitals of Guadeloupe and Martinique. Study patients were identified during the first months of 2015 and randomly selected to match the age and sex distribution of the general population in the two islands. They were invited to complete a survey that explored the symptoms consistent with chikungunya they could have developed during 2014 and to have a blood sample drawn for CHIKV serology. The study population consisted of 377 patients (198 in Martinique and 179 in Guadeloupe, 178 men and 199 women), 182 of whom reported they had developed symptoms consistent with chikungunya. CHIKV serology was positive in 230 patients, which accounted for an overall seroprevalence rate of 61% [95%CI 56-66], with only 153 patients who reported symptoms consistent with chikungunya. Most frequent symptoms included arthralgia (94.1%), fever (73.2%), myalgia (53.6%), headache (45.8%), and skin rash (26.1%). CONCLUSIONS/SIGNIFICANCE This study showed that the seroprevalence of CHIKV infection was 61% after the 2014 outbreak, with one third of asymptomatic infections. TRIAL REGISTRATION ClinicalTrials.gov NCT02553369.
Collapse
Affiliation(s)
- Elodie Curlier
- Department of Infectious Diseases, CHU de la Guadeloupe, Pointe-à-Pitre, France
- INSERM Centre d’Investigation Clinique Antilles-Guyane, Cayenne, France
- * E-mail:
| | - Laurence Fagour
- Department of Microbiology, CHU de la Martinique, Fort-de-France, France
| | | | - Adrien Staelen
- Department of Infectious Diseases, CHU de la Martinique, Fort-de-France, France
| | | | - Sébastien Breurec
- Department of Microbiology, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Sylvie Abel
- Department of Infectious Diseases, CHU de la Martinique, Fort-de-France, France
- Université des Antilles, EA 4537, Fort de France, France
| | | | | | - Cédric Laouénan
- INSERM, IAME, UMR 1137; Université Paris Diderot, Paris, France
| | - Raymond Césaire
- Department of Microbiology, CHU de la Martinique, Fort-de-France, France
- Université des Antilles, EA 4537, Fort de France, France
| | - Bruno Hoen
- Department of Infectious Diseases, CHU de la Guadeloupe, Pointe-à-Pitre, France
- INSERM Centre d’Investigation Clinique Antilles-Guyane, Cayenne, France
- Université des Antilles, EA 4537, Fort de France, France
| | - André Cabié
- INSERM Centre d’Investigation Clinique Antilles-Guyane, Cayenne, France
- Department of Infectious Diseases, CHU de la Martinique, Fort-de-France, France
- Université des Antilles, EA 4537, Fort de France, France
| |
Collapse
|
11
|
Fong CHY, Cai JP, Dissanayake TK, Chen LL, Choi CYK, Wong LH, Ng ACK, Pang PKP, Ho DTY, Poon RWS, Chung TWH, Sridhar S, Chan KH, Chan JFW, Hung IFN, Yuen KY, To KKW. Improved Detection of Antibodies against SARS-CoV-2 by Microsphere-Based Antibody Assay. Int J Mol Sci 2020; 21:E6595. [PMID: 32916926 PMCID: PMC7555114 DOI: 10.3390/ijms21186595] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
Currently available COVID-19 antibody tests using enzyme immunoassay (EIA) or immunochromatographic assay have variable sensitivity and specificity. Here, we developed and evaluated a novel microsphere-based antibody assay (MBA) for detecting immunoglobulin G (IgG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (NP) and spike protein receptor binding domain (RBD). The seropositive cutoff value was set using a cohort of 294 anonymous serum specimens collected in 2018. The specificity was assessed using serum specimens collected from organ donors or influenza patients before 2020. Seropositive rate was determined among COVID-19 patients. Time-to-seropositivity and signal-to-cutoff (S/CO) ratio were compared between MBA and EIA. MBA had a specificity of 100% (93/93; 95% confidence interval (CI), 96-100%) for anti-NP IgG, 98.9% (92/93; 95% CI 94.2-100%) for anti-RBD IgG. The MBA seropositive rate for convalescent COVID-19 patients was 89.8% (35/39) for anti-NP IgG and 79.5% (31/39) for anti-RBD IgG. The time-to-seropositivity was shorter with MBA than EIA. MBA could better differentiate between COVID-19 patients and negative controls with higher S/CO ratio for COVID-19 patients, lower S/CO ratio with negative controls and fewer specimens in the equivocal range. MBA is robust, simple and is suitable for clinical microbiology laboratory for the accurate determination of anti-SARS-CoV-2 antibodies for diagnosis, serosurveillance, and vaccine trials.
Collapse
Affiliation(s)
- Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Jian-Piao Cai
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Thrimendra Kaushika Dissanayake
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Lin-Lei Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Charlotte Yee-Ki Choi
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Lok-Hin Wong
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Anthony Chin-Ki Ng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Polly K. P. Pang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Deborah Tip-Yin Ho
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Rosana Wing-Shan Poon
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China; (R.W.-S.P.); (T.W.-H.C.)
| | - Tom Wai-Hin Chung
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China; (R.W.-S.P.); (T.W.-H.C.)
| | - Siddharth Sridhar
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Jasper Fuk-Woo Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (C.H.-Y.F.); (J.-P.C.); (T.K.D.); (L.-L.C.); (C.Y.-K.C.); (L.-H.W.); (A.C.-K.N.); (P.K.P.P.); (D.T.-Y.H.); (S.S.); (K.-H.C.); (J.F.-W.C.); (K.-Y.Y.)
| |
Collapse
|
12
|
Ribeiro GS, Hamer GL, Diallo M, Kitron U, Ko AI, Weaver SC. Influence of herd immunity in the cyclical nature of arboviruses. Curr Opin Virol 2020; 40:1-10. [PMID: 32193135 PMCID: PMC7434662 DOI: 10.1016/j.coviro.2020.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
We review and contrast the evidence for an effect of amplifying host herd immunity on circulation and human exposure to arboviruses. Herd immunity of short-lived West Nile virus avian amplifying hosts appears to play a limited role in levels of enzootic circulation and spillover infections of humans, which are not amplifiers. In contrast, herd immunity of nonhuman primate hosts for enzootic Zika, dengue, and chikungunya viruses is much stronger and appears to regulate to a large extent the periodicity of sylvatic amplification in Africa. Following the recent Zika and chikungunya pandemics, human herd immunity in the Americas quickly rose to ∼50% in many regions, although seroprevalence remains patchy. Modeling from decades of chikungunya circulation in Asia suggests that this level of herd immunity will suppress for many years major chikungunya and Zika epidemics in the Americas, followed by smaller outbreaks as herd immunity cycles with a periodicity of up to several decades.
Collapse
Affiliation(s)
- Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil; Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Uriel Kitron
- Population Biology, Ecology, and Evolution Graduate Program, Graduate Division of Biological and Biomedical Sciences, Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555-0610 TX, USA.
| |
Collapse
|
13
|
Seck MC, Badiane AS, Thwing J, Moss D, Fall FB, Gomis JF, Deme AB, Diongue K, Sy M, Mbaye A, Ndiaye T, Gaye A, Ndiaye YD, Diallo MA, Ndiaye D, Rogier E. Serological Data Shows Low Levels of Chikungunya Exposure in Senegalese Nomadic Pastoralists. Pathogens 2019; 8:pathogens8030113. [PMID: 31357631 PMCID: PMC6789836 DOI: 10.3390/pathogens8030113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 12/28/2022] Open
Abstract
The chikungunya virus (CHIKV) is spread by Aedes aegypti and Ae. albopictus mosquitos worldwide; infection can lead to disease including joint pain, fever, and rash, with some convalescent persons experiencing chronic symptoms. Historically, CHIKV transmission has occurred in Africa and Asia, but recent outbreaks have taken place in Europe, Indonesia, and the Americas. From September to October 2014, a survey was undertaken with nomadic pastoralists residing in the northeast departments of Senegal. Blood dried on filter paper (dried blood spots; DBS) were collected from 1465 participants of all ages, and assayed for Immunoglobulin G (IgG) antibodies against CHIKV E1 antigen by a bead-based multiplex assay. The overall seroprevalence of all participants to CHIKV E1 was 2.7%, with no persons under 10 years of age found to be antibody positive. Above 10 years of age, clear increases of seroprevalence and IgG levels were observed with increasing age; 7.6% of participants older than 50 years were found to be positive for anti-CHIKV IgG. Reported net ownership, net usage, and gender were all non-significant explanatory variables of seropositivity. These data show a low-level historical exposure of this pastoralist population to CHIKV, with no evidence of recent CHIKV transmission in the past decade.
Collapse
Affiliation(s)
- Mame Cheikh Seck
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal.
| | - Aida Sadikh Badiane
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Julie Thwing
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- President's Malaria Initiative, Atlanta, GA 30303, USA
| | - Delynn Moss
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Fatou Ba Fall
- Senegal National Malaria Control Program, Dakar 999066, Senegal
| | - Jules Francois Gomis
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Awa Bineta Deme
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Khadim Diongue
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Mohamed Sy
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Aminata Mbaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Tolla Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Aminata Gaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Yaye Die Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Mamadou Alpha Diallo
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Daouda Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|