1
|
Pezeshkian F, Shahriarirad R, Mahram H. An overview of the role of chemokine CX3CL1 (Fractalkine) and CX3C chemokine receptor 1 in systemic sclerosis. Immun Inflamm Dis 2024; 12:e70034. [PMID: 39392260 PMCID: PMC11467895 DOI: 10.1002/iid3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrosis, vascular damage, and immune dysregulation. Fractalkine or chemokine (C-X3-C motif) ligand 1 (CX3CL1), a chemokine and adhesion molecule, along with its receptor CX3CR1, have been implicated in the inflammatory processes of SSc. CX3CL1 functions as both a chemoattractant and an adhesion molecule, guiding immune cell trafficking. This systematic review examines the role of CX3CL1 and its receptor CX3CR1 in the pathogenesis of SSc, with a focus on pulmonary and vascular complications. METHODS A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to November 2020. The search focused on studies investigating the CX3CL1/CX3CR1 axis in the context of SSc. RESULTS The review identified elevated CX3CL1 expression in SSc patients, particularly in the skin and lungs, where CX3CR1 is expressed on infiltrating immune cells. Higher levels of CX3CL1 were correlated with the severity of interstitial lung disease in SSc patients, indicating a potential predictive marker for disease progression. CX3CR1-positive monocytes and NK cells were recruited to inflamed tissues, contributing to fibrosis and tissue damage. Animal studies showed that inhibition of the CX3CL1/CX3CR1 axis reduced fibrosis and improved vascular function. CONCLUSION The CX3CL1/CX3CR1 axis plays a key role in immune cell recruitment and fibrosis in SSc. Elevated CX3CL1 levels are associated with lung and vascular complications, making it a potential biomarker for disease progression and a promising therapeutic target.
Collapse
Affiliation(s)
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical SciencesShirazIran
| | | |
Collapse
|
2
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
3
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy. Cells 2022; 11:cells11152291. [PMID: 35892588 PMCID: PMC9332450 DOI: 10.3390/cells11152291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.
Collapse
|
6
|
Gomes C, Sequeira C, Likhite S, Dennys CN, Kolb SJ, Shaw PJ, Vaz AR, Kaspar BK, Meyer K, Brites D. Neurotoxic Astrocytes Directly Converted from Sporadic and Familial ALS Patient Fibroblasts Reveal Signature Diversities and miR-146a Theragnostic Potential in Specific Subtypes. Cells 2022; 11:cells11071186. [PMID: 35406750 PMCID: PMC8997588 DOI: 10.3390/cells11071186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
A lack of stratification methods in patients with amyotrophic lateral sclerosis (ALS) is likely implicated in therapeutic failures. Regional diversities and pathophysiological abnormalities in astrocytes from mice with SOD1 mutations (mSOD1-ALS) can now be explored in human patients using somatic cell reprogramming. Here, fibroblasts from four sporadic (sALS) and three mSOD1-ALS patients were transdifferentiated into induced astrocytes (iAstrocytes). ALS iAstrocytes were neurotoxic toward HB9-GFP mouse motor neurons (MNs) and exhibited subtype stratification through GFAP, CX43, Ki-67, miR-155 and miR-146a expression levels. Up- (two cases) and down-regulated (three cases) miR-146a values in iAstrocytes were recapitulated in their secretome, either free or as cargo in small extracellular vesicles (sEVs). We previously showed that the neuroprotective phenotype of depleted miR-146 mSOD1 cortical astrocytes was reverted by its mimic. Thus, we tested such modulation in the most miR-146a-depleted patient-iAstrocytes (one sALS and one mSOD1-ALS). The miR-146a mimic in ALS iAstrocytes counteracted their reactive/inflammatory profile and restored miR-146a levels in sEVs. A reduction in lysosomal activity and enhanced synaptic/axonal transport-related genes in NSC-34 MNs occurred after co-culture with miR-146a-modulated iAstrocytes. In summary, the regulation of miR-146a in depleted ALS astrocytes may be key in reestablishing their normal function and in restoring MN lysosomal/synaptic dynamic plasticity in disease sub-groups.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
| | - Shibi Likhite
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Cassandra N. Dennys
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA;
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK;
| | - Ana R. Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Brian K. Kaspar
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathrin Meyer
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217946450
| |
Collapse
|
7
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Garcia G, Pinto S, Cunha M, Fernandes A, Koistinaho J, Brites D. Neuronal Dynamics and miRNA Signaling Differ between SH-SY5Y APPSwe and PSEN1 Mutant iPSC-Derived AD Models upon Modulation with miR-124 Mimic and Inhibitor. Cells 2021; 10:cells10092424. [PMID: 34572073 PMCID: PMC8465877 DOI: 10.3390/cells10092424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Neuronal miRNA dysregulation may have a role in the pathophysiology of Alzheimer's disease (AD). miRNA(miR)-124 is largely abundant and a critical player in many neuronal functions. However, the lack of models reliably recapitulating AD pathophysiology hampers our understanding of miR-124's role in the disease. Using the classical human SH-SY5Y-APP695 Swedish neuroblastoma cells (SH-SWE) and the PSEN1 mutant iPSC-derived neurons (iNEU-PSEN), we observed a sustained upregulation of miR-124/miR-125b/miR-21, but only miR-124 was consistently shuttled into their exosomes. The miR-124 mimic reduced APP gene expression in both AD models. While miR-124 mimic in SH-SWE neurons led to neurite outgrowth, mitochondria activation and small Aβ oligomer reduction, in iNEU-PSEN cells it diminished Tau phosphorylation, whereas miR-124 inhibitor decreased dendritic spine density. In exosomes, cellular transfection with the mimic predominantly downregulated miR-125b/miR-21/miR-146a/miR-155. The miR-124 inhibitor upregulated miR-146a in the two experimental cell models, while it led to distinct miRNA signatures in cells and exosomes. In sum, though miR-124 function may be dependent on the neuronal AD model, data indicate that keeping miR-124 level strictly controlled is crucial for proper neuronal function. Moreover, the iNEU-PSEN cellular model stands out as a useful tool for AD mechanistic studies and perhaps for the development of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sara Pinto
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Mar Cunha
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; or
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Correspondence: ; Tel.: +351-217946450
| |
Collapse
|
9
|
How Are Adenosine and Adenosine A 2A Receptors Involved in the Pathophysiology of Amyotrophic Lateral Sclerosis? Biomedicines 2021; 9:biomedicines9081027. [PMID: 34440231 PMCID: PMC8392384 DOI: 10.3390/biomedicines9081027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Adenosine is extensively distributed in the central and peripheral nervous systems, where it plays a key role as a neuromodulator. It has long been implicated in the pathogenesis of progressive neurogenerative disorders such as Parkinson’s disease, and there is now growing interest in its role in amyotrophic lateral sclerosis (ALS). The motor neurons affected in ALS are responsive to adenosine receptor function, and there is accumulating evidence for beneficial effects of adenosine A2A receptor antagonism. In this article, we focus on recent evidence from ALS clinical pathology and animal models that support dynamism of the adenosinergic system (including changes in adenosine levels and receptor changes) in ALS. We review the possible mechanisms of chronic neurodegeneration via the adenosinergic system, potential biomarkers and the acute symptomatic pharmacology, including respiratory motor neuron control, of A2A receptor antagonism to explore the potential of the A2A receptor as target for ALS therapy.
Collapse
|
10
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Di Paolo A, Garat J, Eastman G, Farias J, Dajas-Bailador F, Smircich P, Sotelo-Silveira JR. Functional Genomics of Axons and Synapses to Understand Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:686722. [PMID: 34248504 PMCID: PMC8267896 DOI: 10.3389/fncel.2021.686722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.
Collapse
Affiliation(s)
- Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Polo de Desarrollo Universitario “Espacio de Biología Vegetal del Noreste”, Centro Universitario Regional Noreste, Universidad de la República (UdelaR), Tacuarembó, Uruguay
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, Nottingham, United Kingdom
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
12
|
Barbosa M, Gomes C, Sequeira C, Gonçalves-Ribeiro J, Pina CC, Carvalho LA, Moreira R, Vaz SH, Vaz AR, Brites D. Recovery of Depleted miR-146a in ALS Cortical Astrocytes Reverts Cell Aberrancies and Prevents Paracrine Pathogenicity on Microglia and Motor Neurons. Front Cell Dev Biol 2021; 9:634355. [PMID: 33968923 PMCID: PMC8103001 DOI: 10.3389/fcell.2021.634355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive astrocytes in Amyotrophic Lateral Sclerosis (ALS) change their molecular expression pattern and release toxic factors that contribute to neurodegeneration and microglial activation. We and others identified a dysregulated inflammatory miRNA profile in ALS patients and in mice models suggesting that they represent potential targets for therapeutic intervention. Such cellular miRNAs are known to be released into the secretome and to be carried by small extracellular vesicles (sEVs), which may be harmful to recipient cells. Thus, ALS astrocyte secretome may disrupt cell homeostasis and impact on ALS pathogenesis. Previously, we identified a specific aberrant signature in the cortical brain of symptomatic SOD1-G93A (mSOD1) mice, as well as in astrocytes isolated from the same region of 7-day-old mSOD1 mice, with upregulated S100B/HMGB1/Cx43/vimentin and downregulated GFAP. The presence of downregulated miR-146a on both cases suggests that it can be a promising target for modulation in ALS. Here, we upregulated miR-146a with pre-miR-146a, and tested glycoursodeoxycholic acid (GUDCA) and dipeptidyl vinyl sulfone (VS) for their immunoregulatory properties. VS was more effective in restoring astrocytic miR-146a, GFAP, S100B, HMGB1, Cx43, and vimentin levels than GUDCA, which only recovered Cx43 and vimentin mRNA. The miR-146a inhibitor generated typical ALS aberrancies in wild type astrocytes that were abolished by VS. Similarly, pre-miR-146a transfection into the mSOD1 astrocytes abrogated aberrant markers and intracellular Ca2+ overload. Such treatment counteracted miR-146a depletion in sEVs and led to secretome-mediated miR-146a enhancement in NSC-34-motor neurons (MNs) and N9-microglia. Secretome from mSOD1 astrocytes increased early/late apoptosis and FGFR3 mRNA in MNs and microglia, but not when derived from pre-miR-146a or VS-treated cells. These last strategies prevented the impairment of axonal transport and synaptic dynamics by the pathological secretome, while also averted microglia activation through either secretome, or their isolated sEVs. Proteomic analysis of the target cells indicated that pre-miR-146a regulates mitochondria and inflammation via paracrine signaling. We demonstrate that replenishment of miR-146a in mSOD1 cortical astrocytes with pre-miR-146a or by VS abrogates their phenotypic aberrancies and paracrine deleterious consequences to MNs and microglia. These results propose miR-146a as a new causal and emerging therapeutic target for astrocyte pathogenic processes in ALS.
Collapse
Affiliation(s)
- Marta Barbosa
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Cátia Gomes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Sequeira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luís A Carvalho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Sannigrahi A, Chowdhury S, Das B, Banerjee A, Halder A, Kumar A, Saleem M, Naganathan AN, Karmakar S, Chattopadhyay K. The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS model. eLife 2021; 10:e61453. [PMID: 33825682 PMCID: PMC8087447 DOI: 10.7554/elife.61453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
| | - Sourav Chowdhury
- Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Bidisha Das
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource development Centre CampusGhaziabadIndia
| | | | | | - Amaresh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)BhubaneswarIndia
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research (NISER)BhubaneswarIndia
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennaiIndia
| | | | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource development Centre CampusGhaziabadIndia
| |
Collapse
|
14
|
Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells 2021; 10:cells10030686. [PMID: 33804596 PMCID: PMC8003660 DOI: 10.3390/cells10030686] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or “pruning”) of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients’ long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.
Collapse
|
15
|
Hitachi K, Nakatani M, Kiyofuji Y, Inagaki H, Kurahashi H, Tsuchida K. An Analysis of Differentially Expressed Coding and Long Non-Coding RNAs in Multiple Models of Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:ijms22052558. [PMID: 33806354 PMCID: PMC7961583 DOI: 10.3390/ijms22052558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The loss of skeletal muscle mass (muscle atrophy or wasting) caused by aging, diseases, and injury decreases quality of life, survival rates, and healthy life expectancy in humans. Although long non-coding RNAs (lncRNAs) have been implicated in skeletal muscle formation and differentiation, their precise roles in muscle atrophy remain unclear. In this study, we used RNA-sequencing (RNA-Seq) to examine changes in the expression of lncRNAs in four muscle atrophy conditions (denervation, casting, fasting, and cancer cachexia) in mice. We successfully identified 33 annotated lncRNAs and 18 novel lncRNAs with common expression changes in all four muscle atrophy conditions. Furthermore, an analysis of lncRNA–mRNA correlations revealed that several lncRNAs affected small molecule biosynthetic processes during muscle atrophy. These results provide novel insights into the lncRNA-mediated regulatory mechanism underlying muscle atrophy and may be useful for the identification of promising therapeutic targets.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
- Faculty of Rehabilitation and Care, Seijoh University, Tokai 476-0014, Japan
| | - Yuri Kiyofuji
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
| | - Hidehito Inagaki
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake 470-1192, Japan; (H.I.); (H.K.)
- Division of Molecular Genetics, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan
| | - Hiroki Kurahashi
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake 470-1192, Japan; (H.I.); (H.K.)
- Division of Molecular Genetics, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
- Correspondence: ; Tel.: +81-(562)-93-9384
| |
Collapse
|
16
|
de Jongh R, Spijkers XM, Pasteuning-Vuhman S, Vulto P, Pasterkamp RJ. Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices. J Neurochem 2021; 157:393-412. [PMID: 33382092 DOI: 10.1111/jnc.15289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disease affecting upper and lower motor neurons with no cure available. Clinical and animal studies reveal that the neuromuscular junction (NMJ), a synaptic connection between motor neurons and skeletal muscle fibers, is highly vulnerable in ALS and suggest that NMJ defects may occur at the early stages of the disease. However, mechanistic insight into how NMJ dysfunction relates to the onset and progression of ALS is incomplete, which hampers therapy development. This is, in part, caused by a lack of robust in vitro models. The ability to combine microfluidic and induced pluripotent stem cell (iPSC) technologies has opened up new avenues for studying molecular and cellular ALS phenotypes in vitro. Microfluidic devices offer several advantages over traditional culture approaches when modeling the NMJ, such as the spatial separation of different cell types and increased control over the cellular microenvironment. Moreover, they are compatible with 3D cell culture, which enhances NMJ functionality and maturity. Here, we review how microfluidic technology is currently being employed to develop more reliable in vitro NMJ models. To validate and phenotype such models, various morphological and functional read-outs have been developed. We describe and discuss the relevance of these read-outs and specifically illustrate how these read-outs have enhanced our understanding of NMJ pathology in ALS. Finally, we share our view on potential future directions and challenges.
Collapse
Affiliation(s)
- Rianne de Jongh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Xandor M Spijkers
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul Vulto
- Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Kim BW, Ryu J, Jeong YE, Kim J, Martin LJ. Human Motor Neurons With SOD1-G93A Mutation Generated From CRISPR/Cas9 Gene-Edited iPSCs Develop Pathological Features of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2020; 14:604171. [PMID: 33328898 PMCID: PMC7710664 DOI: 10.3389/fncel.2020.604171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by gradual degeneration and elimination of motor neurons (MNs) in the motor cortex, brainstem, and spinal cord. Some familial forms of ALS are caused by genetic mutations in superoxide dismutase 1 (SOD1) but the mechanisms driving MN disease are unclear. Identifying the naturally occurring pathology and understanding how this mutant SOD1 can affect MNs in translationally meaningful ways in a valid and reliable human cell model remains to be established. Here, using CRISPR/Cas9 genome editing system and human induced pluripotent stem cells (iPSCs), we generated highly pure, iPSC-derived MNs with a SOD1-G93A missense mutation. With the wild-type cell line serving as an isogenic control and MNs from a patient-derived iPSC line with an SOD1-A4V mutation as a comparator, we identified pathological phenotypes relevant to ALS. The mutant MNs accumulated misfolded and aggregated forms of SOD1 in cell bodies and processes, including axons. They also developed distinctive axonal pathologies. Mutants had axonal swellings with shorter axon length and less numbers of branch points. Moreover, structural and molecular abnormalities in presynaptic and postsynaptic size and density were found in the mutants. Finally, functional studies with microelectrode array demonstrated that the individual mutant MNs exhibited decreased number of spikes and diminished network bursting, but increased burst duration. Taken together, we identified spontaneous disease phenotypes relevant to ALS in mutant SOD1 MNs from genome-edited and patient-derived iPSCs. Our findings demonstrate that SOD1 mutations in human MNs cause cell-autonomous proteinopathy, axonopathy, synaptic pathology, and aberrant neurotransmission.
Collapse
Affiliation(s)
- Byung Woo Kim
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiwon Ryu
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ye Eun Jeong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Gomes C, Sequeira C, Barbosa M, Cunha C, Vaz AR, Brites D. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp Cell Res 2020; 395:112209. [PMID: 32739211 DOI: 10.1016/j.yexcr.2020.112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Astrocytes are major contributors of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). We investigated whether regional and cell maturation differences influence ALS astrocyte malfunction. Spinal and cortical astrocytes from SOD1G93A (mSOD1) 7-day-old mice were cultured for 5 and 13 days in vitro (DIV). Astrocyte aberrancies predominated in 13DIV cells with region specificity. 13DIV cortical mSOD1 astrocytes showed early morphological changes and a predominant reactive and inflammatory phenotype, while repressed proteins and genes were found in spinal cells. Inflammatory-associated miRNAs, e.g. miR-155/miR-21/miR-146a, were downregulated in the first and upregulated in the later ones. Interestingly, depleted miR-155/miR-21/miR-146a in small extracellular vesicles (sEVs/exosomes) was a common pathological feature. Cortical mSOD1 astrocytes induced late apoptosis and kinesin-1 downregulation in mSOD1 NSC-34 MNs, whereas spinal cells upregulated dynein, while decreased nNOS and synaptic-related genes. Both regional-distinct mSOD1 astrocytes enhanced iNOS gene expression in mSOD1 MNs. We provide information on the potential contribution of astrocytes to ALS bulbar-vs. spinal-onset pathology, local influence on neuronal dysfunction and their shared miRNA-depleted exosome trafficking. These causal and common features may have potential therapeutic implications in ALS. Future studies should clarify if astrocyte-derived sEVs are active players in ALS-related neuroinflammation and glial activation.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Marta Barbosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
19
|
Sidisky JM, Babcock DT. Visualizing Synaptic Degeneration in Adult Drosophila in Association with Neurodegeneration. J Vis Exp 2020. [PMID: 32478750 DOI: 10.3791/61363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Drosophila serves as a useful model for assessing synaptic structure and function associated with neurodegenerative diseases. While much work has focused on neuromuscular junctions (NMJs) in Drosophila larvae, assessing synaptic integrity in adult Drosophila has received much less attention. Here we provide a straightforward method for dissection of the dorsal longitudinal muscles (DLMs), which are required for flight ability. In addition to flight as a behavioral readout, this dissection allows for the both DLM synapses and muscle tissue to be amenable to structural analysis using fluorescently labeled antibodies for synaptic markers or proteins of interest. This protocol allows for the evaluation of the structural integrity of synapses in adult Drosophila during aging to model the progressive, age-dependent nature of most neurodegenerative diseases.
Collapse
|
20
|
de Diego AMG, Ortega-Cruz D, García AG. Disruption of Exocytosis in Sympathoadrenal Chromaffin Cells from Mouse Models of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21061946. [PMID: 32178443 PMCID: PMC7139653 DOI: 10.3390/ijms21061946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Synaptic disruption and altered neurotransmitter release occurs in the brains of patients and in murine models of neurodegenerative diseases (NDDs). During the last few years, evidence has accumulated suggesting that the sympathoadrenal axis is also affected as disease progresses. Here, we review a few studies done in adrenal medullary chromaffin cells (CCs), that are considered as the amplifying arm of the sympathetic nervous system; the sudden fast exocytotic release of their catecholamines—stored in noradrenergic and adrenergic cells—plays a fundamental role in the stress fight-or-flight response. Bulk exocytosis and the fine kinetics of single-vesicle exocytotic events have been studied in mouse models carrying a mutation linked to NDDs. For instance, in R6/1 mouse models of Huntington’s disease (HD), mutated huntingtin is overexpressed in CCs; this causes decreased quantal secretion, smaller quantal size and faster kinetics of the exocytotic fusion pore, pore expansion, and closure. This was accompanied by decreased sodium current, decreased acetylcholine-evoked action potentials, and attenuated [Ca2+]c transients with faster Ca2+ clearance. In the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS), CCs exhibited secretory single-vesicle spikes with a slower release rate but higher exocytosis. Finally, in the APP/PS1 mouse model of Alzheimer’s disease (AD), the stabilization, expansion, and closure of the fusion pore was faster, but the secretion was attenuated. Additionally, α-synuclein that is associated with Parkinson’s disease (PD) decreases exocytosis and promotes fusion pore dilation in adrenal CCs. Furthermore, Huntington-associated protein 1 (HAP1) interacts with the huntingtin that, when mutated, causes Huntington’s disease (HD); HAP1 reduces full fusion exocytosis by affecting vesicle docking and controlling fusion pore stabilization. The alterations described here are consistent with the hypothesis that central alterations undergone in various NDDs are also manifested at the peripheral sympathoadrenal axis to impair the stress fight-or-flight response in patients suffering from those diseases. Such alterations may occur: (i) primarily by the expression of mutated disease proteins in CCs; (ii) secondarily to stress adaptation imposed by disease progression and the limitations of patient autonomy.
Collapse
Affiliation(s)
- Antonio M. G. de Diego
- Instituto Teófilo Hernando, Departamento. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.M.G.d.D.); (D.O.-C.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Diana Ortega-Cruz
- Instituto Teófilo Hernando, Departamento. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.M.G.d.D.); (D.O.-C.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Antonio G. García
- Instituto Teófilo Hernando, Departamento. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.M.G.d.D.); (D.O.-C.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-5384
| |
Collapse
|
21
|
Ricciardi D, Todisco V, Tedeschi G, Trojsi F, Cirillo G. Altered sensory-motor plasticity in amyotrophic lateral sclerosis and complex regional pain type I syndrome: a shared mechanism? Neurol Sci 2020; 41:1919-1921. [DOI: 10.1007/s10072-020-04317-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
|
22
|
Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M, Tsuchida K. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci 2020; 21:ijms21051628. [PMID: 32120896 PMCID: PMC7084395 DOI: 10.3390/ijms21051628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Shiori Funasaki
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Ikumi Hijikata
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Mizuki Maekawa
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan;
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
- Correspondence: ; Tel.: +81-562-93-9384
| |
Collapse
|
23
|
Maurel C, Chami AA, Thépault RA, Marouillat S, Blasco H, Corcia P, Andres CR, Vourc'h P. A role for SUMOylation in the Formation and Cellular Localization of TDP-43 Aggregates in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 57:1361-1373. [PMID: 31728929 DOI: 10.1007/s12035-019-01810-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
In amyotrophic lateral sclerosis, motor neurons undergoing degeneration are characterized by the presence of cytoplasmic aggregates containing TDP-43 protein. SUMOylation, a posttranslational modification of proteins, has been previously implicated in the formation of aggregates positives for SOD1, another protein enriched in a subset of ALS patients. We show in this study that TDP-43 is also a target of SUMOylation. The inhibition of the first step of the SUMOylation process by anacardic acid significantly reduces the presence of TDP-43 aggregates and improves neuritogenesis and cell viability in vitro. Interestingly, the mutation of the unique SUMOylation site on TDP-43, using site-directed mutagenesis, modifies the intracellular localization of TDP-43 aggregates. Instead of being cytoplasmic where they are associated with toxic effects, they are located inside the nucleus. This change of localization results in improvement in cell viability and in global cellular functions. Our results implicate the SUMOylation site of TDP-43 in the formation of cytoplasmic TDP-43 aggregates, a hallmark of ALS, and thus identifies this region as a new target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Cindy Maurel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - Anna A Chami
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Hélène Blasco
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - Christian R Andres
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Patrick Vourc'h
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| |
Collapse
|
24
|
Limanaqi F, Biagioni F, Ryskalin L, Busceti CL, Fornai F. Molecular Mechanisms Linking ALS/FTD and Psychiatric Disorders, the Potential Effects of Lithium. Front Cell Neurosci 2019; 13:450. [PMID: 31680867 PMCID: PMC6797817 DOI: 10.3389/fncel.2019.00450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Altered proteostasis, endoplasmic reticulum (ER) stress, abnormal unfolded protein response (UPR), mitochondrial dysfunction and autophagy impairment are interconnected events, which contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). In recent years, the mood stabilizer lithium was shown to potentially modify ALS/FTD beyond mood disorder-related pathology. The effects of lithium are significant in ALS patients carrying genetic variations in the UNC13 presynaptic protein, which occur in ALS/FTD and psychiatric disorders as well. In the brain, lithium modulates a number of biochemical pathways involved in synaptic plasticity, proteostasis, and neuronal survival. By targeting UPR-related events, namely ER stress, excitotoxicity and autophagy dysfunction, lithium produces plastic effects. These are likely to relate to neuroprotection, which was postulated for mood and motor neuron disorders. In the present manuscript, we try to identify and discuss potential mechanisms through which lithium copes concomitantly with ER stress, UPR and autophagy dysfunctions related to UNC13 synaptic alterations and aberrant RNA and protein processing. This may serve as a paradigm to provide novel insights into the neurobiology of ALS/FTD featuring early psychiatric disturbances.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
25
|
Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1 G93A Mouse Model for ALS. J Neurosci 2019; 39:8798-8815. [PMID: 31530644 DOI: 10.1523/jneurosci.1214-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.
Collapse
|
26
|
Bennett JP, Keeney PM, Brohawn DG. RNA Sequencing Reveals Small and Variable Contributions of Infectious Agents to Transcriptomes of Postmortem Nervous Tissues From Amyotrophic Lateral Sclerosis, Alzheimer's Disease and Parkinson's Disease Subjects, and Increased Expression of Genes From Disease-Activated Microglia. Front Neurosci 2019; 13:235. [PMID: 30983949 PMCID: PMC6447612 DOI: 10.3389/fnins.2019.00235] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Nervous tissues from both humans with neurodegenerative diseases (NDD) and animals with genetic models of human NDD, such as rare monogenic causes of Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), show activated microglia, suggesting a potential causal role for inflammation in pathogenesis of NDD. We performed paired-end (PE) RNA sequencing (RNA seq) of total RNA's extracted from frozen sections of cervical spinal cords from ALS and CTL subjects, frontal cortical gray matter ribbons of AD and CTL subjects, and ventral midbrains of PD and CTL subjects. Trimmed PE reads were aligned against the hg38 human transcriptome using Tophat2/Bowtie2 (ALS) or HISAT2 (AD and PD) and quantitated with Cufflinks. PE reads were also aligned using Bowtie2 against genomes from representative species of Toxoplasma gondii and Trichinella sp. T6 (parasitic infectious agents), Babesia microti and Borrelia burgdorferi (tick-vector borne agents), and Treponema denticola and Porphyromonas gingivalis, agents causing chronic gingivitis. Primary aligned reads of each agent in each tissue sample were quantitated with SAMtools. We found small percentages (<0.1%) of transcriptomes aligned with B. microti, B. burgdorferi, T. denticola, and P. gingivalis genomes and larger percentages aligned with T. gondii (0.1-0.2%) and Trichinella sp. T6 (1.0-1.1%) genomes. In AD specimens, but in no others, primary aligned transcriptome percentages, although small, approached significance for being greater in AD compared to CTL samples for B. burgdorferi (p = 0.067) and P. gingivalis (p = 0.068). Genes' expressions in postmortem tissues of AD and ALS but not PD revealed significant changes among disease-associated microglial (DAM) genes. Infectious agents' transcripts can be detected in RNA seq reads of both NDD and CTL tissues and vary from agent to agent. Expressions of Stage 1 and Stage 2 DAM genes significantly changed, suggesting the presence of Stages 1 and 2 DAM in our NDD tissue samples.
Collapse
Affiliation(s)
- James P Bennett
- Neurodegeneration Therapeutics, Inc., Charlottesville, VA, United States.,Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Paula M Keeney
- Neurodegeneration Therapeutics, Inc., Charlottesville, VA, United States.,Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, VA, United States
| | - David G Brohawn
- Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Medical Genetics, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
27
|
Gulino R, Vicario N, Giunta MAS, Spoto G, Calabrese G, Vecchio M, Gulisano M, Leanza G, Parenti R. Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss. Int J Mol Sci 2019; 20:ijms20061500. [PMID: 30917493 PMCID: PMC6471664 DOI: 10.3390/ijms20061500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.
Collapse
Affiliation(s)
- Rosario Gulino
- Laboratory of Neurophysiology, Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Nunzio Vicario
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Maria A S Giunta
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Graziana Spoto
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Giovanna Calabrese
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele" and Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy.
| | - Massimo Gulisano
- Laboratory of Synthetic and Systems Biology, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Giampiero Leanza
- Laboratory of Neurogenesis and Repair, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Rosalba Parenti
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| |
Collapse
|
28
|
Sengupta-Ghosh A, Dominguez SL, Xie L, Barck KH, Jiang Z, Earr T, Imperio J, Phu L, Budayeva HG, Kirkpatrick DS, Cai H, Eastham-Anderson J, Ngu H, Foreman O, Hedehus M, Reichelt M, Hotzel I, Shang Y, Carano RAD, Ayalon G, Easton A. Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1 G93A mouse model of ALS. Neurobiol Dis 2018; 124:340-352. [PMID: 30528255 DOI: 10.1016/j.nbd.2018.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons, is characterized by rapid decline of motor function and ultimately respiratory failure. As motor neuron death occurs late in the disease, therapeutics that prevent the initial disassembly of the neuromuscular junction may offer optimal functional benefit and delay disease progression. To test this hypothesis, we treated the SOD1G93A mouse model of ALS with an agonist antibody to muscle specific kinase (MuSK), a receptor tyrosine kinase required for the formation and maintenance of the neuromuscular junction. Chronic MuSK antibody treatment fully preserved innervation of the neuromuscular junction when compared with control-treated mice; however, no preservation of diaphragm function, motor neurons, or survival benefit was detected. These data show that anatomical preservation of neuromuscular junctions in the diaphragm via MuSK activation does not correlate with functional benefit in SOD1G93A mice, suggesting caution in employing MuSK activation as a therapeutic strategy for ALS patients.
Collapse
Affiliation(s)
| | - Sara L Dominguez
- Departments of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Luke Xie
- Departments of Biomedical Imaging, Genentech, South San Francisco, CA, USA
| | - Kai H Barck
- Departments of Biomedical Imaging, Genentech, South San Francisco, CA, USA
| | - Zhiyu Jiang
- Departments of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Timothy Earr
- Departments of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Jose Imperio
- Departments of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Lilian Phu
- Departments of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Hanna G Budayeva
- Departments of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Departments of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Hao Cai
- Departments of Preclinical and Translational Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | | | - Hai Ngu
- Departments of Pathology, Genentech, South San Francisco, CA, USA
| | - Oded Foreman
- Departments of Pathology, Genentech, South San Francisco, CA, USA
| | - Maj Hedehus
- Departments of Biomedical Imaging, Genentech, South San Francisco, CA, USA
| | - Michael Reichelt
- Departments of Pathology, Genentech, South San Francisco, CA, USA
| | - Isidro Hotzel
- Departments of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Yonglei Shang
- Departments of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Richard A D Carano
- Departments of Biomedical Imaging, Genentech, South San Francisco, CA, USA
| | - Gai Ayalon
- Departments of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Amy Easton
- Departments of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
29
|
Gomes C, Cunha C, Nascimento F, Ribeiro JA, Vaz AR, Brites D. Cortical Neurotoxic Astrocytes with Early ALS Pathology and miR-146a Deficit Replicate Gliosis Markers of Symptomatic SOD1G93A Mouse Model. Mol Neurobiol 2018; 56:2137-2158. [DOI: 10.1007/s12035-018-1220-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
|
30
|
ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons. Cell Death Dis 2018; 9:626. [PMID: 29799519 PMCID: PMC5967323 DOI: 10.1038/s41419-018-0682-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes.
Collapse
|
31
|
Houck AL, Seddighi S, Driver JA. At the Crossroads Between Neurodegeneration and Cancer: A Review of Overlapping Biology and Its Implications. Curr Aging Sci 2018; 11:77-89. [PMID: 29552989 PMCID: PMC6519136 DOI: 10.2174/1874609811666180223154436] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND A growing body of epidemiologic evidence suggests that neurodegenerative diseases occur less frequently in cancer survivors, and vice versa. While unusual, this inverse comorbidity is biologically plausible and could be explained, in part, by the evolutionary tradeoffs made by neurons and cycling cells to optimize the performance of their very different functions. The two cell types utilize the same proteins and pathways in different, and sometimes opposite, ways. However, cancer and neurodegeneration also share many pathophysiological features. OBJECTIVE In this review, we compare three overlapping aspects of neurodegeneration and cancer. METHOD First, we contrast the priorities and tradeoffs of dividing cells and neurons and how these manifest in disease. Second, we consider the hallmarks of biological aging that underlie both neurodegeneration and cancer. Finally, we utilize information from genetic databases to outline specific genes and pathways common to both diseases. CONCLUSION We argue that a detailed understanding of the biologic and genetic relationships between cancer and neurodegeneration can guide future efforts in designing disease-modifying therapeutic interventions. Lastly, strategies that target aging may prevent or delay both conditions.
Collapse
Affiliation(s)
- Alexander L. Houck
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahba Seddighi
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jane A. Driver
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System and the Division of Aging, Department of Medicine, Brigham and Women ‘s Hospital, Harvard Medical School (J.A.D.), Boston, MA, USA
| |
Collapse
|
32
|
Perry S, Han Y, Das A, Dickman D. Homeostatic plasticity can be induced and expressed to restore synaptic strength at neuromuscular junctions undergoing ALS-related degeneration. Hum Mol Genet 2017; 26:4153-4167. [PMID: 28973139 PMCID: PMC5886083 DOI: 10.1093/hmg/ddx304] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/09/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is debilitating neurodegenerative disease characterized by motor neuron dysfunction and progressive weakening of the neuromuscular junction (NMJ). Hereditary ALS is strongly associated with variants in the human C9orf72 gene. We have characterized C9orf72 pathology at the Drosophila NMJ and utilized several approaches to restore synaptic strength in this model. First, we demonstrate a dramatic reduction in synaptic arborization and active zone number at NMJs following C9orf72 transgenic expression in motor neurons. Further, neurotransmission is similarly reduced at these synapses, consistent with severe degradation. However, despite these defects, C9orf72 synapses still retain the ability to express presynaptic homeostatic plasticity, a fundamental and adaptive form of NMJ plasticity in which perturbation to postsynaptic neurotransmitter receptors leads to a retrograde enhancement in presynaptic release. Next, we show that these endogenous but dormant homeostatic mechanisms can be harnessed to restore synaptic strength despite C9orf72 pathogenesis. Finally, activation of regenerative signaling is not neuroprotective in motor neurons undergoing C9orf72 toxicity. Together, these experiments define synaptic dysfunction at NMJs experiencing ALS-related degradation and demonstrate the potential to activate latent plasticity as a novel therapeutic strategy to restore synaptic strength.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
- USC Neuroscience Graduate Program, Los Angeles, CA 90089, USA
| | - Anushka Das
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
33
|
Herrando-Grabulosa M, Mulet R, Pujol A, Mas JM, Navarro X, Aloy P, Coma M, Casas C. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems. PLoS One 2016; 11:e0147626. [PMID: 26807587 PMCID: PMC4726541 DOI: 10.1371/journal.pone.0147626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.
Collapse
Affiliation(s)
- Mireia Herrando-Grabulosa
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Roger Mulet
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
| | - Albert Pujol
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | | | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Mireia Coma
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
- * E-mail: (CC); (MC)
| | - Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
- * E-mail: (CC); (MC)
| |
Collapse
|