1
|
Singh I, Kim J, Touhidul Islam SM, Fei Q, Singh AK, Won J. The role of S-nitrosoglutathione reductase (GSNOR) in T cell-mediated immunopathology of experimental autoimmune encephalomyelitis (EAE). Neuroscience 2025; 564:1-12. [PMID: 39532197 DOI: 10.1016/j.neuroscience.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Previously, we reported that both S-nitrosoglutathione (GSNO), a carrier of cellular nitric oxide, and N6022, an injectable form of GSNO reductase (GSNOR) inhibitor that increases endogenous GSNO levels, alleviate experimental autoimmune encephalomyelitis (EAE) in mice by suppressing Th1 and Th17 immune responses. Building on these findings, we explored the role of GSNOR in EAE pathogenesis and evaluated the efficacy of an orally active GSNOR inhibitor (N91115) in treating the EAE disease. EAE mice exhibited heightened expression/activity of GSNOR in the spinal cord, and the knockout of the GSNOR gene resulted in much milder clinical manifestations of EAE, with lower degrees of demyelination and axonal loss, reduced microglial and astrocyte activations, as well as suppressed Th1 and Th17 cell responses, alongside bolstered Treg immune responses. Next, we evaluated the efficacy of N91115 against EAE immunopathology. Consistent with our findings in GSNOR deficient EAE mice, daily N91115 administration reduced clinical EAE severity, with less spinal cord demyelination and axonal loss compared to untreated EAE mice. Furthermore, N91115 treated EAE mice showed diminished Th1 and Th17 immune responses and enhanced Treg responses. This observation underscores the potential of increased GSNOR expression and activity as a risk factor exacerbating EAE immunopathology, while simultaneously highlighting its potential as a target for modifying the disease. Furthermore, the balanced immune regulation provided by orally active N91115 (IL-6/IL-17a vs. IL-10) presents a promising alternative to immunosuppressive drugs, reducing the risk of opportunistic infections.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/metabolism
- Spinal Cord/immunology
- Mice, Inbred C57BL
- Female
- Mice, Knockout
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Mice
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Aldehyde Oxidoreductases/metabolism
- Aldehyde Oxidoreductases/antagonists & inhibitors
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Alcohol Dehydrogenase
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Qiao Fei
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
2
|
Wang L, Lu D, Wang X, Wang Z, Li W, Chen G. The effects of nitric oxide in Alzheimer's disease. Med Gas Res 2024; 14:186-191. [PMID: 39073326 DOI: 10.4103/2045-9912.385939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2023] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent cause of dementia, is a progressive neurodegenerative condition that commences subtly and inexorably worsens over time. Despite considerable research, a specific drug that can fully cure or effectively halt the progression of AD remains elusive. Nitric oxide (NO), a crucial signaling molecule in the nervous system, is intimately associated with hallmark pathological changes in AD, such as amyloid-beta deposition and tau phosphorylation. Several therapeutic strategies for AD operate through the nitric oxide synthase/NO system. However, the potential neurotoxicity of NO introduces an element of controversy regarding its therapeutic utility in AD. This review focuses on research findings concerning NO's role in experimental AD and its underlying mechanisms. Furthermore, we have proposed directions for future research based on our current comprehension of this critical area.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Dubey H, Dubey A, Gulati K, Ray A. S-nitrosoglutathione modulates HDAC2 and BDNF levels in the brain and improves cognitive deficits in experimental model of Alzheimer's disease in rats. Int J Neurosci 2024; 134:777-785. [PMID: 36408590 DOI: 10.1080/00207454.2022.2150190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
AIM Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by cognitive deficits and abnormal memory formation. Histone acetylation is essential for hippocampal memory formation and improving the cognitive deficits, and histone deacetylase 2 (HDAC2) is increased in the hippocampus of AD patients. The present study evaluated the effects of the nitric oxide (NO) mimetics, L-arginine and the nitrosothiol NO donor, s-nitrosoglutathione (GSNO), on memory and brain HDAC2 levels in experimental animal model of sporadic Alzheimer's disease (sAD). METHODS AD was induced experimentally in rats by intracerebroventricular injection of streptozotocin (STZ, 3mg/kg). The effects of NO mimetics, GSNO and L-arginine, were assessed on STZ induced cognitive deficits in the Morris water maze (MWM) test, and, following this, the hippocampal homogenates were assayed for amyloid-β, brain derived neurotropic factor (BDNF) and HDAC2 levels. The neurobehavioral and biochemical data of the drug treated groups were compared with those of experimental control group. RESULTS The results showed that icv-STZ induced cognitive deficits were differentially attenuated by GSNO (50µg/kg) and, to a lesser extent, L-arginine (100mg/kg) with improvement in the spatial learning tasks in MWM test. These behavioral changes were associated with decreased levels of biochemical markers viz. amyloid β, BDNF and HDAC2 levels in hippocampus. CONCLUSIONS It is inferred that NO donors like GSNO could influence AD pathophysiology via epigenetic modification of HDAC2 inhibition.
Collapse
Affiliation(s)
- Harikesh Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anamika Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Hamdard University, New Delhi, India
| |
Collapse
|
4
|
Zhang M, Jia F, Wang Q, Yang C, Wang X, Liu T, Tang Q, Yang Z, Wang H. Kapβ2 Inhibits Perioperative Neurocognitive Disorders in Rats with Mild Cognitive Impairment by Reversing the Nuclear-Cytoplasmic Mislocalization of hnRNPA2/B1. Mol Neurobiol 2024; 61:4488-4507. [PMID: 38102516 DOI: 10.1007/s12035-023-03789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Harmful stimuli trigger mutations lead to uncontrolled accumulation of hnRNPA2/B1 in the cytoplasm, exacerbating neuronal damage. Kapβ2 mediates the bidirectional transport of most substances between the cytoplasm and the nucleus. Kapβ2 guides hnRNPA2/B1 back into the nucleus and restores its function, alleviating related protein toxicity. Here, we aim to explore the involvement of Kapβ2 in neurodegeneration in rats with MCI following sevoflurane anesthesia and surgery. Firstly, novel object recognition test and Barnes maze were conducted to assess behavioral performances, and we found Kapβ2 positively regulated the recovery of memory and cognitive function. In vivo electrophysiological experiments revealed that the hippocampal theta rhythm energy distribution was disrupted, coherence was reduced, and long-term potentiation was attenuated in MCI rats. LTP was greatly improved with positive modulation of Kapβ2. Next, functional MRI and BOLD imaging will be employed to examine the AFLL and FC values of dynamic connectivity between the cortex and hippocampus of the brain. The findings show that regulating Kapβ2 in the hippocampus region enhances functional activity and connections between brain regions in MCI rats. WB results showed that increasing Kapβ2 expression improved the expression and recovery of cognitive-related proteins in the hippocampus of MCI rats. Finally, WB and immunofluorescence were used to examine the changes in hnRNPA2/B1 expression in the nucleus and cytoplasm after overexpression of Kapβ2, and it was found that nucleocytoplasmic mis location was alleviated. Overall, these data show that Kapβ2 reverses the nucleoplasmic misalignment of hnRNPA2/B1, which slows neurodegeneration towards dementia in MCI after sevoflurane anesthesia and surgery. Our findings may lead to new approaches for perioperative neuroprotection of MCI patients.
Collapse
Affiliation(s)
- Miao Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Feiyu Jia
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Qiang Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Chenyi Yang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Xinyi Wang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Tianyue Liu
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Qingkai Tang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, China.
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
- Nankai University Affinity the Third Central Hospital, Tianjin, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China.
| |
Collapse
|
5
|
Dubey H, Ray A, Dubey A, Gulati K. S-Nitrosoglutathione Attenuates Oxidative Stress and Improves Retention Memory Dysfunctions in Intra-Cerebroventricular-Streptozotocin Rat Model of Sporadic Alzheimer's Disease via Activation of BDNF and Nuclear Factor Erythroid 2-Related Factor-2 Antioxidant Signaling Pathway. Neuropsychobiology 2024; 83:101-113. [PMID: 38744261 DOI: 10.1159/000538348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aβ)-40, Aβ42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aβ levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.
Collapse
Affiliation(s)
- Harikesh Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Arunabha Ray
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Departments of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Hamdard University, New Delhi, India
| | - Anamika Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Kavita Gulati
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
6
|
Jiang WR, Zhou YM, Wu W, Yang LJ, Wu Y, Zhang XY, Yao ZH. A circRNA ceRNA network involved in cognitive dysfunction after chronic cerebral hypoperfusion. Aging (Albany NY) 2024; 16:1161-1181. [PMID: 38231472 PMCID: PMC10866435 DOI: 10.18632/aging.205387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
Chronic Cerebral Hypoperfusion (CCH) is associated with cognitive dysfunction, the underlying mechanisms of which remain elusive, hindering the development of effective therapeutic approaches. In this study, we employed an established CCH animal model to delve into neuropathological alterations like oxidative stress, inflammation, neurotransmitter synthesis deficits, and other morphological alterations. Our findings revealed that while the number of neurons remained unchanged, there was a significant reduction in neuronal fibers post-CCH, as evidenced by microtubule-associated protein 2 (MAP2) staining. Moreover, myelin basic protein (MBP) staining showed exacerbated demyelination of neuronal fibers. Furthermore, we observed increased neuroinflammation, proliferation, and activation of astrocytes and microglia, as well as synaptic loss and microglial-mediated synapse engulfment post-CCH. Utilizing RNA sequencing, differential expression analysis displayed alterations in both mRNAs and circRNAs. Following gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, both showed significant enrichment in immunological and inflammation-related terms and pathways. Importantly, the differentially expressed circular RNAs (DE circRNAs) exhibited a notable coexpression pattern with DE mRNAs. The ternary circRNA-miRNA-mRNA competing endogenous RNAs (ceRNA) network was constructed, and subsequent analysis reiterated the significance of neuroimmunological and neuroinflammatory dysfunction in CCH-induced neuropathological changes and cognitive dysfunction. This study underscores the potential role of circRNAs in these processes, suggesting them as promising therapeutic targets to mitigate the detrimental effects of CCH.
Collapse
Affiliation(s)
- Wan-Rong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yong-Ming Zhou
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li-Jie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yuan Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
7
|
Kim J, Qiao F, Singh AK, Won J, Singh I. Efficacies of S-nitrosoglutathione (GSNO) and GSNO reductase inhibitor in SARS-CoV-2 spike protein induced acute lung disease in mice. Front Pharmacol 2023; 14:1304697. [PMID: 38143504 PMCID: PMC10748393 DOI: 10.3389/fphar.2023.1304697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially surfaced in late 2019, often triggers severe pulmonary complications, encompassing various disease mechanisms such as intense lung inflammation, vascular dysfunction, and pulmonary embolism. Currently, however, there's no drug addressing all these mechanisms simultaneously. This study explored the multi-targeting potential of S-nitrosoglutathione (GSNO) and N6022, an inhibitor of GSNO reductase (GSNOR) on markers of inflammatory, vascular, and thrombotic diseases related to COVID-19-induced acute lung disease. For this, acute lung disease was induced in C57BL/6 mice through intranasal administration of recombinant SARS-CoV-2 spike protein S1 domain (SP-S1). The mice exhibited fever, body weight loss, and increased blood levels and lung expression of proinflammatory cytokines (e.g., TNF-α and IL-6) as well as increased vascular inflammation mediated by ICAM-1 and VCAM-1 and lung infiltration by immune cells (e.g., neutrophils, monocytes, and activated cytotoxic and helper T cells). Further, the mice exhibited increased lung hyperpermeability (lung Evans blue extravasation) leading to lung edema development as well as elevated blood coagulation factors (e.g., fibrinogen, thrombin, activated platelets, and von Willebrand factor) and lung fibrin deposition. Similar to the patients with COVID-19, male mice showed more severe disease than female mice, along with higher GSNOR expression in the lungs. Optimization of GSNO by treatment with exogenous GSNO or inhibition of GSNOR by N6022 (or GSNO knockout) protects against SP-S1-induced lung diseases in both genders. These findings provide evidence for the potential efficacies of GSNO and GSNOR inhibitors in addressing the multi-mechanistic nature of SARS-CoV-2 SP-associated acute-lung disease.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| |
Collapse
|
8
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Liu X, Yang L, Zhang G, Ling J. Neuroprotective Effects of Phenolic Antioxidant Tert-butylhydroquinone (tBHQ) in Brain Diseases. Mol Neurobiol 2023; 60:4909-4923. [PMID: 37191855 DOI: 10.1007/s12035-023-03370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Human life and health are gravely threatened by brain diseases. The onset and progression of the illnesses are influenced by a variety of factors, including pathogenic causes, environmental factors, mental issues, etc. According to scientific studies, neuroinflammation and oxidative stress play a significant role in the development and incidence of brain diseases by producing pro-inflammatory cytokines and oxidative tissue damage to induce inflammation and apoptosis. Neuroinflammation, oxidative stress, and oxidative stress-related changes are inseparable factors in the etiology of several brain diseases. Numerous neurodegenerative diseases have undergone substantial research into the therapeutic alternatives that target oxidative stress, the function of oxidative stress, and the possible therapeutic use of antioxidants. Formerly, tBHQ is a synthetic phenolic antioxidant, which has been widely used as a food additive. According to recent researches, tBHQ can suppress the processes that lead to neuroinflammation and oxidative stress, which offers a fresh approach to treating brain diseases. In order to achieve the goal of decreasing inflammation and apoptosis, tBHQ is a specialized nuclear factor erythroid 2-related factor (Nrf2) activator that decreases oxidative stress and enhances antioxidant status by upregulating the Nrf2 gene and reducing nuclear factor kappa-B (NF-κB) activity. This article reviews the effects of tBHQ on neuroinflammation and oxidative stress in recent years and looks into how tBHQ inhibits neuroinflammation and oxidative stress through human, animal, and cell experiments to play a neuroprotective role in Alzheimer's disease (AD), stroke, depression, and Parkinson's disease (PD). It is anticipated that this article will be useful as a reference for upcoming research and the creation of drugs to treat brain diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Shandong Medical College, Linyi, 276000, China
| | - Luodan Yang
- College of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Endothelial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032909. [PMID: 36769234 PMCID: PMC9918222 DOI: 10.3390/ijms24032909] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
Collapse
|
12
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
13
|
Engineered extracellular vesicles: Regulating the crosstalk between the skeleton and immune system. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
14
|
Tian Z, Ji X, Liu J. Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. Int J Mol Sci 2022; 23:ijms23116224. [PMID: 35682903 PMCID: PMC9181710 DOI: 10.3390/ijms23116224] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is a major heterogeneous brain disease caused by multiple factors, and it is the second most common type of dementia in the world. It is caused by long-term chronic low perfusion in the whole brain or local brain area, and it eventually develops into severe cognitive dysfunction syndrome. Because of the disease’s ambiguous classification and diagnostic criteria, there is no clear treatment strategy for VCID, and the association between cerebrovascular pathology and cognitive impairment is controversial. Neuroinflammation is an immunological cascade reaction mediated by glial cells in the central nervous system where innate immunity resides. Inflammatory reactions could be triggered by various damaging events, including hypoxia, ischemia, and infection. Long-term chronic hypoperfusion-induced ischemia and hypoxia can overactivate neuroinflammation, causing apoptosis, blood–brain barrier damage and other pathological changes, triggering or aggravating the occurrence and development of VCID. In this review, we will explore the mechanisms of neuroinflammation induced by ischemia and hypoxia caused by chronic hypoperfusion and emphasize the important role of neuroinflammation in the development of VCID from the perspective of immune cells, immune mediators and immune signaling pathways, so as to provide valuable ideas for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Zhengming Tian
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China;
| | - Xunming Ji
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China;
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
- Correspondence: (X.J.); (J.L.); Tel.: +86-13520729063 (J.L.)
| | - Jia Liu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China;
- Correspondence: (X.J.); (J.L.); Tel.: +86-13520729063 (J.L.)
| |
Collapse
|
15
|
Sengupta S, Nath R, Bhattacharjee A. Characterizing the effect of S-nitrosoglutathione on Saccharomyces cerevisiae: Upregulation of alcohol dehydrogenase and inactivation of aconitase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci 2021; 15:688090. [PMID: 34489623 PMCID: PMC8418300 DOI: 10.3389/fnins.2021.688090] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the neural tissue. It separates the peripheral circulatory system from the brain parenchyma while facilitating communication. Alterations in the distinct physiological properties of the BBB lead to BBB breakdown associated with normal aging and various neurodegenerative diseases. In this review, we first briefly discuss the aging process, then review the phenotypes and mechanisms of BBB breakdown associated with normal aging that further cause neurodegeneration and cognitive impairments. We also summarize dementia such as Alzheimer's disease (AD) and vascular dementia (VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption in dementia correlated with cognition decline. Overlaps between AD and VaD are also discussed. Techniques that could identify biomarkers associated with BBB breakdown are briefly summarized. Finally, we concluded that BBB breakdown could be used as an emerging biomarker to assist to diagnose cognitive impairment associated with normal aging and dementia.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
18
|
Singh I, Kim J, Saxena N, Choi S, Islam SMT, Singh AK, Khan M, Won J. Vascular and immunopathological role of Asymmetric Dimethylarginine (ADMA) in Experimental Autoimmune Encephalomyelitis. Immunology 2021; 164:602-616. [PMID: 34310708 DOI: 10.1111/imm.13396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor/uncoupler inducing vascular pathology. Vascular pathology is an important factor for the development and progression of CNS pathology of MS, yet the role of ADMA in MS remains elusive. Patients with multiple sclerosis (MS) are reported to have elevated blood levels of ADMA, and mice with experimental autoimmune encephalomyelitis (EAE, an animal model of MS) generated by auto-immunization of myelin oligodendrocyte glycoprotein (MOG) and blood-brain barrier (BBB) disruption by pertussis toxin also had increased blood ADMA levels in parallel with induction of clinical disease. To explore the role of ADMA in EAE pathogenesis, EAE mice were treated with a daily dose of ADMA. It is of special interest that ADMA treatment enhanced the BBB disruption in EAE mice and exacerbated the clinical and CNS disease of EAE. ADMA treatment also induced the BBB disruption and EAE disease in MOG-immunized mice even without pertussis toxin treatment, suggesting the role of ADMA in BBB dysfunction in EAE. T-cell polarization studies also documented that ADMA treatment promotes TH 1- and TH 17-mediated immune responses but without affecting Treg-mediated immune response in EAE mice as well as in in vitro T-cell culture. Taken together, these data, for the first time, document the vascular and immunopathogenic roles of ADMA in EAE, thus pointing to the potential of ADMA-mediated mechanism as a new target of potential therapy for MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
19
|
Liu Y, Chen X, Gong Q, Shi J, Li F. Osthole Improves Cognitive Function of Vascular Dementia Rats: Reducing Aβ Deposition via Inhibition NLRP3 Inflammasome. Biol Pharm Bull 2021; 43:1315-1323. [PMID: 32879205 DOI: 10.1248/bpb.b20-00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular dementia (VD) is a common neurodegenerative disease, and the cognitive dysfunction is a major manifestation of VD. Lots of evidences showed that beta-amyloid (Aβ) deposition and neuroinflammation act as vital elements in the progress of VD. The previous studies showed that osthole (OST) can improve the cognitive function of VD and Alzheimer's disease (AD). However, the effect of OST on Aβ in VD brain is still unclear. Chronic cerebral hypoperfusion (CCH) of rats were used to investigate the effect of OST on Aβ through nod-like receptor protein 3 (NLRP3) inflammasome in this study. Morris Water Maze and Y-maze were used to test the spatial learning, memory and working abilities. Hematoxylin-eosin (H&E) and Nissl staining were used to observe the morphology and number of hippocampal neurons. Immunofluorescence staining was used to observe the number of microglia activated. Western blot was used to detect the expression of proteins. The study results showed that OST obviously enhanced the spatial learning, memory and working abilities induced by modified bilateral common carotid artery occlusion (BCCAO) in rats, improved the pathological damage of hippocampal neurons induced by BCCAO in rats, inhibited the activation of microglia induced by BCCAO in rats. Furthermore, this study also discovered that OST reduced Aβ deposition in VD hippocampus via inhibition the NLRP3 inflammasome. Together, these results suggest that OST reduces Aβ deposition via inhibition NLRP3 inflammasome in microglial in VD.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University.,School of Pharmacy, Zunyi Medical University
| | - Xia Chen
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University.,School of Pharmacy, Zunyi Medical University
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University.,School of Pharmacy, Zunyi Medical University
| | - Jingshan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University.,School of Pharmacy, Zunyi Medical University
| | - Fei Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University.,School of Pharmacy, Zunyi Medical University
| |
Collapse
|
20
|
Li M, Meng N, Guo X, Niu X, Zhao Z, Wang W, Xie X, Lv P. Dl-3-n-Butylphthalide Promotes Remyelination and Suppresses Inflammation by Regulating AMPK/SIRT1 and STAT3/NF-κB Signaling in Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2020; 12:137. [PMID: 32581761 PMCID: PMC7296049 DOI: 10.3389/fnagi.2020.00137] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelination in vascular dementia (VD) is partly attributable to inflammation induced by chronic cerebral hypoperfusion (CCH). Remyelination contributes to the recovery of cognitive impairment by inducing the proliferation and differentiation of oligodendrocyte progenitor cells. It was previously reported that Dl-3-n-butylphthalide (NBP) promotes cognitive improvement. However, whether NBP can stimulate remyelination and suppress inflammation after CCH remains unclear. To answer this question, the present study investigated the effects of NBP on remyelination in a rat model of CCH established by bilateral carotid artery occlusion. Functional recovery was evaluated with the Morris water maze (MWM) test, and myelin integrity, regeneration of mature oligodendrocytes, and inhibition of astrocyte proliferation were assessed by immunohistochemistry and histologic analysis. Additionally, activation of 5′ AMP-activated protein kinase (AMPK)/Sirtuin (SIRT)1 and Signal transducer and activator of transcription (STAT)3/nuclear factor (NF)-κB signaling pathways was evaluated by western blotting. The results showed that NBP treatment improved memory and learning performance in CCH rats, which was accompanied by increased myelin integrity and oligodendrocyte regeneration, and reduced astrocyte proliferation and inflammation. Additionally, NBP induced the activation of AMPK/SIRT1 signaling while inhibiting the STAT3/NF-κB pathway. These results indicate that NBP alleviates cognitive impairment following CCH by promoting remyelination and suppressing inflammation via modulation of AMPK/SIRT1 and STAT3/NF-κB signaling.
Collapse
Affiliation(s)
- Meixi Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Nan Meng
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Xin Guo
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Zhongmin Zhao
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Xiaohua Xie
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
21
|
Wang X, Ao J, Lu H, Zhao Q, Ma Y, Zhang J, Ren H, Zhang Y. Osteoimmune Modulation and Guided Osteogenesis Promoted by Barrier Membranes Incorporated with S-Nitrosoglutathione (GSNO) and Mesenchymal Stem Cell-Derived Exosomes. Int J Nanomedicine 2020; 15:3483-3496. [PMID: 32523344 PMCID: PMC7237116 DOI: 10.2147/ijn.s248741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The use of polycaprolactone (PCL) for bone defects in a clinical setting is limited due to a lack of bioactivity. Exosomes derived from mesenchymal stem cells (MSCs) have an important immunoregulatory potential and together with S-nitrosoglutathione (GSNO) they possess therapeutic potential for bone regeneration. Materials and Methods In this study, PCL was modified with GSNO and MSC-derived exosomes and the impact on macrophages and osteogenes is evaluated. Results MSC-derived exosomes exhibited a cup-shaped morphology and were internalized by macrophages and human bone marrow-derived mesenchymal stromal cells (hBMSCs). The pattern of internalization of scaffold-immobilized exosomes was similar in RAW264.7 cells and hBMSCs after 4h and 24h of co-culture. Assessment of macrophage morphology under inflammatory conditions by scanning electronic microscopy (SEM) and confocal microscopy demonstrated macrophages were significantly elongated and expression of pro-inflammatory genes markedly decreased when co-cultured with PCL/PDA + GSNO + exosome scaffolds. Furthermore, this scaffold modification significantly enhanced osteogenic differentiation of hBMSCs. Discussion This study demonstrated the possibility of using a GSNO- and exosome-based strategy to adapt barrier membrane scaffolds. PCL/PDA + GSNO + exosome scaffolds may serve as an important barrier membrane for osteogenesis and tissue regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China.,Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Qingyu Zhao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China.,Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Jun Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Hao Ren
- Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Shenzhen, Guangdong 518119, People's Republic of China
| | - Yi Zhang
- Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China.,Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| |
Collapse
|
22
|
Choi S, Singh I, Singh AK, Khan M, Won J. Asymmetric dimethylarginine exacerbates cognitive dysfunction associated with cerebrovascular pathology. FASEB J 2020; 34:6808-6823. [PMID: 32239698 DOI: 10.1096/fj.201901318r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 01/22/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor and uncoupler of nitric oxide synthase, has gained attention as a risk factor for cardiac disease, metabolic syndrome, and cerebrovascular disease. In this study, we investigated the role of systemic ADMA overburden in cerebromicrovascular pathology associated with cognitive dysfunction using APPSwDI transgenic mice expressing human β-amyloid precursor protein Swedish (Tg-SwDI), a model of cerebrovascular β-amyloidosis. To induce systemic overburden of ADMA, Tg-SwDI mice were treated with a daily dose of exogenous ADMA. ADMA treatment resulted in elevated ADMA levels in the blood and brain of Tg-SwDI mice. ADMA treatment induced the brain nitrosative stress and inflammation as well as enhanced the brain Aβ deposition and cognitive impairment in Tg-SwDI mice. However, ADMA treatment had no such effects on wild type mice. ADMA treatment also exacerbated brain microvascular pathology in Tg-SwDI mice as observed by increased blood-brain barrier dysfunction, loss of tight junction proteins, increased endothelial stress fibers, and decreased microvessel density in the brain. In addition, similar observations were made in cultured human brain microvessel endothelial cells, where ADMA in the presence of VEGF-induced endothelial cell signaling for F-actin stress fiber inducing endothelial barrier dysfunction. Overall, these data document the potential role of ADMA in the cognitive pathology under conditions of cerebrovascular β-amyloidosis.
Collapse
Affiliation(s)
- Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
23
|
Khan M, Dhammu TS, Qiao F, Kumar P, Singh AK, Singh I. S-Nitrosoglutathione Mimics the Beneficial Activity of Endothelial Nitric Oxide Synthase-Derived Nitric Oxide in a Mouse Model of Stroke. J Stroke Cerebrovasc Dis 2019; 28:104470. [PMID: 31680031 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide (NO)-producing activity of endothelial nitric oxide synthase (eNOS) plays a significant role in maintaining endothelial function and protecting against the stroke injury. However, the activity of the eNOS enzyme and the metabolism of major NO metabolite S-nitrosoglutathione (GSNO) are dysregulated after stroke, causing endothelial dysfunction. We investigated whether an administration of exogenous of GSNO or enhancing the level of endogenous GSNO protects against neurovascular injury in wild-type (WT) and eNOS-null (endothelial dysfunction) mouse models of cerebral ischemia-reperfusion (IR). METHODS Transient cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO) for 60 minutes in male adult WT and eNOS null mice. GSNO (0.1 mg/kg body weight, intravenously) or N6022 (GSNO reductase inhibitor, 5.0 mg/kg body weight, intravenously) was administered 30 minutes before MCAO in preinjury and at the reperfusion in postinjury studies. Brain infarctions, edema, and neurobehavioral functions were evaluated at 24 hours after the reperfusion. RESULTS eNOS-null mice had a higher degree (P< .05) of injury than WT. Pre- or postinjury treatment with either GSNO or N6022 significantly reduced infarct volume, improved neurological and sensorimotor function in both WT and eNOS-null mice. CONCLUSION Reduced brain infarctions and edema, and improved neurobehavioral functions by pre- or postinjury GSNO treatment of eNOS knock out mice indicate that GSNO can attenuate IR injury, likely by mimicking the eNOS-derived NO-dependent anti-ischemic and anti-inflammatory functions. Neurovascular protection by GSNO/N6022 in both pre- and postischemic injury groups support GSNO as a promising drug candidate for the prevention and treatment of stroke injury.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Fei Qiao
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
24
|
|
25
|
Fan H, Zhao Y, Zhu JH. S-nitrosoglutathione protects lipopolysaccharide-induced acute kidney injury by inhibiting toll-like receptor 4-nuclear factor-κB signal pathway. ACTA ACUST UNITED AC 2019; 71:1255-1261. [PMID: 31115903 DOI: 10.1111/jphp.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To investigate the therapeutic effects and mechanisms of S-nitrosoglutathione (SNG) on acute kidney injury (AKI) induced by lipopolysaccharide (LPS). METHODS We established an AKI model by intraperitoneal administration of LPS in mice and LPS-induced human kidney (HK-2) cells in vitro. We obtained the kidney tissues from mice for histopathological examination, examined inflammatory cytokines by enzyme-linked immunosorbent assay and measured the expression levels of toll-like receptor 4-nuclear factor-κB (TLR4-NF-κB) signal pathway-related proteins by Western blotting. KEY FINDINGS Pretreatment of SNG effectively improved the kidney function, reduced the pathological damage score of kidney in mice and decreased the expression levels of IL-1β, IL-6 and TNF-α in a dose-dependent manner in vivo and in vitro. Furthermore, pretreatment of SNG also repressed TLR4, phosphorylated NF-κB IκBα, IKKβ and p65 expression levels in HK-2 cells induced by LPS. CONCLUSIONS S-nitrosoglutathione attenuates the severity of LPS-induced AKI by inhibiting the TLR4-NF-κB signalling pathway and may act as a protective agent for septic AKI.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, China
| | - Yu Zhao
- Department of Nephrology, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
26
|
Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci 2019; 11:56. [PMID: 30930767 PMCID: PMC6425084 DOI: 10.3389/fnagi.2019.00056] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Age is associated with increased risk for several disorders including dementias, cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated with cognitive decline particularly in cognitive domains associated with memory and processing speed. With increasing life expectancies in many countries, the number of people experiencing age-associated cognitive impairment is increasing and therefore from both economic and social terms the amelioration or slowing of cognitive aging is an important target for future research. However, the biological causes of age associated cognitive decline are not yet, well understood. In the current review, we outline the role of inflammation in cognitive aging and describe the role of several inflammatory processes, including inflamm-aging, vascular inflammation, and neuroinflammation which have both direct effect on brain function and indirect effects on brain function via changes in cardiovascular function.
Collapse
Affiliation(s)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Dyer RR, Ford KI, Robinson RAS. The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease. Methods Enzymol 2019; 626:499-538. [PMID: 31606089 PMCID: PMC6908309 DOI: 10.1016/bs.mie.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a debilitating dementia with complex pathophysiological alterations including modifications to endogenous cysteine. S-nitrosylation (SNO) is a well-studied posttranslational modification (PTM) in the context of AD while S-glutathionylation (PSSG) remains less studied. Excess reactive oxygen and reactive nitrogen species (ROS/RNS) directly or indirectly generate SNO and PSSG. SNO is dysregulated in AD and plays a pervasive role in processes such as protein function, cell signaling, metabolism, and apoptosis. Despite some studies into the role of SNO in AD, multiple identified SNO proteins lack deep investigation and SNO modifications outside of brain tissues are limited, leaving the full role of SNO in AD to be elucidated. PSSG homeostasis is perturbed in AD and may affect a myriad of cellular processes. Here we overview the role of nitric oxide (NO) in AD, discuss proteomic methodologies to investigate SNO and PSSG, and review SNO and PSSG in AD. A more thorough understanding of SNO, PSSG, and other cysteinyl PTMs in AD will be helpful for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryan R Dyer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Katarena I Ford
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Memory & Alzheimer's Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Brain Institute, Nashville, TN, United States.
| |
Collapse
|
28
|
Choi S, Saxena N, Dhammu T, Khan M, Singh AK, Singh I, Won J. Regulation of endothelial barrier integrity by redox-dependent nitric oxide signaling: Implication in traumatic and inflammatory brain injuries. Nitric Oxide 2018; 83:51-64. [PMID: 30590116 DOI: 10.1016/j.niox.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/15/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.
Collapse
Affiliation(s)
- Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tajinder Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
29
|
Singh I, Nath N, Saxena N, Singh AK, Won JS. Regulation of IL-10 and IL-17 mediated experimental autoimmune encephalomyelitis by S-nitrosoglutathione. Immunobiology 2018; 223:549-554. [PMID: 29960806 DOI: 10.1016/j.imbio.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 01/07/2023]
Abstract
In this study, we investigated IL-10 and IL-17 specific immunomodulatory potential of S-nitrosoglutathione (GSNO), a physiological nitric oxide carrier molecule, in experimental autoimmune encephalomyelitis (EAE). In active EAE model, GSNO treatment attenuated EAE severity and splenic CD4+ T cells isolated from these mice exhibited decreased IL-17 expression without affecting the IFN-γ expression compared to the cells from untreated EAE mice. Similarly, adoptive transfer of these cells to nave mice resulted in reduction in IL-17 expression in the spinal cords of recipient mice with milder EAE severity. CD4+ T cells isolated from GSNO treated EAE mice, as compared to untreated EAE mice, still expressed lower levels of IL-17 under TH17 skewing conditions, but expressed similar levels of IFN-γ under TH1 skewing condition. Interestingly, under both TH17 and TH1 skewing condition, CD4+ T cells isolated from GSNO treated EAE mice, as compared to untreated EAE mice, expressed higher levels of IL-10 and adoptive transfer of these TH17 and TH1 skewed cells seemingly exhibited milder EAE disease. In addition, adoptive transfer of CD4+ T cells from GSNO treated EAE mice to active EAE mice also ameliorated EAE disease with induction of spinal cord expression of IL-10 and reduction in of IL-17, thus suggesting the participation of IL-10 mechanism in GSNO mediated immunomodulation. GSNO treatment of mice passively immunized with CD4+ T cells either from GSNO treated EAE mice or untreated mice further ameliorated EAE disease, supporting efficacy of GSNO for prophylaxis and therapy in EAE. Overall, these data document a modulatory role of GSNO in IL-17/IL-10 axis of EAE and other autoimmune diseases.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Narender Nath
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
30
|
Saxena N, Won J, Choi S, Singh AK, Singh I. S-nitrosoglutathione reductase (GSNOR) inhibitor as an immune modulator in experimental autoimmune encephalomyelitis. Free Radic Biol Med 2018; 121:57-68. [PMID: 29694854 PMCID: PMC6083447 DOI: 10.1016/j.freeradbiomed.2018.04.558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
Abstract
We previously reported that S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, attenuated TH17-mediated immune responses in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Cellular GSNO homeostasis is regulated via its synthesis by reaction between nitric oxide and glutathione and its enzymatic catabolism by GSNO reductase (GSNOR). In this study, we evaluated potential of reversible inhibitor of GSNOR (N6022) in comparison with exogenous GSNO in immunopathogenesis of EAE. Daily treatment of EAE mice with N6022 or exogenous GSNO significantly attenuated the clinical disease of EAE, but N6022 treatment showed greater efficacy than GSNO. Both N6022 and exogenous GSNO treatments increased the spleen levels of GSNO, as documented by increased protein-associated S-nitrosothiols, and inhibited polarization and CNS effector function of proinflammatory TH17 cells while inducing the polarization and CNS effector function of anti-inflammatory CD4+ CD25+ FOXP3- regulatory T (Treg) cells. Moreover, N6022 further attenuated TH1 while inducing TH2 and CD4+ CD25+ FOXP3+ Treg in their polarization and CNS effector functions. Similar to GSNO, the N6022 treatment protected against the EAE disease induced demyelination. However, neither exogenous GSNO nor N6022 treatment did not cause significant systemic lymphopenic effect as compared to FTY720. Taken together, these data document that optimization of cellular GSNO homeostasis by GSNOR inhibitor (N6022) in NO metabolizing cells attenuates EAE disease via selective inhibition of pro-inflammatory subsets of CD4+ cells (TH1/TH17) while upregulating anti-inflammatory subsets of CD4+ cells (TH2/Treg) without causing lymphopenic effects and thus offers a potential treatment option for MS/EAE.
Collapse
MESH Headings
- Alcohol Dehydrogenase/antagonists & inhibitors
- Animals
- Benzamides/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Mice
- Mice, Inbred C57BL
- Protein S/metabolism
- Pyrroles/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/drug effects
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
31
|
Pathology of nNOS-Expressing GABAergic Neurons in Mouse Model of Alzheimer's Disease. Neuroscience 2018; 384:41-53. [PMID: 29782905 DOI: 10.1016/j.neuroscience.2018.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that is often accompanied by mood and emotional disturbances and seizures. There is growing body of evidence that neurons expressing γ-aminobutyric acid (GABA) play an important role in regulation of cognition, mood, and emotion as well as seizure susceptibility, but participation of GABAergic neuronal pathology in Alzheimer's disease (AD) is not understood well at present. Here, we report that transgenic mice expressing human amyloid precursor protein Swedish-Dutch-Iowa mutant (APPSweDI) exhibit early loss of neurons expressing GAD67, a GABA-synthesizing enzyme, in advance of the loss of pyramidal neurons in hippocampal CA1 region. The loss of GAD67+ neurons in APPSweDI mice accompanied with decreased spatial cognition as well as increased anxiety-like behaviors and kainic acid-induced seizure susceptibility at early phase. In the hippocampal CA1 region, GAD67+ neurons expressed high basal levels of neuronal nitric oxide synthase (nNOS) and nitrosative stress (nitrotyrosine). Similarly, GAD67+ neurons in primary cortical and hippocampal neuron cultures also expressed high basal levels of nNOS and degenerated in response to lower Aβ concentrations due to their high basal levels of nitrosative stress. Given the role of GABAergic neurons in cognitive and neuropsychiatric functions, this study reports the role of nNOS-mediated nitrosative stress in dysfunction of GABAergic neurons and its potential participation in early development of cognitive and neuropsychiatric symptoms in AD.
Collapse
|
32
|
Amelioration by nitric oxide (NO) mimetics on neurobehavioral and biochemical changes in experimental model of Alzheimer’s disease in rats. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Liu B, Gao JM, Li F, Gong QH, Shi JS. Gastrodin Attenuates Bilateral Common Carotid Artery Occlusion-Induced Cognitive Deficits via Regulating Aβ-Related Proteins and Reducing Autophagy and Apoptosis in Rats. Front Pharmacol 2018; 9:405. [PMID: 29755351 PMCID: PMC5932202 DOI: 10.3389/fphar.2018.00405] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Gastrodin (GAS), an active constituent extracted from Gastrodia elata Blume, is used to treat ischemic stroke, epilepsy, dizziness, and dementia for centuries in China. This study examined its effects on vascular dementia (VD) and the underlying molecular mechanisms. VD was established by ligation of bilateral common carotid artery occlusion (BCCAO). A total of 7 days after BCCAO surgery, GAS (15, 30, and 60 mg/kg) was orally administered for 28 consecutive days to evaluate therapeutic effects. Cognitive function was tested by the Morris water maze. The neuronal morphological changes were examined via Hematoxylin-Eosin staining. Flow cytometry was used for evaluating apoptosis in the hippocampi. The target protein expression was examined by Western blot. The results showed that BCCAO induced cognitive impairment, hippocampus CA1 and CA3 pyramidal neuron damage, beta-amyloid (Aβ) deposition, excessive autophagy, and apoptosis. GAS treatment significantly improved BCCAO-induced cognitive deficits and hippocampus neuron damage. Molecular analysis revealed that GAS exerted the protective effect via reducing the levels of Aβ1-40/42, APP, and β-site APP-cleaving enzyme 1 expression, and increasing Aβ-related protein, a disintegrin and metalloprotease 10, and insulin degrading enzyme expression. Meanwhile, GAS inhibited excessive autophagy via decreasing Beclin-1, LC3-II, and p62 levels. Furthermore, GAS inhibited apoptosis through the downregulation of Bax and upregulation of Bcl-2. Moreover, P38 MAPK signaling pathway was involved in the process. Our findings demonstrate that GAS was effective in the treatment of BCCAO-induced VD via targeting Aβ-related protein formation and inhibiting autophagy and apoptosis of hippocampus neurons.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Singh I, Samuvel DJ, Choi S, Saxena N, Singh AK, Won J. Combination therapy of lovastatin and AMP-activated protein kinase activator improves mitochondrial and peroxisomal functions and clinical disease in experimental autoimmune encephalomyelitis model. Immunology 2018; 154:434-451. [PMID: 29331024 DOI: 10.1111/imm.12893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023] Open
Abstract
Recent studies report that loss and dysfunction of mitochondria and peroxisomes contribute to the myelin and axonal damage in multiple sclerosis (MS). In this study, we investigated the efficacy of a combination of lovastatin and AMP-activated protein kinase (AMPK) activator (AICAR) on the loss and dysfunction of mitochondria and peroxisomes and myelin and axonal damage in spinal cords, relative to the clinical disease symptoms, using a mouse model of experimental autoimmune encephalomyelitis (EAE, a model for MS). We observed that lovastatin and AICAR treatments individually provided partial protection of mitochondria/peroxisomes and myelin/axons, and therefore partial attenuation of clinical disease in EAE mice. However, treatment of EAE mice with the lovastatin and AICAR combination provided greater protection of mitochondria/peroxisomes and myelin/axons, and greater improvement in clinical disease compared with individual drug treatments. In spinal cords of EAE mice, lovastatin-mediated inhibition of RhoA and AICAR-mediated activation of AMPK cooperatively enhanced the expression of the transcription factors and regulators (e.g. PPARα/β, SIRT-1, NRF-1, and TFAM) required for biogenesis and the functions of mitochondria (e.g. OXPHOS, MnSOD) and peroxisomes (e.g. PMP70 and catalase). In summary, these studies document that oral medication with a combination of lovastatin and AICAR, which are individually known to have immunomodulatory effects, provides potent protection and repair of inflammation-induced loss and dysfunction of mitochondria and peroxisomes as well as myelin and axonal abnormalities in EAE. As statins are known to provide protection in progressive MS (Phase II study), these studies support that supplementation statin treatment with an AMPK activator may provide greater efficacy against MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Seungho Choi
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
35
|
Bodas M, Silverberg D, Walworth K, Brucia K, Vij N. Augmentation of S-Nitrosoglutathione Controls Cigarette Smoke-Induced Inflammatory-Oxidative Stress and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis by Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function. Antioxid Redox Signal 2017; 27:433-451. [PMID: 28006950 PMCID: PMC5564030 DOI: 10.1089/ars.2016.6895] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Cigarette smoke (CS)-mediated acquired cystic fibrosis transmembrane conductance regulator (CFTR)-dysfunction, autophagy-impairment, and resulting inflammatory-oxidative/nitrosative stress leads to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Moreover, nitric oxide (NO) signaling regulates lung function decline, and low serum NO levels that correlates with COPD severity. Hence, we aim to evaluate here the effects and mechanism(s) of S-nitrosoglutathione (GSNO) augmentation in regulating inflammatory-oxidative stress and COPD-emphysema pathogenesis. RESULTS Our data shows that cystic fibrosis transmembrane conductance regulator (CFTR) colocalizes with aggresome bodies in the lungs of COPD subjects with increasing emphysema severity (Global Initiative for Chronic Obstructive Lung Disease [GOLD] I - IV) compared to nonemphysema controls (GOLD 0). We further demonstrate that treatment with GSNO or S-nitrosoglutathione reductase (GSNOR)-inhibitor (N6022) significantly inhibits cigarette smoke extract (CSE; 5%)-induced decrease in membrane CFTR expression by rescuing it from ubiquitin (Ub)-positive aggresome bodies (p < 0.05). Moreover, GSNO restoration significantly (p < 0.05) decreases CSE-induced reactive oxygen species (ROS) activation and autophagy impairment (decreased accumulation of ubiquitinated proteins in the insoluble protein fractions and restoration of autophagy flux). In addition, GSNO augmentation inhibits protein misfolding as CSE-induced colocalization of ubiquitinated proteins and LC3B (in autophagy bodies) is significantly reduced by GSNO/N6022 treatment. We verified using the preclinical COPD-emphysema murine model that chronic CS (Ch-CS)-induced inflammation (interleukin [IL]-6/IL-1β levels), aggresome formation (perinuclear coexpression/colocalization of ubiquitinated proteins [Ub] and p62 [impaired autophagy marker], and CFTR), oxidative/nitrosative stress (p-Nrf2, inducible nitric oxide synthase [iNOS], and 3-nitrotyrosine expression), apoptosis (caspase-3/7 activity), and alveolar airspace enlargement (Lm) are significantly (p < 0.05) alleviated by augmenting airway GSNO levels. As a proof of concept, we demonstrate that GSNO augmentation suppresses Ch-CS-induced perinuclear CFTR protein accumulation (p < 0.05), which restores both acquired CFTR dysfunction and autophagy impairment, seen in COPD-emphysema subjects. INNOVATION GSNO augmentation alleviates CS-induced acquired CFTR dysfunction and resulting autophagy impairment. CONCLUSION Overall, we found that augmenting GSNO levels controls COPD-emphysema pathogenesis by reducing CS-induced acquired CFTR dysfunction and resulting autophagy impairment and chronic inflammatory-oxidative stress. Antioxid. Redox Signal. 27, 433-451.
Collapse
Affiliation(s)
- Manish Bodas
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - David Silverberg
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Kyla Walworth
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Kathryn Brucia
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Neeraj Vij
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan.,2 Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
36
|
Kim J, Choi S, Saxena N, Singh AK, Singh I, Won JS. Regulation of STAT3 and NF-κB activations by S-nitrosylation in multiple myeloma. Free Radic Biol Med 2017; 106:245-253. [PMID: 28232202 PMCID: PMC5826580 DOI: 10.1016/j.freeradbiomed.2017.02.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Numerous reports suggest that aberrant activations of STAT3 and NF-κB promote survival and proliferation of multiple myeloma (MM) cells. In the present report, we demonstrate that a synthetic S-nitrosothiol compound, S-nitroso-N-acetylcysteine (SNAC), inhibits proliferation and survival of multiple MM cells via S-nitrosylation-dependent inhibition of STAT3 and NF-κB. In human MM cells (e.g. U266, H929, and IM-9 cells), SNAC treatment increased S-nitrosylation of STAT3 and NF-κB and inhibited their activities. Consequently, SNAC treatment resulted in MM cell cycle arrest at G1/S check point and inhibited their proliferation. SNAC also decreased the expression of cell survival factors and increased the activities of caspases, thus increased sensitivity of MM cells to melphalan, a chemotherapeutic agent for MM. In U266 xenografted mice, SNAC treatment decreased the activity of STAT3 and reduced the growth of human CD138 positive cells (U266 cells) in the bone marrow and also reduced their production of human IgE into the serum. Taken together, these data document the S-nitrosylation mediated inhibition of MM cell proliferation and cell survival via inhibition of STAT3 and NF-κB pathways and its efficacy in animal model of MM.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, United States
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
37
|
5-LOX in Alzheimer’s Disease: Potential Serum Marker and In Vitro Evidences for Rescue of Neurotoxicity by Its Inhibitor YWCS. Mol Neurobiol 2017; 55:2754-2762. [DOI: 10.1007/s12035-017-0527-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022]
|
38
|
Samuvel DJ, Shunmugavel A, Singh AK, Singh I, Khan M. S-Nitrosoglutathione ameliorates acute renal dysfunction in a rat model of lipopolysaccharide-induced sepsis. ACTA ACUST UNITED AC 2016; 68:1310-9. [PMID: 27484743 DOI: 10.1111/jphp.12608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Sepsis induces an inflammatory response that results in acute renal failure (ARF). The current study is to evaluate the role of S-Nitrosoglutathione (GSNO) in renoprotection from lipopolysaccharide (LPS)-induced sepsis. METHODS Rats were divided to three groups. First group received LPS (5 mg/kg body weight), second group was treated with LPS + GSNO (50 μg/kg body weight), and third group was administered with vehicle (saline). They were sacrificed on day 1 and 3 post-LPS injection. Serum levels of nitric oxide (NO), creatinine and blood urea nitrogen (BUN) were analysed. Tissue morphology, T lymphocyte infiltrations, and the expression of inflammatory (TNF-α, iNOS) and anti-inflammatory (IL-10) mediators as well as glutathione (GSH) levels were determined. KEY FINDING Lipopolysaccharide significantly decreased body weight and increased cellular T lymphocyte infiltration, caspase-3 and iNOS and decreased PPAR-γ in renal tissue. NO, creatinine and BUN were significantly elevated after LPS challenge, and they significantly decreased after GSNO treatment. TNF-α level was found significantly increased in LPS-treated serum and kidney. GSNO treatment of LPS-challenged rats decreased caspase-3, iNOS, TNF-α, T lymphocyte infiltration and remarkably increased levels of IL-10, PPAR-γ and GSH. CONCLUSION GSNO can be used as a renoprotective agent for the treatment of sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
- Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
39
|
Banoujaafar H, Monnier A, Pernet N, Quirié A, Garnier P, Prigent-Tessier A, Marie C. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. Eur J Neurosci 2016; 44:2226-35. [PMID: 27306299 DOI: 10.1111/ejn.13301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n = 6), physical exercise (n = 6) or a combination of both (n = 6) as experimental approaches to modulate flow-induced NO production by the cerebrovasculature. Tropomyosin-related kinase type B (TrkB) receptors and its phosphorylated form at tyrosine 816 (p-TrkB) were also measured. Moreover, we investigated BDNF synthesis in brain slices exposed to the NO donor glyceryl trinitrate. Our results showed increased p-eNOS and BDNF levels after exercise and decreased levels after vascular occlusion as compared to corresponding controls, with a positive correlation between changes in p-eNOS and BDNF (r = 0.679). Exercise after vascular occlusion did not change levels of these proteins. Gyceryl trinitrate increased proBDNF and BDNF levels in brain slices, thus suggesting a possible causal relationship between NO and BDNF. Moreover, vascular occlusion, like exercise, resulted in increased TrkB and p-TrkB levels, whereas no change was observed with the combination of both. These results suggest that brain BDNF signaling may be dependent on cerebral endothelium-derived NO production.
Collapse
Affiliation(s)
- Hayat Banoujaafar
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Alice Monnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,Department of Rehabilitation, University Hospital, Dijon, France
| | - Nicolas Pernet
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Aurore Quirié
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Philippe Garnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,IUT de Dijon, Département de Génie Biologique, Université de Bourgogne, Dijon, France
| | - Anne Prigent-Tessier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Christine Marie
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| |
Collapse
|
40
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Du SQ, Wang XR, Xiao LY, Tu JF, Zhu W, He T, Liu CZ. Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion? Mol Neurobiol 2016; 54:3670-3682. [PMID: 27206432 DOI: 10.1007/s12035-016-9915-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Vascular dementia (VD) is defined as a progressive neurodegenerative disease of cognitive decline, attributable to cerebrovascular factors. Numerous studies have demonstrated that chronic cerebral hypoperfusion (CCH) is associated with the initiation and progression of VD and Alzheimer's disease (AD). Suitable animal models were established to replicate such pathological condition in experimental research, which contributes largely to comprehending causal relationships between CCH and cognitive impairment. The most widely used experimental model of VD and CCH is permanent bilateral common carotid artery occlusion in rats. In CCH models, changes of learning and memory, cerebral blood flow (CBF), energy metabolism, and neuropathology initiated by ischemia were revealed. However, in order to achieve potential therapeutic targets, particular mechanisms in cognitive and neuropathological changes from CCH to dementia should be investigated. Recent studies have shown that hypoperfusion resulted in a chain of disruption of homeostatic interactions, including oxidative stress, neuroinflammation, neurotransmitter system dysfunction, mitochondrial dysfunction, disturbance of lipid metabolism, and alterations of growth factors. Evidence from experimental studies that elucidate the damaging effects of such imbalances suggests their critical roles in the pathogenesis of VD. The present review provides a summary of the achievements in mechanisms made with the CCH models, permits an understanding of the causative role played by CCH in VD, and highlights preventative and therapeutic prospects.
Collapse
Affiliation(s)
- Si-Qi Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Ling-Yong Xiao
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jian-Feng Tu
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Wen Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Tian He
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
42
|
Won JS, Annamalai B, Choi S, Singh I, Singh AK. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion. Brain Res 2015; 1624:359-369. [PMID: 26271717 DOI: 10.1016/j.brainres.2015.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology, Medical University of South Carolina, USA
| | | | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, USA
| | - Avtar K Singh
- Department of Pathology, Medical University of South Carolina, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
43
|
Khan M, Dhammu TS, Matsuda F, Singh AK, Singh I. Blocking a vicious cycle nNOS/peroxynitrite/AMPK by S-nitrosoglutathione: implication for stroke therapy. BMC Neurosci 2015; 16:42. [PMID: 26174015 PMCID: PMC4502912 DOI: 10.1186/s12868-015-0179-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke immediately sets into motion sustained excitotoxicity and calcium dysregulation, causing aberrant activity in neuronal nitric oxide synthase (nNOS) and an imbalance in the levels of nitric oxide (NO). Drugs targeting nNOS-originated toxicity may therefore reduce stroke-induced damage. Recently, we observed that a redox-modulating agent of the NO metabolome, S-nitrosoglutathione (GSNO), confers neurovascular protection by reducing the levels of peroxynitrite, a product of aberrant NOS activity. We therefore investigated whether GSNO-mediated neuroprotection and improved neurological functions depend on blocking nNOS/peroxynitrite-associated injurious mechanisms using a rat model of cerebral ischemia reperfusion (IR). RESULTS IR increased the activity of nNOS, the levels of neuronal peroxynitrite and phosphorylation at Ser(1412) of nNOS. GSNO treatment of IR animals decreased IR-activated nNOS activity and neuronal peroxynitrite levels by reducing nNOS phosphorylation at Ser(1412). The Ser(1412) phosphorylation is associated with increased nNOS activity. Supporting the notion that nNOS activity and peroxynitrite are deleterious following IR, inhibition of nNOS by its inhibitor 7-nitroindazole or reducing peroxynitrite by its scavenger FeTPPS decreased IR injury. GSNO also decreased the activation of AMP Kinase (AMPK) and its upstream kinase LKB1, both of which were activated in IR brain. AMPK has been implicated in nNOS activation via Ser(1412) phosphorylation. To determine whether AMPK activation is deleterious in the acute phase of IR, we treated animals after IR with AICAR (an AMPK activator) and compound c (an AMPK inhibitor). While AICAR potentiated, compound c reduced the IR injury. CONCLUSIONS Taken together, these results indicate an injurious nNOS/peroxynitrite/AMPK cycle following stroke, and GSNO treatment of IR inhibits this vicious cycle, resulting in neuroprotection and improved neurological function. GSNO is a natural component of the human body, and its exogenous administration to humans is not associated with any known side effects. Currently, the FDA-approved thrombolytic therapy suffers from a lack of neuronal protective activity. Because GSNO provides neuroprotection by ameliorating stroke's initial and causative injuries, it is a candidate of translational value for stroke therapy.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,School of Health Science, Kagoshima University, Kagoshima, Japan.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
44
|
Kaliyaperumal K, Sharma AK, McDonald DG, Dhindsa JS, Yount C, Singh AK, Won JS, Singh I. S-Nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma. Redox Biol 2015; 6:41-50. [PMID: 26177470 PMCID: PMC4511642 DOI: 10.1016/j.redox.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022] Open
Abstract
S-nitrosoglutathione (GSNO) is an endogenous nitric oxide (NO) carrier that plays a critical role in redox based NO signaling. Recent studies have reported that GSNO regulates the activities of STAT3 and NF-κB via S-nitrosylation dependent mechanisms. Since STAT3 and NF-κB are key transcription factors involved in tumor progression, chemoresistance, and metastasis of head and neck cancer, we investigated the effect of GSNO in cell culture and mouse xenograft models of head and neck squamous cell carcinoma (HNSCC). For the cell culture studies, three HNSCC cell lines were tested (SCC1, SCC14a and SCC22a). All three cell lines had constitutively activated (phosphorylated) STAT3 (Tyr705). GSNO treatment of these cell lines reversibly decreased the STAT3 phosphorylation in a concentration dependent manner. GSNO treatment also decreased the basal and cytokine-stimulated activation of NF-κB in SCC14a cells and reduced the basal low degree of nitrotyrosine by inhibition of inducible NO synthase (iNOS) expression. The reduced STAT3/NF-κB activity by GSNO treatment was correlated with the decreased cell proliferation and increased apoptosis of HNSCC cells. In HNSCC mouse xenograft model, the tumor growth was reduced by systemic treatment with GSNO and was further reduced when the treatment was combined with radiation and cisplatin. Accordingly, GSNO treatment also resulted in decreased levels of phosphorylated STAT3. In summary, these studies demonstrate that GSNO treatment blocks the NF-κB and STAT3 pathways which are responsible for cell survival, proliferation and that GSNO mediated mechanisms complement cispaltin and radiation therapy, and thus could potentiate the therapeutic effect in HNSCC. S-nitrosoglutathione (GSNO) inhibits activations of STAT3 and NF-κB in HNSCC cells. GSNO induces cell cycle arrest and apoptosis of HNSCC cells. GSNO decreases iNOS and VEGF production in HNSCC cells. GSNO enhances efficacy of chemoradiation therapy in HNSCC mouse xenograft model.
Collapse
Affiliation(s)
| | - Anand K Sharma
- Departments of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel G McDonald
- Departments of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jasdeep S Dhindsa
- Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Caroline Yount
- Departments of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Avtar K Singh
- Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Je-Seong Won
- Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Inderjit Singh
- Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
45
|
Khan M, Dhammu TS, Matsuda F, Baarine M, Dhindsa TS, Singh I, Singh AK. Promoting endothelial function by S-nitrosoglutathione through the HIF-1α/VEGF pathway stimulates neurorepair and functional recovery following experimental stroke in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2233-47. [PMID: 25945035 PMCID: PMC4408969 DOI: 10.2147/dddt.s77115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background For stroke patients, stimulating neurorepair mechanisms is necessary to reduce morbidity and disability. Our previous studies on brain and spinal cord trauma show that exogenous treatment with the S-nitrosylating agent S-nitrosoglutathione (GSNO) – a nitric oxide and glutathione metabolite of the human body – stimulates neurorepair and aids functional recovery. Using a rat model of cerebral ischemia and reperfusion (IR) in this study, we tested the hypothesis that GSNO invokes the neurorepair process and improves neurobehavioral functions through the angiogenic HIF-1α/VEGF pathway. Methods Stroke was induced by middle cerebral artery occlusion for 60 minutes followed by reperfusion in adult male rats. The injured animals were treated with saline (IR group, n=7), GSNO (0.25 mg/kg, GSNO group, n=7), and GSNO plus the HIF-1α inhibitor 2-methoxyestra-diol (2-ME) (0.25 mg/kg GSNO + 5.0 mg/kg 2-ME, GSNO + 2-ME group, n=7). The groups were studied for either 7 or 14 days to determine neurorepair mediators and functional recovery. Brain capillary endothelial cells were used to show that GSNO promotes angiogenesis and that GSNO-mediated induction of VEGF and the stimulation of angiogenesis are dependent on HIF-1α activity. Results IR injury increased the expression of neurorepair mediators HIF-1α, VEGF, and PECAM-1 and vessel markers to a limited degree that correlate well with significantly compromised neurobehavioral functions compared with sham animals. GSNO treatment of IR not only remarkably enhanced further the expression of HIF-1α, VEGF, and PECAM-1 but also improved functioning compared with IR. The GSNO group also had a higher degree of vessel density than the IR group. Increased expression of VEGF and the degree of tube formation (angiogenesis) by GSNO were reduced after the inhibition of HIF-1α by 2-ME in an endothelial cell culture model. 2-ME treatment of the GSNO group also blocked not only GSNO’s effect of reduced infarct volume, decreased neuronal loss, and enhanced expression of PECAM-1 (P<0.001), but also its improvement of motor and neurological functions (P<0.001). Conclusion GSNO stimulates the process of neurorepair, promotes angiogenesis, and aids functional recovery through the HIF-1α-dependent pathway, showing therapeutic and translational promise for stroke.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA ; School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Mauhammad Baarine
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tejbir Singh Dhindsa
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA ; Ralph H Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
46
|
Role of S-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Biochem Biophys Res Commun 2015; 458:214-9. [PMID: 25640839 DOI: 10.1016/j.bbrc.2015.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
Abstract
Hyperphosphorylation and polymerization of microtubule-associated protein tau into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease (AD). Here we report that neuronal tau hyperphosphorylation under AD conditions is regulated by S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier molecule. In cultured rat cortical primary neurons, we observed that GSNO treatment decreased the β-amyloid (Aβ₂₅₋₃₅)-induced pathological tau hyperphosphorylation (Ser396, Ser404, and Ser202/Thr205). The decreased tau hyperphosphorylation correlated with decreased activity of calpain and decreased p35 proteolysis into p25 and Cdk5 activation. GSNO treatment also attenuated the Aβ₂₅₋₃₅-induced activation of GSK-3β which is known to play critical role in tau hyperphosphorylation in addition to Cdk5. Consistent with above studies using cultured neurons, we also observed that systemic GSNO treatment of transgenic mouse model of AD (APPSw/PS1(dE9)) attenuated calpain-mediated p35 proteolysis and Cdk5/GSK-3β activities as well as tau hyperphosphorylation. In addition, GSNO treatment provided neuro- and cognitive protection in APPSw/PS1(dE9) mice. This study describing the GSNO-mediated regulation of tau hyperphosphorylation and cognitive function, for the first time, suggests for therapeutic potential of GSNO as neuro- and cognitive-protective agent for AD.
Collapse
|
47
|
Liang W, Zhang W, Zhao S, Li Q, Liang H, Ceng R. Altered expression of neurofilament 200 and amyloid-β peptide (1-40) in a rat model of chronic cerebral hypoperfusion. Neurol Sci 2014; 36:707-12. [PMID: 25452168 DOI: 10.1007/s10072-014-2014-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is damaging to white matter in the brain. So far few studies have investigated long-term axonal damage following CCH. The aim of this study was to investigate the involvement of neurofilament 200 (NF200) and amyloid-β (1-40) [Aβ (1-40)] in the pathological mechanism for neuronal damage, and to quantify changes in their expression over time in a rat model of CCH. A rat model of CCH was established using partial bilateral ligation of the common carotid arteries. The extent of stenosis was verified by measuring the changes in cerebral blood flow after surgery. Histology was used to assess hippocampal neuronal pathology, and immunohistochemistry was used to quantify the expression of NF200 and Aβ (1-40) at 2, 4, and 12 weeks after surgery. The cerebral blood flow reduced to 33.89 ± 5.48 % at 2 weeks, 36.83 ± 4.63 % at 4 weeks and 51.44 ± 4.90 % at 12 weeks. Immunofluorescence staining of neuronal perikarya sections revealed a marked decrease in the population of surviving pyramidal cells in the hippocampal CA1 region, a significant up-regulation in the expression of Aβ (1-40), and a significant reduction in the expression of NF200 following CCH surgery. Moreover, this trend was increasingly obvious over time. Our data demonstrate that CCH leads to axonal damage over time. We also confirmed that the expression of Aβ (1-40) and NF200 may be useful biomarkers of axonal damage following CCH.
Collapse
Affiliation(s)
- Weihua Liang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, No. 183 Xinqiao Street, Shapingba District, Chongqing, 400038, China,
| | | | | | | | | | | |
Collapse
|
48
|
Sodja C, Ribecco-Lutkiewicz M, Haukenfrers J, Merchant F, Costain WJ, Bani-Yaghoub M. Comparison of S-nitrosoglutathione- and staurosporine-induced apoptosis in human neural cells. Can J Physiol Pharmacol 2014; 92:1001-11. [PMID: 25388371 DOI: 10.1139/cjpp-2014-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
S-nitrosoglutathione (GSNO) is an endogenously produced S-nitrosylating compound that controls the function of various proteins. While a number of rodent cell lines have been used to study GSNO-induced apoptosis, the mechanisms of action remain to be evaluated in human cells and in parallel with other common apoptosis-inducing agents. In this study, we compared the pro-apoptotic effects of GSNO and staurosporine (STS) on human neural progenitors (NT2, hNP1) and neuroblasts (SH-SY5Y). We show that these cells exhibit comparable levels of susceptibility to GSNO- and STS-induced apoptotic cell death, as demonstrated by condensed nuclei and CASP3 activation. Mechanistic differences in apoptotic responses were observed as differential patterns of DNA fragmentation and levels of BAX, BCL-XL, CASP8, and p-ERK in response to GSNO and STS treatment. Mitochondrial membrane potential analysis revealed that NT2 and hNP1 cells, but not SH-SY5Y cells, undergo mitochondrial hyperpolarization in response to short-term exposure to STS prior to undergoing subsequent depolarization. This is the first study to report differences in apoptotic responses to GSNO and STS in 3 complementary human neural cell lines. Furthermore, these cells represent useful tools in cell pharmacological paradigms in which susceptibility to apoptosis-inducing agents needs to be assessed at different stages of neural cell fate commitment and differentiation.
Collapse
Affiliation(s)
- Caroline Sodja
- a Human Health Therapeutics, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Mechanisms and targets of the modulatory action of S-nitrosoglutathione (GSNO) on inflammatory cytokines expression. Arch Biochem Biophys 2014; 562:80-91. [PMID: 25135357 DOI: 10.1016/j.abb.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
Abstract
A number of experimental studies has documented that S-nitrosoglutathione (GSNO), the main endogenous low-molecular-weight S-nitrosothiol, can exert modulatory effects on inflammatory processes, thus supporting its potential employment in medicine for the treatment of important disease conditions. At molecular level, GSNO effects have been shown to modulate the activity of a series of transcription factors (notably NF-κB, AP-1, CREB and others) as well as other components of signal transduction chains (e.g. IKK-β, caspase 1, calpain and others), resulting in the modulation of several cytokines and chemokines expression (TNFα, IL-1β, IFN-γ, IL-4, IL-8, RANTES, MCP-1 and others). Results reported to date are however not univocal, and a single main mechanism of action for the observed anti-inflammatory effects of GSNO has not been identified. Conflicting observations can be explained by differences among the various cell types studies as to the relative abundance of enzymes in charge of GSNO metabolism (GSNO reductase, γ-glutamyltransferase, protein disulfide isomerase and others), as well as by variables associated with the individual experimental models employed. Altogether, anti-inflammatory properties of GSNO seem however to prevail, and exploration of the therapeutic potential of GSNO and analogues appears therefore warranted.
Collapse
|
50
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|