1
|
Chen J, Dong Y, Guo H, Zhao T, Zhang D, Jin S. Efficacy of rTMS combined with cognitive training in TBI with cognition disorder: a systematic review and meta-analysis. Neurol Sci 2024; 45:3683-3697. [PMID: 38625608 DOI: 10.1007/s10072-024-07530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Post-traumatic brain injury cognitive disorder(PTBICD) is one of the common symptoms of TBI survivors, severely limiting their life and rehabilitation progress. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate cognition in a non-invasive manner while there are inconsistencies in previous studies. A comprehensive systematic review of rTMS treatment in patients with PTBICD is warranted. To evaluate the efficacy and safety of rTMS + cognitive training(CT) in enhancing cognitive function among PTBICD patients. A comprehensive search was conducted in PubMed, EMBASE, Cochrane Library, WOS, CNKI, Wan Fang, VIP and CBM, to identify relevant randomized controlled trials(RCTs) published before December 20, 2023. The primary outcomes measured changes in global cognitive scales, while the secondary outcomes focused on improvements in attention, memory, event-related potentials, and activities of daily living. Meta-analysis of data was carried out using Stata 14.0. Fourteen studies including 820 PTBICD patients were included. The results showed that rTMS + CT significantly improved MoCA[WMD = 3.47, 95%CI (2.56, 4.38)], MMSE[WMD = 3.79, 95%CI (2.23, 5.35)], RBMT[WMD = 1.53, 95%CI (0.19, 2.87)], LOTCA[WMD = 5.68, 95%CI (3.11, 8.24)], and promoted MBI[WMD = 7.41, 95%CI (5.90, 8.92)] as well as reduced correlated potential P300 latency[WMD = -20.77, 95%CI (-38.08, -3.45)] and amplitude[WMD = 0.81, 95%CI (0.57, 1.06)] in PTBICD compared to sham rTMS or CT, while adverse reaction ratio was higher than that of control group [RR = 1.67, 95%CI (1.00, 2.77)]. The results demonstrated that rTMS + CT can improve the cognitive function, mental state and daily activity ability of PTBICD patients. Systematic Review Registration: [PROSPERO], identifier [No. CRD42024520596].
Collapse
Affiliation(s)
- Jia Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanwei Dong
- Orthopedics Department, Hospital of Chengdu University of Traditional Chinese Medicine, No.39, 12 Bridge Road, Jinniu District, Chengdu, 610000, Sichuan, China.
| | - Hong Guo
- Rehabilitation Department, Hospital of Chengdu University of Traditional Chinese Medicine, No.39, 12 Bridge Road, Jinniu District, Chengdu, 610000, Sichuan, China
| | - Tianyu Zhao
- Rehabilitation Department, Hospital of Chengdu University of Traditional Chinese Medicine, No.39, 12 Bridge Road, Jinniu District, Chengdu, 610000, Sichuan, China.
| | - Di Zhang
- Rehabilitation Department, Hospital of Chengdu University of Traditional Chinese Medicine, No.39, 12 Bridge Road, Jinniu District, Chengdu, 610000, Sichuan, China.
| | - Song Jin
- Rehabilitation Department, Hospital of Chengdu University of Traditional Chinese Medicine, No.39, 12 Bridge Road, Jinniu District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
2
|
Ferré-González L, Balaguer Á, Roca M, Ftara A, Lloret A, Cháfer-Pericás C. Brain areas lipidomics in female transgenic mouse model of Alzheimer's disease. Sci Rep 2024; 14:870. [PMID: 38195731 PMCID: PMC10776612 DOI: 10.1038/s41598-024-51463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024] Open
Abstract
Lipids are the major component of the brain with important structural and functional properties. Lipid disruption could play a relevant role in Alzheimer's disease (AD). Some brain lipidomic studies showed significant differences compared to controls, but few studies have focused on different brain areas related to AD. Furthermore, AD is more prevalent in females, but there is a lack of studies focusing on this sex. This work aims to perform a lipidomic study in selected brain areas (cerebellum, amygdala, hippocampus, entire cortex) from wild-type (WT, n = 10) and APPswe/PS1dE9 transgenic (TG, n = 10) female mice of 5 months of age, as a model of early AD, to identify alterations in lipid composition. A lipidomic mass spectrometry-based method was optimized and applied to brain tissue. As result, some lipids showed statistically significant differences between mice groups in cerebellum (n = 68), amygdala (n = 49), hippocampus (n = 48), and the cortex (n = 22). In addition, some lipids (n = 15) from the glycerolipid, phospholipid, and sphingolipid families were statistically significant in several brain areas simultaneously between WT and TG. A selection of lipid variables was made to develop a multivariate approach to assess their discriminant potential, showing high diagnostic indexes, especially in cerebellum and amygdala (sensitivity 70-100%, sensibility 80-100%).
Collapse
Affiliation(s)
- Laura Ferré-González
- Alzheimer's Disease Research Group, Health Research Institute La Fe, Avda de Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Ángel Balaguer
- Faculty of Mathematics, University of Valencia, Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | | | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer's Disease Research Group, Health Research Institute La Fe, Avda de Fernando Abril Martorell, 106, 46026, Valencia, Spain.
| |
Collapse
|
3
|
Milos T, Rojo D, Nedic Erjavec G, Konjevod M, Tudor L, Vuic B, Svob Strac D, Uzun S, Mimica N, Kozumplik O, Barbas C, Zarkovic N, Pivac N, Nikolac Perkovic M. Metabolic profiling of Alzheimer's disease: Untargeted metabolomics analysis of plasma samples. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110830. [PMID: 37454721 DOI: 10.1016/j.pnpbp.2023.110830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is often not recognized or is diagnosed very late, which significantly reduces the effectiveness of available pharmacological treatments. Metabolomic analyzes have great potential for improving existing knowledge about the pathogenesis and etiology of AD and represent a novel approach towards discovering biomarkers that could be used for diagnosis, prognosis, and therapy monitoring. In this study, we applied the untargeted metabolomic approach to investigate the changes in biochemical pathways related to AD pathology. We used gas chromatography and liquid chromatography coupled to mass spectrometry (GC-MS and LC-MS, respectively) to identify metabolites whose levels have changed in subjects with AD diagnosis (N = 40) compared to healthy controls (N = 40) and individuals with mild cognitive impairment (MCI, N = 40). The GC-MS identified significant differences between groups in levels of metabolites belonging to the classes of benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, hydroxy acids and derivatives, keto acids and derivatives, and organooxygen compounds. Most of the compounds identified by the LC-MS were various fatty acyls, glycerolipids and glycerophospholipids. All of these compounds were decreased in AD patients and in subjects with MCI compared to healthy controls. The results of the study indicate disturbed metabolism of lipids and amino acids and an imbalance of metabolites involved in energy metabolism in individuals diagnosed with AD, compared to healthy controls and MCI subjects.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities Madrid, Spain.
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Lucija Tudor
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | | | - Suzana Uzun
- School of Medicine, University of Zagreb, Zagreb, Croatia; Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities Madrid, Spain.
| | - Neven Zarkovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia; University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia.
| | | |
Collapse
|
4
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
5
|
Ferré-González L, Lloret A, Cháfer-Pericás C. Systematic review of brain and blood lipidomics in Alzheimer's disease mouse models. Prog Lipid Res 2023; 90:101223. [PMID: 36871907 DOI: 10.1016/j.plipres.2023.101223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) diagnosis is based on invasive and expensive biomarkers. Regarding AD pathophysiological mechanisms, there is evidence of a link between AD and aberrant lipid homeostasis. Alterations in lipid composition have been observed in blood and brain samples, and transgenic mouse models represent a promising approach. Nevertheless, there is great variability among studies in mice for the determination of different types of lipids in targeted and untargeted methods. It could be explained by the different variables (model, age, sex, analytical technique), and experimental conditions used. The aim of this work is to review the studies on lipid alteration in brain tissue and blood samples from AD mouse models, focusing on different experimental parameters. As result, great disparity has been observed among the reviewed studies. Brain studies showed an increase in gangliosides, sphingomyelins, lysophospholipids and monounsaturated fatty acids and a decrease in sulfatides. In contrast, blood studies showed an increase in phosphoglycerides, sterols, diacylglycerols, triacylglycerols and polyunsaturated fatty acids, and a decrease in phospholipids, lysophospholipids and monounsaturated fatty acids. Thus, lipids are closely related to AD, and a consensus on lipidomics studies could be used as a diagnostic tool and providing insight into the mechanisms involved in AD.
Collapse
Affiliation(s)
- Laura Ferré-González
- Alzheimer's Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain.
| | | |
Collapse
|
6
|
Zheng Y, Xu Q, Jin Q, Du Y, Yan J, Gao H, Zheng H. Urinary and faecal metabolic characteristics in APP/PS1 transgenic mouse model of Alzheimer's disease with and without cognitive decline. Biochem Biophys Res Commun 2022; 604:130-136. [PMID: 35303679 DOI: 10.1016/j.bbrc.2022.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) has been considered to be a systematic metabolic disorder, but little information is available about metabolic changes in the urine and feces. In this study, we investigated urinary and faecal metabolic profiles in amyloid precursor protein/presenilin 1 (APP/PS1) mice at 3 and 9 months of age (3 M and 9 M) and age-matched wild-type (WT) mice by using 1H NMR-based metabolomics, and aimed to explore changes in metabolic pathways during amyloid pathology progression and identify potential metabolite biomarkers at earlier stage of AD. The results show that learning and memory abilities were impaired in APP/PS1 mice relative to WT mice at 9 M, but not at 3 M. However, metabolomics analysis demonstrates that AD disrupted metabolic phenotypes in the urine and feces of APP/PS1 mice at both 3 M and 9 M, including amino acid metabolism, microbial metabolism and energy metabolism. In addition, several potential metabolite biomarkers were identified for discriminating AD and WT mice prior to cognitive decline with the AUC values from 0.755 to 0.971, such as taurine, hippurate, urea and methylamine in the urine as well as alanine, leucine and valine in the feces. Therefore, our results not only confirmed AD as a metabolic disorder, but also contributed to the identification of potential biomarkers at earlier stage of AD.
Collapse
Affiliation(s)
- Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qihao Jin
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yao Du
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Zhang X, Huang N, Xiao L, Wang F, Li T. Replenishing the Aged Brains: Targeting Oligodendrocytes and Myelination? Front Aging Neurosci 2021; 13:760200. [PMID: 34899272 PMCID: PMC8656359 DOI: 10.3389/fnagi.2021.760200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aging affects almost all the aspects of brain functions, but the mechanisms remain largely undefined. Increasing number of literatures have manifested the important role of glial cells in regulating the aging process. Oligodendroglial lineage cell is a major type of glia in central nervous system (CNS), composed of mature oligodendrocytes (OLs), and oligodendroglia precursor cells (OPCs). OLs produce myelin sheaths that insulate axons and provide metabolic support to meet the energy demand. OPCs maintain the population throughout lifetime with the abilities to proliferate and differentiate into OLs. Increasing evidence has shown that oligodendroglial cells display active dynamics in adult and aging CNS, which is extensively involved in age-related brain function decline in the elderly. In this review, we summarized present knowledge about dynamic changes of oligodendroglial lineage cells during normal aging and discussed their potential roles in age-related functional decline. Especially, focused on declined myelinogenesis during aging and underlying mechanisms. Clarifying those oligodendroglial changes and their effects on neurofunctional decline may provide new insights in understanding aging associated brain function declines.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, China
| | - Nanxin Huang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Li
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
Ooi KLM, Vacy K, Boon WC. Fatty acids and beyond: Age and Alzheimer's disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem Int 2021; 149:105143. [PMID: 34311029 DOI: 10.1016/j.neuint.2021.105143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Lipids are essential in maintaining brain function, and lipid profiles have been reported to be altered in aged and Alzheimer's disease (AD) brains as compared to healthy mature brains. Both age and AD share common metabolic hallmarks such as increased oxidative stress and perturbed metabolic function, and age remains the most strongly correlated risk factor for AD, a neurodegenerative disease. A major accompanying pathological symptom of these conditions is cognitive impairment, which is linked with changes in lipid metabolism. Thus, nutraceuticals that affect brain lipid metabolism or lipid levels as a whole have the potential to ameliorate cognitive decline. Lipid analyses and lipidomic studies reveal changes in specific lipid types with aging and AD, which can identify potential lipid-based nutraceuticals to restore the brain to a healthy lipid phenotype. The brain lipid profile can be influenced directly with dietary administration of lipids themselves, although because of synergistic effects of nutrients it may be more useful to consider a multi-component diet rather than single nutrient supplementation. Gut microbiota also serve as a source of beneficial lipids, and the value of treatments that manipulate the composition of gut microbiome should not be ignored. Lastly, instead of direct supplementation, compounds that affect pathways involved with lipid metabolism should also be considered as a way of manipulating lipid levels to improve cognition. In this review, we briefly discuss the role of lipids in the brain, the changing lipid profile in AD, current research on lipid-based nutraceuticals and their therapeutic potential to combat cognitive impairment.
Collapse
Affiliation(s)
- Kei-Lin Murata Ooi
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia; School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
9
|
Tan X, Luo Y, Pi D, Xia L, Li Z, Tu Q. MiR-340 Reduces the Accumulation of Amyloid-β Through Targeting BACE1 (β-site Amyloid Precursor Protein Cleaving Enzyme 1) in Alzheimer's Disease. Curr Neurovasc Res 2021; 17:86-92. [PMID: 31957613 DOI: 10.2174/1567202617666200117103931] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease, and the accumulation of amyloid-β is the initial process in AD. MicroRNAs (miRNAs) are widely known as key regulators of the accumulation of amyloid-β in AD. This study analyzed the potential effects and possible internal mechanisms of miR-340 on AD. METHODS The expression of miR-340 in senescence-accelerated mouse prone-8 (SAMP8) mouse and senescence-accelerated mice/resistant-1 (SAMR1) mouse was evaluated by qRT-PCR (quantitative real-time polymerase chain reaction). The expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) was determined by qRT-PCR and western blot. The binding ability between miR-340 and BACE1 was verified by dual-luciferase reporter assay. In vitro cell model of AD was established in human neuroblastoma SH-SY5Y cells transfected with Swedish mutant form of amyloid precursor protein (APPswe). The effect of miR-340 on the accumulation of amyloid- β was investigated by western blot analysis. Flow cytometry was conducted to detect cell apoptosis. RESULTS MiR-340 was down-regulated in the hippocampus of AD model SAMP8 mouse compared to SAMR1 mouse, while BACE1 was up-regulated in SAMP8, suggesting a negative correlation between miR-340 and BACE1 in SAMP8 mouse. MiR-340 could directly bind with BACE1, and over-expression of miR-340 decreased expression of BACE1 in SH-SY5Y/APPswe cells. MiR- 340 reduced the accumulation of amyloid-β and suppressed cell apoptosis through targeting BACE1 in SH-SY5Y/APPswe cells. CONCLUSION MiR-340 was downregulated in AD and reduced the accumulation of amyloid-β through targeting BACE1, suggesting a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Xianpei Tan
- Department of Neurology, Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, China
| | - Yi Luo
- Department of Neurology, Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, China
| | - Dingfang Pi
- Department of Neurology, Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, China
| | - Liexin Xia
- Department of Neurology, Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, China
| | - Zhilian Li
- Department of Neurology, Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, China
| | - Qiang Tu
- Department of Neurology, Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, China
| |
Collapse
|
10
|
Mechanistic Insights into Alzheimer's Disease Unveiled through the Investigation of Disturbances in Central Metabolites and Metabolic Pathways. Biomedicines 2021; 9:biomedicines9030298. [PMID: 33799385 PMCID: PMC7998757 DOI: 10.3390/biomedicines9030298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrophilic metabolites are closely involved in multiple primary metabolic pathways and, consequently, play an essential role in the onset and progression of multifactorial human disorders, such as Alzheimer’s disease. This review article provides a comprehensive revision of the literature published on the use of mass spectrometry-based metabolomics platforms for approaching the central metabolome in Alzheimer’s disease research, including direct mass spectrometry, gas chromatography-mass spectrometry, hydrophilic interaction liquid chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Overall, mounting evidence points to profound disturbances that affect a multitude of central metabolic pathways, such as the energy-related metabolism, the urea cycle, the homeostasis of amino acids, fatty acids and nucleotides, neurotransmission, and others.
Collapse
|
11
|
Zhao Y, Chen H, Iqbal J, Liu X, Zhang H, Xiao S, Jin N, Yao F, Shen L. Targeted metabolomics study of early pathological features in hippocampus of triple transgenic Alzheimer's disease male mice. J Neurosci Res 2020; 99:927-946. [PMID: 33197957 DOI: 10.1002/jnr.24750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease in people of age 65 or above. The detailed etiology and pathogenesis of AD have not been elucidated yet. In this study, the hippocampi of 2- and 6-month-old triple transgenic Alzheimer's disease male mice and age-sex-matched wild-type (WT) mice were analyzed by using targeted metabolomics approach. Compared with WT mice, 24 and 60 metabolites were found with significant differences in 2- and 6-month-old AD mice. Among these, 14 metabolites were found common while 10 metabolites showed consistent variable trends in both groups. These differential metabolites are found associated with amino acid, lipid, vitamin, nucleotide-related base, neurotransmitter and energy metabolisms, and oxidative stress. The results suggest that these differential metabolites might play a critical role in AD pathophysiology, and may serve as potential biomarkers for AD. Moreover, the results highlight the involvement of abnormal purine, pyrimidine, arginine, and proline metabolism, along with glycerophospholipid metabolism in early pathology of AD. For the first time, several differential metabolites are found to be associated with AD in this study. Targeted metabolomics can be used for rapid and accurate quantitative analysis of specific target metabolites associated with AD.
Collapse
Affiliation(s)
- Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Haiquan Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China.,Shenzhen Bay Laboratory, Shenzhen, P.R. China
| | - Shifeng Xiao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Na Jin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, P.R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
12
|
Ding L, Zhang L, Shi H, Xue C, Yanagita T, Zhang T, Wang Y. The Protective Effect of Dietary EPA‐Enriched Ethanolamine Plasmalogens against Hyperlipidemia in Aged Mice. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Lingyu Zhang
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Haohao Shi
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao 266237 P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry Department of Applied Biochemistry and Food Science Saga University Saga 840‐8502 Japan
| | - Tiantian Zhang
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
| | - Yuming Wang
- College of Food Science and Engineering Ocean University of China No.5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao 266237 P. R. China
| |
Collapse
|
13
|
Tondo M, Wasek B, Escola-Gil JC, de Gonzalo-Calvo D, Harmon C, Arning E, Bottiglieri T. Altered Brain Metabolome Is Associated with Memory Impairment in the rTg4510 Mouse Model of Tauopathy. Metabolites 2020; 10:metabo10020069. [PMID: 32075035 PMCID: PMC7074477 DOI: 10.3390/metabo10020069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized, amongst other features, by the pathologic accumulation of abnormally phosphorylated tau filaments in neurons that lead to neurofibrillary tangles. However, the molecular mechanisms by which the abnormal processing of tau leads to neurodegeneration and cognitive impairment remain unknown. Metabolomic techniques can comprehensively assess disturbances in metabolic pathways that reflect changes downstream from genomic, transcriptomic and proteomic systems. In the present study, we undertook a targeted metabolomic approach to determine a total of 187 prenominated metabolites in brain cortex tissue from wild type and rTg4510 animals (a mice model of tauopathy), in order to establish the association of metabolic pathways with cognitive impairment. This targeted metabolomic approach revealed significant differences in metabolite concentrations of transgenic mice. Brain glutamine, serotonin and sphingomyelin C18:0 were found to be predictors of memory impairment. These findings provide informative data for future research on AD, since some of them agree with pathological alterations observed in diseased humans.
Collapse
Affiliation(s)
- Mireia Tondo
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
- Servei de Bioquímica, Laboratori Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
| | - Joan Carles Escola-Gil
- Research Institute, Hospital de la Santa Creu i Sant Pau and CIBERDEM, Institute of Health Carlos III, 08041 Barcelona, Spain;
| | - David de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB)—Spanish National Research Council (CSIC), Biomedical Research Institute Sant Pau (IIB Sant Pau) and CIBERCV, Institute of Health Carlos III, 08036 Barcelona, Spain;
| | - Clinton Harmon
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
- Correspondence:
| |
Collapse
|
14
|
Tian X, Xie B, Zou Z, Jiao Y, Lin LE, Chen CL, Hsu CC, Peng J, Yang Z. Multimodal Imaging of Amyloid Plaques: Fusion of the Single-Probe Mass Spectrometry Image and Fluorescence Microscopy Image. Anal Chem 2019; 91:12882-12889. [PMID: 31536324 PMCID: PMC6885010 DOI: 10.1021/acs.analchem.9b02792] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. The formation of amyloid plaques by aggregated amyloid beta (Aβ) peptides is a primary event in AD pathology. Understanding the metabolomic features and related pathways is critical for studying plaque-related pathological events (e.g., cell death and neuron dysfunction). Mass spectrometry imaging (MSI), due to its high sensitivity and ability to obtain the spatial distribution of metabolites, has been applied to AD studies. However, limited studies of metabolites in amyloid plaques have been performed due to the drawbacks of the commonly used techniques such as matrix-assisted laser desorption/ionization MSI. In the current study, we obtained high spatial resolution (∼17 μm) MS images of the AD mouse brain using the Single-probe, a microscale sampling and ionization device, coupled to a mass spectrometer under ambient conditions. The adjacent slices were used to obtain fluorescence microscopy images to locate amyloid plaques. The MS image and the fluorescence microscopy image were fused to spatially correlate histological protein hallmarks with metabolomic features. The fused images produced significantly improved spatial resolution (∼5 μm), allowing for the determination of fine structures in MS images and metabolomic biomarkers representing amyloid plaques.
Collapse
Affiliation(s)
- Xiang Tian
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Boer Xie
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhu Zou
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yun Jiao
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Li-En Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
15
|
Electroacupuncture Improves Synaptic Function in SAMP8 Mice Probably via Inhibition of the AMPK/eEF2K/eEF2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8260815. [PMID: 31641367 PMCID: PMC6766673 DOI: 10.1155/2019/8260815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023]
Abstract
Synaptic loss and dysfunction is associated with cognitive impairment in Alzheimer's disease (AD). Recent evidence indicates that the AMP-activated protein kinase (AMPK)/eukaryotic elongation factor-2 kinase (eEF2K)/eukaryotic elongation factor-2 (eEF2) pathway was implicated in synaptic plasticity in AD. Therapeutic strategies for AD treatment are currently limited. Here, we investigate the effects of electroacupuncture (EA) on synaptic function and the AMPK/eEF2K/eEF2 signaling pathway in male senescence-accelerated mouse-prone 8 (SAMP8) mice. Male 7-month-old SAMP8 and SAMR1 mice (senescence-accelerated mouse resistant 1) were randomly divided into 3 groups: SAMR1 control group (Rc), SAMP8 control group (Pc), and SAMP8 electroacupuncture group (Pe). The Pe group was treated with EA for 30 days. Transmission electron microscopy (TEM) was used to observe the structure of synapse. The protein and mRNA expression of synaptophysin (SYN) and postsynaptic density 95 (PSD95) was examined by immunohistochemistry, western blot, and real-time RT-PCR. The activity of AMPK and eEF2K was studied by western blot. Our results showed that EA ameliorated synaptic loss, increased the expression of SYN and PSD95, and inhibited AMPK activation and eEF2K activity. Collectively, these findings suggested that the mechanisms of EA improving synaptic function in AD may be associated with the inhibition of the AMPK/eEF2K/eEF2 signaling pathway.
Collapse
|
16
|
Metabolomics analysis of Xanthoceras sorbifolia husks protection of rats against Alzheimer's disease using liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121739. [DOI: 10.1016/j.jchromb.2019.121739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
|
17
|
Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Nasaruddin ML, Mori M, Azizan KA, Damanhuri HA, Makpol S, Wan Ngah WZ, Tooyama I. Tocotrienol-Rich Fraction of Palm Oil Improves Behavioral Impairments and Regulates Metabolic Pathways in AβPP/PS1 Mice. J Alzheimers Dis 2019; 64:249-267. [PMID: 29889072 PMCID: PMC6004929 DOI: 10.3233/jad-170880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AβPP/PS1 double transgenic (Tg) Alzheimer’s disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aβ interaction or independent of Aβ interaction.
Collapse
Affiliation(s)
- Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Nor Faeizah Ibrahim
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Masaki Mori
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| |
Collapse
|
18
|
Wei M, Liu Y, Pi Z, Yue K, Li S, Hu M, Liu Z, Song F, Liu Z. Investigation of plasma metabolomics and neurotransmitter dysfunction in the process of Alzheimer's disease rat induced by amyloid beta 25-35. RSC Adv 2019; 9:18308-18319. [PMID: 35515227 PMCID: PMC9064735 DOI: 10.1039/c9ra00302a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/15/2021] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) has become one of the major diseases endangering the health of the elderly. Clarifying the features of each AD animal model is valuable for understanding the onset and progression of diseases and developing potential treatments in the pharmaceutical industry. In this study, we aimed to clarify plasma metabolomics and neurotransmitter dysfunction in the process of AD model rat induced by amyloid beta 25-35 (Aβ 25-35). Firstly, Morris Water Maze (MWM) test was used to investigate cognitive impairment in AD rat after 2, 4 and 8 weeks of modelling. Based on this, the effects on levels of AD-related enzymes and eight neurotransmitters were analyzed. And plasma metabolomics analysis based on ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was used to research the metabolic disturbances in the process of AD rat. The results shown the injury on the spatial learning ability of AD rats was gradually aggravated within 4 weeks, reached the maximum at 4 weeks and then was stable until 8 weeks. During 8 weeks of modeling, the levels of enzymes including β-secretase, γ-secretase, glycogen synthase kinase-3β (GSK-3β), acetyl cholinesterase (AchE) and nitric oxide synthase (NOS) were significant increased in the plasma of AD rats. The neurotransmitter dysfunction was mainly involved in γ-aminobutyric acid (GABA), acetyl choline (Ach), glutamic acid (Glu), 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE). 17 endogenous metabolites correlated with AD were successfully detected in the metabolomics analysis. These metabolites were mainly involved in fatty acids, sphingolipids, and sterols metabolisms, vitamin metabolism, and amino acid metabolism. These metabolites might be the potential biomarkers that correctly mark different stages of AD. The study on peripheral plasma indices reflecting the process of AD laid the foundation for understand the pathophysiology of AD and find an effective and radical cure. And the rules of endogenous metabolic disorder in AD rats also have a certain guiding significance for the future study of food-drug interactions at different stages of AD.
Collapse
Affiliation(s)
- Mengying Wei
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Yuanyuan Liu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Kexin Yue
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Shizhe Li
- Guangdong Univ Technol, Inst Biomed & Pharmaceut Sci Guangzhou 510006 Guangdong People's Republic of China
| | - Mingxin Hu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| |
Collapse
|
19
|
Li G, Zeng L, Cheng H, Han J, Zhang X, Xie H. Acupuncture Administration Improves Cognitive Functions and Alleviates Inflammation and Nuclear Damage by Regulating Phosphatidylinositol 3 Kinase (PI3K)/Phosphoinositol-Dependent Kinase 1 (PDK1)/Novel Protein Kinase C (nPKC)/Rac 1 Signaling Pathway in Senescence-Accelerated Prone 8 (SAM-P8) Mice. Med Sci Monit 2019; 25:4082-4093. [PMID: 31152645 PMCID: PMC6559003 DOI: 10.12659/msm.913858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-associated neurodegenerative disorder. This study aimed to investigate effects of acupuncture administration on cognitive function and associated mechanisms. MATERIAL AND METHODS Senescence-accelerated prone 8 (SAM-P8) mice were randomly divided into 3 groups: the SAM-P8 group (P8-CN), the SAM-P8 administrating with acupuncture (P8-Acup) group, and the SAM-P8 administrating without acupuncture (P8-Sham) group. Morris water maze test was conducted to evaluate cognitive functions (memory and learning ability). PDK1, nPKC, and Rac1 inhibitors were used to treat SAM-P8 mice. Transmission electron microscope analysis was used to examine nuclear damage hippocampal tissues. Hematoxylin and eosin (H&E) staining was employed to evaluate inflammation. Western blot was used to detect PI3K, PDK1, nPKC, and Rac 1 expression in hippocampal tissues. RESULTS Acupuncture administration significantly reduced PI3K, PDK1, nPKC, and Rac 1 levels compared to P8-CN group (P<0.05). Both acupuncture and enzyme inhibitors (NSC23766, Rottlerin, OSU03012) significantly improved cognitive functions, reduced inflammation, and alleviated nuclear damages of SAM-P8 mice compared to P8-CN group (P<0.05). Acupuncture significantly enhanced effects of inhibitors on inflammation and nuclear damages compared to inhibitor treatment single (P<0.05). Acupuncture significantly enhanced down-regulative effects of OSU03012 on PI3K and PDK1 levels, increased down-regulative effects of Rottlerin on nPKC and Rac 1 levels and enhanced effects of Rottlerin on Rac 1 compared to P8-CN group (P<0.05). CONCLUSIONS Acupuncture administration improved cognitive functions and alleviated inflammatory response and nuclear damage of SAM-P8 mice, by downregulating PI3K/PDK1/nPKC/Rac 1 signaling pathway. This study could provide potential insight for treating cognitive dysfunction and aging of AD patients.
Collapse
Affiliation(s)
- Guomin Li
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Lirong Zeng
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Haiyan Cheng
- Department of Traditional Chinese Medicine, Hubei Jianghan Oilfield General Hospital, Jianghan, Hubei, China (mainland)
| | - Jingxian Han
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Xuezhu Zhang
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Hui Xie
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| |
Collapse
|
20
|
Ding L, Zhang T, Che H, Zhang L, Xue C, Chang Y, Wang Y. DHA-Enriched Phosphatidylcholine and DHA-Enriched Phosphatidylserine Improve Age-Related Lipid Metabolic Disorder through Different Metabolism in the Senescence-Accelerated Mouse. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Tiantian Zhang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Hongxia Che
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Lingyu Zhang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Changhu Xue
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
- Qingdao National Laboratory for Marine Science and Technology; Laboratory of Marine Drugs and Biological Products; Qingdao 266237 P.R. China
| | - Yaoguang Chang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
| | - Yuming Wang
- College of Food Science and Engineering; Ocean University of China; No. 5 Yushan Road,Qingdao 266003 Shandong Province P.R. China
- Qingdao National Laboratory for Marine Science and Technology; Laboratory of Marine Drugs and Biological Products; Qingdao 266237 P.R. China
| |
Collapse
|
21
|
Jung HY, Yoo DY, Park JH, Kim JW, Chung JY, Kim DW, Won MH, Yoon YS, Hwang IK. Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus. Mol Med Rep 2018. [PMID: 29532891 PMCID: PMC5928628 DOI: 10.3892/mmr.2018.8705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age‑associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum‑moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum‑moleculare in the hippocampal CA1‑3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non‑pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age‑associated memory impairment in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
González-Domínguez R, Sayago A, Fernández-Recamales Á. Metabolomics in Alzheimer’s disease: The need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071:75-92. [DOI: 10.1016/j.jchromb.2017.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/14/2022]
|
23
|
Ren W, Ma J, Li J, Zhang Z, Wang M. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Lipid Metabolism in Aging Adults. Front Aging Neurosci 2017; 9:334. [PMID: 29089885 PMCID: PMC5650987 DOI: 10.3389/fnagi.2017.00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia, one of the cardiovascular (CV) risk factors, is associated with an increase in the risk for dementia. Repetitive transcranial magnetic stimulation (rTMS) was applied over the right dorsolateral prefrontal cortex (DLPFC) to modulate serum lipid levels in older adults. Participants received 10 sessions of rTMS or sham stimulation intervention within 2 weeks. The serum lipid and thyroid hormone-related endocrine levels were assessed before and after the treatment. We found that rTMS significantly decreased serum lipid levels, including the total cholesterol (CHO) and triglyceride (TG); meanwhile, it also increased the thyroid-stimulating hormone (TSH) as well as thyroxine (T4) levels. This suggests that rTMS modulated the serum lipid metabolism by altering activity in the hypothalamo-pituitary-thyroid (HPT) axis. The trial was registered on the website of Chinese Clinical Trial Registry (http://www.chictr.org.cn).
Collapse
Affiliation(s)
- Weicong Ren
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.,Key Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Hebei Medical University, Shijiazhuang, China.,Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jiang Ma
- Department of Rehabilitation, First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Juan Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zhijie Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.,Key Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Mingwei Wang
- Key Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Kimoto A, Izu H, Fu C, Suidasari S, Kato N. Effects of low dose of ethanol on the senescence score, brain function and gene expression in senescence-accelerated mice 8 (SAMP8). Exp Ther Med 2017; 14:1433-1440. [PMID: 28810607 PMCID: PMC5525595 DOI: 10.3892/etm.2017.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 05/18/2017] [Indexed: 01/09/2023] Open
Abstract
Accumulating epidemiological evidence suggests light to moderate alcohol intake reduces risk of several chronic diseases. However, there is limited information regarding the effects of low alcohol intake in animal studies. This study investigated the effect of low ethanol dosage on senescence-accelerated mouse (SAMP8), an animal model of aging and neurodegenaration. Male SAMP8 mice (11 weeks old) had free access to a commercial stock diet with drinking water containing 0, 1 or 2% (v/v) ethanol for 15 weeks. The total grading score of senescence in the 1%-ethanol group was, in large part, the lowest among the three groups. Analysis using the open-field test revealed a significant elevation (+77%, P<0.05) in the rearing activity (index of seeking behavior) in the 1%-ethanol group, but not in the 2%-ethanol group. In addition, 2% ethanol elevated spontaneous locomotor activity (+75%, P<0.05), whereas 1% ethanol did not. Scrutiny of serum parameters indicated intake of 1% ethanol significantly decreased serum insulin levels (-13%, P<0.05), whereas 2% did not. Intake of 2% ethanol significantly elevated (2.5-fold, P<0.05) S100a8 mRNA (an inflammatory signal) in the brain, but that of 1% ethanol did not. Intriguingly, 1% ethanol intake remarkably elevated (10-fold, P<0.05) mRNA of brain alcohol dehydrogenase 1 (Adh1), which metabolizes lipid-peroxidation products and is involved in the synthesis of retinoic acid, a neuroprotective factor. Of note, 2%-ethanol intake did not exert this effect. Taken together, intake of 1% ethanol is likely to be beneficial for SAMP8 mice.
Collapse
Affiliation(s)
- Akiko Kimoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hanae Izu
- Quality and Evaluation Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Churan Fu
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Sofya Suidasari
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Norihisa Kato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
25
|
Chen Y, Liu L, Li M, Yao E, Hao J, Dong Y, Zheng X, Liu X. Expression of human Tau40 in the medial entorhinal cortex impairs synaptic plasticity and associated cognitive functions in mice. Biochem Biophys Res Commun 2017; 496:1006-1012. [PMID: 28472625 DOI: 10.1016/j.bbrc.2017.04.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 01/23/2023]
Abstract
Entorhinal cortex (EC) is the initial brain region that suffers abnormal tau in Alzheimer's disease (AD). Whether overexpression of human tau (htau40) in EC disrupts cognitive function and synaptic plasticity in AD has not been fully elucidated. To investigate the effects of htau40 on the pathology and associated mechanisms of early stage of AD in mice, an adeno-associated virus-based htau40 transduced in medial EC (mEC) mouse model was established. The results showed that htau40 restrictedly expressed in mEC after transduction. The memory function and long-term potentiation (LTP) of dentate gyrus (DG) were significantly impaired by overexpression of htau40 in mEC after transduction at 3 and 6 months. However, the abnormities of neurons and neurotransmitters in mEC started at just 1 month after transduction. The resting membrane potential was increased and paired pulse facilitates was depressed, but the action potential amplitude, threshold, and half width did not alter after htau40 transduction at 1 month. The levels of inhibitory neurotransmitters were up regulated whereas level of lactate was decreased. Our study demonstrated that htau40 in mEC impaired cognition and synaptic plasticity of perforant path (PP)-DG, which simulated early stage of AD and elucidated the mechanism of that htau40 overexpression in mEC may be associated with the development of AD.
Collapse
Affiliation(s)
- Yuxue Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Mengzhu Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ensheng Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiahuan Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuanji Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xinghua Liu
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
26
|
Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5472792. [PMID: 28261376 PMCID: PMC5316456 DOI: 10.1155/2017/5472792] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.
Collapse
|
27
|
Cao Y, Yan Z, Zhou T, Wang G. SIRT1 Regulates Cognitive Performance and Ability of Learning and Memory in Diabetic and Nondiabetic Models. J Diabetes Res 2017; 2017:7121827. [PMID: 29164153 PMCID: PMC5661098 DOI: 10.1155/2017/7121827] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus is a complex age-related metabolic disease. Cognitive dysfunction and learning and memory deficits are main characteristics of age-related metabolic diseases in the central nervous system. The underlying mechanisms contributing to cognitive decline are complex, especially cognitive dysfunction associated with type 2 diabetes mellitus. SIRT1, as one of the modulators in insulin resistance, is indispensable for learning and memory. In the present study, deacetylation, oxidative stress, mitochondrial dysfunction, inflammation, microRNA, and tau phosphorylation are considered in the context of mechanism and significance of SIRT1 in learning and memory in diabetic and nondiabetic murine models. In addition, future research directions in this field are discussed, including therapeutic potential of its activator, resveratrol, and application of other compounds in cognitive improvement. Our findings suggest that SIRT1 might be a potential therapeutic target for the treatment of cognitive impairment induced by type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yue Cao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zi Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Wang HL, Wang YY, Liu XG, Kuo SH, Liu N, Song QY, Wang MW. Cholesterol, 24-Hydroxycholesterol, and 27-Hydroxycholesterol as Surrogate Biomarkers in Cerebrospinal Fluid in Mild Cognitive Impairment and Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2016; 51:45-55. [PMID: 26836015 DOI: 10.3233/jad-150734] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abnormal cholesterol metabolism is an established feature of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) is the fluid surrounding the central nervous system, and the protein and lipid content alterations in the CSF could be biomarkers for degenerative changes in the brain. The laboratory diagnosis of AD is limited to the analysis of three biomarkers in CSF: Aβ42, total tau, and phospho-tau. The purpose of this analysis is to systematically analyze the available data describing the biomarkers of cholesterol and its metabolites in the CSF of subjects with AD. MEDLINE, EMBASE, and the Cochrane Central database were systematically queried to collect studies that have evaluated the markers of cholesterol and its metabolites in the CSF of subjects with mild cognitive impairment (MCI) or AD and age-matched controls. Analysis of the published data shows that the levels of cholesterol are increased in MCI subjects; 24-hydroxycholesterol and 27-hydroxycholesterol are elevated in AD and MCI subjects compared to controls. There is a significant dysfunction of cholesterol metabolism in the CSF of AD subjects. This analysis indicates that in addition to the available biomarkers in the CSF, such as Aβ42, total tau, and phospho-tau, 24-hydroxycholesterol, 27-hydroxycholesterol, and cholesterol appear to be sensitive biomarkers for the evaluation of MCI and AD.
Collapse
Affiliation(s)
- Hua-Long Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yan-Yong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xin-Gang Liu
- Department of Rehabilitation, Jingxing Hospital, Jingxing, Hebei, PR China
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Na Liu
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Qiao-Yun Song
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Ming-Wei Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.,Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| |
Collapse
|
29
|
1'-Acetoxychavicol acetate ameliorates age-related spatial memory deterioration by increasing serum ketone body production as a complementary energy source for neuronal cells. Chem Biol Interact 2016; 257:101-9. [PMID: 27481192 DOI: 10.1016/j.cbi.2016.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/25/2016] [Accepted: 07/27/2016] [Indexed: 11/24/2022]
Abstract
1'-Acetoxychavicol acetate (ACA) is naturally obtained from the rhizomes and seeds of Alpinia galangal. Here, we examined the effect of ACA on learning and memory in senescence-accelerated mice prone 8 (SAMP8). In mice that were fed a control diet containing 0.02% ACA for 25 weeks, the learning ability in the Morris water maze test was significantly enhanced in comparison with mice that were fed the control diet alone. In the Y-maze test, SAMP8 mice showed decreased spontaneous alterations in comparison with senescence-accelerated resistant/1 (SAMR1) mice, a homologous control, which was improved by ACA pretreatment. Serum metabolite profiles were obtained by GC-MS analysis, and each metabolic profile was plotted on a 3D score plot. Based upon the diagram, it can be seen that the distribution areas for the three groups were completely separate. Furthermore, the contents of β-hydroxybutyric acid and palmitic acid in the serum of SAMP8-ACA mice were higher than those of SAMP8-control mice and SAMR1-control mice. We also found that SAMR1 mice did not show histological abnormalities, whereas histological damage in the CA1 region of the hippocampus in SAMP8-control mice was observed. However, SAMP8-ACA mice were observed in a similar manner as SAMR1 mice. These findings confirm that ACA increases the serum concentrations of β-hydroxybutyric acid and palmitic acid levels and thus these fuels might contribute to the maintenance of the cognitive performance of SAMP8 mice.
Collapse
|
30
|
Serum Metabolic Profiling Reveals Altered Metabolic Pathways in Patients with Post-traumatic Cognitive Impairments. Sci Rep 2016; 6:21320. [PMID: 26883691 PMCID: PMC4756382 DOI: 10.1038/srep21320] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/21/2016] [Indexed: 12/18/2022] Open
Abstract
Cognitive impairment, the leading cause of traumatic brain injury (TBI)-related disability, adversely affects the quality of life of TBI patients, and exacts a personal and economic cost that is difficult to quantify. The underlying pathophysiological mechanism is currently unknown, and an effective treatment of the disease has not yet been identified. This study aimed to advance our understanding of the mechanism of disease pathogenesis; thus, metabolomics based on gas chromatography/mass spectrometry (GC-MS), coupled with multivariate and univariate statistical methods were used to identify potential biomarkers and the associated metabolic pathways of post-TBI cognitive impairment. A biomarker panel consisting of nine serum metabolites (serine, pyroglutamic acid, phenylalanine, galactose, palmitic acid, arachidonic acid, linoleic acid, citric acid, and 2,3,4-trihydroxybutyrate) was identified to be able to discriminate between TBI patients with cognitive impairment, TBI patients without cognitive impairment and healthy controls. Furthermore, associations between these metabolite markers and the metabolism of amino acids, lipids and carbohydrates were identified. In conclusion, our study is the first to identify several serum metabolite markers and investigate the altered metabolic pathway that is associated with post-TBI cognitive impairment. These markers appear to be suitable for further investigation of the disease mechanisms of post-TBI cognitive impairment.
Collapse
|
31
|
Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, Nagarajan S, Schütz AL, Johnsen SA, Bonn S, Lührmann R, Dean C, Fischer A. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest 2015; 125:3572-84. [PMID: 26280576 DOI: 10.1172/jci79942] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer's disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline.
Collapse
|
32
|
Jiang T, Zhang YD, Zhou JS, Zhu XC, Tian YY, Zhao HD, Lu H, Gao Q, Tan L, Yu JT. Angiotensin-(1-7) is Reduced and Inversely Correlates with Tau Hyperphosphorylation in Animal Models of Alzheimer’s Disease. Mol Neurobiol 2015; 53:2489-97. [DOI: 10.1007/s12035-015-9260-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/28/2015] [Indexed: 12/29/2022]
|
33
|
González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. High throughput multiorgan metabolomics in the APP/PS1 mouse model of Alzheimer's disease. Electrophoresis 2015; 36:2237-2249. [PMID: 25641566 DOI: 10.1002/elps.201400544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/29/2022]
Abstract
Metabolomics has demonstrated a great potential for the study of pathological mechanisms occurring in brain from Alzheimer's disease patients and transgenic models. However, its application to peripheral samples is not so common, although it can provide interesting information about systemic abnormalities underlying to disease. This work represents the first metabolomic investigation of multiple peripheral organs (liver, kidney, spleen, and thymus) from the APP/PS1 mice by using a high-throughput approach based on direct infusion MS. Our findings demonstrated that these organs suffer significant metabolic impairments related to energy metabolism (e.g. glycolysis, Krebs cycle, β-oxidation), lipid homeostasis (e.g. cellular membrane breakdown and fatty acid metabolism), degradation of nucleotides, oxidative stress, hyperammonemia, and metabolism of amino acids. It is noteworthy that many of these alterations have been previously described in brain, confirming the systemic character of this neurodegenerative disorder and the utility of peripheral samples to understand its pathogenesis.
Collapse
Affiliation(s)
- Raúl González-Domínguez
- Department of Chemistry and CC.MM, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.,Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA), Campus de El Carmen, University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry and CC.MM, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.,Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA), Campus de El Carmen, University of Huelva, Huelva, Spain
| | - Javier Vitorica
- Department Bioquímica, Bromatologia, Toxicología y Medicina Legal, Faculty of Pharmacy, University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry and CC.MM, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.,Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA), Campus de El Carmen, University of Huelva, Huelva, Spain
| |
Collapse
|
34
|
Yan WW, Chen GH, Wang F, Tong JJ, Tao F. Long-term acarbose administration alleviating the impairment of spatial learning and memory in the SAMP8 mice was associated with alleviated reduction of insulin system and acetylated H4K8. Brain Res 2015; 1603:22-31. [PMID: 25645154 DOI: 10.1016/j.brainres.2015.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 12/14/2022]
Abstract
Age-associated memory impairment (AAMI) not only reduces the quality of life for the elderly but also increases the costs of healthcare for society. Methods that can regulate glucose metabolism, insulin/insulin-like growth factor 1 (IGF-1) system and acetylated histone H4 lysine 8 (H4K8ac), one of the most well-researched facets of histone acetylation modification associating with cognition, tend to ameliorate the AAMI. Here, we used SAMP8 mice, the excellent animal model of aging and AAMI, to study the effect of long-term treatment with acarbose, an inhibitor of a-glucosidase, on AAMI and explore whether blood glucose, insulin/IGF-1 system and H4K8ac are associated with potential effects. The treatment group received acarbose (20mg/kg/d, dissolved in drinking water) at the age of 3-month until 9-month old before the behavioral test, and the controls only received water. Compared to the young controls (3-month-old, n=11), the old group (9-month-old, n=8) had declined abilities of spatial learning and memory and levels of serum insulin, hippocampal insulin receptors (InsRs) and H4K8ac. Interestingly, the acarbose group (9-month-old, n=9) showed better abilities of spatial learning and memory and higher levels of insulin, InsRs and H4K8ac relative to the old controls. Good performance of spatial learning and memory was positively correlated with the elevated insulin, InsRs and H4K8ac. All these results suggested that long-term administration of acarbose could alleviate the age-related impairment of spatial learning and memory in the SAMP8 mice, and the alleviated reduction of an insulin system and H4K8ac might be associated with the alleviation.
Collapse
Affiliation(s)
- Wen-Wen Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Gui-Hai Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, The First People׳s Hospital of Chenzhou, Southern Medical University, Chenzhou 423000, Hunan Province, PR China.
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Jing-Jing Tong
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Fei Tao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| |
Collapse
|
35
|
Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2395-402. [DOI: 10.1016/j.bbadis.2014.09.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/22/2014] [Accepted: 09/28/2014] [Indexed: 11/21/2022]
|
36
|
Metabolomic screening of regional brain alterations in the APP/PS1 transgenic model of Alzheimer's disease by direct infusion mass spectrometry. J Pharm Biomed Anal 2014; 102:425-35. [PMID: 25459942 DOI: 10.1016/j.jpba.2014.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/07/2014] [Accepted: 10/09/2014] [Indexed: 12/24/2022]
Abstract
The identification of pathological mechanisms underlying to Alzheimer's disease is of great importance for the discovery of potential markers for diagnosis and disease monitoring. In this study, we investigated regional metabolic alterations in brain from the APP/PS1 mice, a transgenic model that reproduces well some of the neuropathological and cognitive deficits observed in human Alzheimer's disease. For this purpose, hippocampus, cortex, cerebellum and olfactory bulbs were analyzed using a high-throughput metabolomic approach based on direct infusion mass spectrometry. Metabolic fingerprints showed significant differences between transgenic and wild-type mice in all brain tissues, being hippocampus and cortex the most affected regions. Alterations in numerous metabolites were detected including phospholipids, fatty acids, purine and pyrimidine metabolites, acylcarnitines, sterols and amino acids, among others. Furthermore, metabolic pathway analysis revealed important alterations in homeostasis of lipids, energy management, and metabolism of amino acids and nucleotides. Therefore, these findings demonstrate the potential of metabolomic screening and the use of transgenic models for understanding pathogenesis of Alzheimer's disease.
Collapse
|
37
|
Zhu H, Luo L, Hu S, Dong K, Li G, Zhang T. Treating Alzheimer's disease with Yizhijiannao granules by regulating expression of multiple proteins in temporal lobe. Neural Regen Res 2014; 9:1283-7. [PMID: 25221580 PMCID: PMC4160854 DOI: 10.4103/1673-5374.137575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 12/17/2022] Open
Abstract
Yizhijiannao granules have been shown to improve cognitive function in Alzheimer's disease patients. The present study sought to explore the mechanisms involved in the cognitive enhancing effects of Yizhijiannao granule. Senescence-accelerated mouse prone 8 mice with learning and memory disorders were intragastrically treated with Yizhijiannao granule for 8 weeks. Mice intragastrically treated with double distilled water for 8 weeks were considered as the control group. 2D gel electrophoresis was used to isolate total protein from the temporal lobe of senescence-accelerated mouse prone 8 mice, and differential protein spots were obtained by mass spectrometry. Thirty-seven differential protein spots were found in the temporal lobe area of both groups. Ten protein spots were identified: high mobility group box 1, dimethylarginine dimethylaminohydrolase-1, neuroglobin, hemoglobin beta adult major chain, peroxiredoxin-6, cofilin-1, flotillin 1, peptidylprolyl isomerase A, voltage-dependent anion channel-2 and chaperonin containing TCP1, and subunit 2. Among other functions, these proteins are separately involved in the regulation of amyloid beta production, oxidative stress, neuroinflammation, regulation of tau phosphorylation, and regulation of neuronal apoptosis. Our results revealed that Yizhijiannao granule can regulate the expression of various proteins in the temporal lobe of senescence-accelerated mouse prone 8 mice, and may be therapeutically beneficial for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Traditional Chinese Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Liuyang Luo
- Department of Emergency, Bao-an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Sihang Hu
- Department of Traditional Chinese Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Keli Dong
- Department of Traditional Chinese Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Guangcheng Li
- Department of Traditional Chinese Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Ting Zhang
- Department of Traditional Chinese Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
38
|
Alvarez-López MJ, Molina-Martínez P, Castro-Freire M, Cosín-Tomás M, Cristòfol R, Párrizas M, Escorihuela RM, Pallàs M, Sanfeliu C, Kaliman P. Rcor2 underexpression in senescent mice: a target for inflammaging? J Neuroinflammation 2014; 11:126. [PMID: 25051986 PMCID: PMC4128581 DOI: 10.1186/1742-2094-11-126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
Abstract
Background Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. Methods To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. Results P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-β and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. Conclusions Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Perla Kaliman
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Rosellón 149, E-08036 Barcelona, Spain.
| |
Collapse
|
39
|
Cosín-Tomás M, Alvarez-López MJ, Sanchez-Roige S, Lalanza JF, Bayod S, Sanfeliu C, Pallàs M, Escorihuela RM, Kaliman P. Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front Aging Neurosci 2014; 6:51. [PMID: 24688469 PMCID: PMC3960508 DOI: 10.3389/fnagi.2014.00051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 02/03/2023] Open
Abstract
The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of voluntary exercise. Twenty-one miRNAs were differentially expressed between sedentary SAMP8 and SAMR1 mice and seven miRNAs were responsive to exercise in both strains. SAMP8 mice showed alterations in genes involved in protein acetylation homeostasis such as Sirt1 and Hdac6 and modulation of Hdac3 and Hdac5 gene expression by exercise. Global histone H3 acetylation levels were reduced in SAMP8 compared with SAMR1 mice and reached control levels in response to exercise. In sum, data presented here provide new candidate epigenetic markers for aging and neurodegeneration and suggest that exercise training may prevent or delay some epigenetic alterations associated with accelerated aging.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain ; Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| | - María J Alvarez-López
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain ; Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| | - Sandra Sanchez-Roige
- Departamento de Psiquiatría y Medicina Legal, Facultad de Medicina, Instituto de Neurociencias, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Jaume F Lalanza
- Departamento de Psiquiatría y Medicina Legal, Facultad de Medicina, Instituto de Neurociencias, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sergi Bayod
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain
| | - Coral Sanfeliu
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| | - Merce Pallàs
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain
| | - Rosa M Escorihuela
- Departamento de Psiquiatría y Medicina Legal, Facultad de Medicina, Instituto de Neurociencias, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Perla Kaliman
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| |
Collapse
|