1
|
Huie EZ, Escudero A, Saito N, Harvey D, Nguyen ML, Lucot KL, LaGrande J, Mungas D, DeCarli C, Lamar M, Schneider JA, Kapasi A, Rissman RA, Teich AF, Dugger BN. TDP-43 Pathology in the Setting of Intermediate and High Alzheimer's Disease Neuropathologic Changes: A Preliminary Evaluation Across Ethnoracial Groups. J Alzheimers Dis 2023; 91:1291-1301. [PMID: 36617779 PMCID: PMC9974776 DOI: 10.3233/jad-220558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Transactive Response DNA Binding Protein 43 kDa (TDP-43) pathology is frequently found in cases with Alzheimer's disease (AD). TDP-43 pathology is associated with hippocampal atrophy and greater AD severity denoted by cognition and clinical representation. Current TDP-43 pathology studies are predominantly based on non-Hispanic White cohorts. OBJECTIVE We sought to evaluate the presence of TDP-43 pathology across ethnoracial groups utilizing the National Alzheimer's Coordinating Center; a database containing data from over 29 institutions across the United States. Cases (N = 1135: Hispanics/Latinos = 29, African Americans/Black Americans = 51, Asians/Asian Americans = 10, American Indians/Alaskan Natives = 2, non-Hispanic White = 1043) with intermediate/high AD having data on TDP-43 pathology in the amygdala, hippocampus, entorhinal cortex, and neocortex were included. METHODS TDP-43 pathology frequency in each neuroanatomic region among ethnoracial groups were compared using generalized linear mixed effects models with center as a random effect adjusting for age at death, education, and gender. RESULTS Although groups were imbalanced, there was no significant difference across ethnoracial groups based on TDP-43 pathology (p = 0.84). With respect to neuroanatomical regions evaluated, there were no significant differences across ethnoracial groups (p-values > 0.06). There were also no significant differences for age at death and gender ratios across ethnoracial groups based on TDP-43 pathology. Although not statistically significant, TDP-43 pathology was present less often in Hispanic/Latinos (34%) when compared to non-Hispanic Whites (46%). CONCLUSION While this is a preliminary evaluation, it highlights the need for diverse cohorts and on TDP-43 pathology research across ethnoracial groups. This is the first study to our knowledge having a focus on the neuroanatomical distribution of TDP-43 deposits in Hispanic/Latino decedents with AD.
Collapse
Affiliation(s)
- Emily Z. Huie
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
| | - Anthony Escudero
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Naomi Saito
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, California
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, California
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - My-Le Nguyen
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
| | - Katherine L. Lucot
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
| | - Jayne LaGrande
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Dan Mungas
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Charles DeCarli
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Melissa Lamar
- Department of Psychiatry and Behavioral Sciences, Rush Medical College, Chicago, Illinois
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Alifiya Kapasi
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, San Diego, La Jolla, California
| | - Andrew F. Teich
- Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Department of Neurology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Brittany N. Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
2
|
Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. J Neurochem 2021; 159:211-233. [PMID: 34244999 PMCID: PMC9057379 DOI: 10.1111/jnc.15465] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting 60%-70% of people afflicted with this disease. Accurate antemortem diagnosis is urgently needed for early detection of AD to enable reliable estimation of prognosis, intervention, and monitoring of the disease. The National Institute on Aging/Alzheimer's Association sponsored the 'Research Framework: towards a biological definition of AD', which recommends using different biomarkers in living persons for a biomarker-based definition of AD regardless of clinical status. Fluid biomarkers represent one of key groups of them. Since cerebrospinal fluid (CSF) is in direct contact with brain and many proteins present in the brain can be detected in CSF, this fluid has been regarded as the best biofluid in which to measure AD biomarkers. Recently, technological advancements in protein detection made possible the effective study of plasma AD biomarkers despite their significantly lower concentrations versus to that in CSF. This and other challenges that face plasma-based biomarker measurements can be overcome by using mass spectrometry. In this review, we discuss AD biomarkers which can be reliably measured in CSF and plasma using targeted mass spectrometry coupled to liquid chromatography (LC/MS/MS). We describe progress in LC/MS/MS methods' development, emphasize the challenges, and summarize major findings. We also highlight the role of mass spectrometry and progress made in the process of global standardization of the measurement of Aβ42/Aβ40. Finally, we briefly describe exploratory proteomics which seek to identify new biomarkers that can contribute to detection of co-pathological processes that are common in sporadic AD.
Collapse
Affiliation(s)
- Magdalena Korecka
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
3
|
Beach TG, Malek-Ahmadi M. Alzheimer's Disease Neuropathological Comorbidities are Common in the Younger-Old. J Alzheimers Dis 2021; 79:389-400. [PMID: 33285640 PMCID: PMC8034496 DOI: 10.3233/jad-201213] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Clinicopathological studies have demonstrated that Alzheimer's disease dementia (ADD) is often accompanied by clinically undetectable comorbid neurodegenerative and cerebrovascular disease that alter the rate of cognitive decline. Aside from causing increased variability in clinical response, it is possible that the major ADD comorbidities may not respond to ADD-specific molecular therapeutics. OBJECTIVE As most reports have focused on comorbidity in the oldest-old, its extent in younger age groups that are more likely to be involved in clinical trials is largely unknown; our objective is to provide this information. METHODS We conducted a survey of neuropathological comorbidities in sporadic ADD using data from the US National Alzheimer's Coordinating Center. Subject data was restricted to those with dementia and meeting National Institute on Aging-Alzheimer's Association intermediate or high AD Neuropathological Change levels, excluding those with known autosomal dominant AD-related mutations. RESULTS Highly prevalent ADD comorbidities are not restricted to the oldest-old but are common even in early-onset ADD. The percentage of cases with ADD as the sole major neuropathological diagnosis is highest in the under-60 group, where "pure" ADD cases are still in the minority at 44%. After this AD as a sole major pathology in ADD declines to roughly 20%in the 70s and beyond. Lewy body disease is the most common comorbidity at younger ages but actually is less common at later ages, while for most others, their prevalence increases with age. CONCLUSION Alzheimer's disease neuropathological comorbidities are highly prevalent even in the younger-old.
Collapse
|
4
|
Dev SI, Dickerson BC, Touroutoglou A. Neuroimaging in Frontotemporal Lobar Degeneration: Research and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:93-112. [PMID: 33433871 PMCID: PMC8787866 DOI: 10.1007/978-3-030-51140-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Frontotemporal lobar dementia (FTLD) is a clinically and pathologically complex disease. Advances in neuroimaging techniques have provided a specialized set of tools to investigate underlying pathophysiology and identify clinical biomarkers that aid in diagnosis, prognostication, monitoring, and identification of appropriate endpoints in clinical trials. In this chapter, we review data discussing the utility of neuroimaging biomarkers in sporadic FTLD, with an emphasis on current and future clinical applications. Among those modalities readily utilized in clinical settings, T1-weighted structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) are best supported in differential diagnosis and as targets for clinical trial endpoints. However, a number of nonclinical neuroimaging modalities, including diffusion tensor imaging and resting-state functional connectivity MRI, show promise as biomarkers to predict progression and as clinical trial endpoints. Other neuroimaging modalities, including amyloid PET, Tau PET, and arterial spin labeling MRI, are also discussed, though more work is required to establish their utility in FTLD in clinical settings.
Collapse
Affiliation(s)
- Sheena I Dev
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Beach TG, Adler CH, Zhang N, Serrano GE, Sue LI, Driver-Dunckley E, Mehta SH, Zamrini EE, Sabbagh MN, Shill HA, Belden CM, Shprecher DR, Caselli RJ, Reiman EM, Davis KJ, Long KE, Nicholson LR, Intorcia AJ, Glass MJ, Walker JE, Callan MM, Oliver JC, Arce R, Gerkin RC. Severe hyposmia distinguishes neuropathologically confirmed dementia with Lewy bodies from Alzheimer's disease dementia. PLoS One 2020; 15:e0231720. [PMID: 32320406 PMCID: PMC7176090 DOI: 10.1371/journal.pone.0231720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/30/2020] [Indexed: 11/19/2022] Open
Abstract
Many subjects with neuropathologically-confirmed dementia with Lewy bodies (DLB) are never diagnosed during life, instead being categorized as Alzheimer's disease dementia (ADD) or unspecified dementia. Unrecognized DLB therefore is a critical impediment to clinical studies and treatment trials of both ADD and DLB. There are studies that suggest that olfactory function tests may be able to distinguish DLB from ADD, but few of these had neuropathological confirmation of diagnosis. We compared University of Pennsylvania Smell Identification Test (UPSIT) results in 257 subjects that went on to autopsy and neuropathological examination. Consensus clinicopathological diagnostic criteria were used to define ADD and DLB, as well as Parkinson's disease with dementia (PDD), with (PDD+AD) or without (PDD-AD) concurrent AD; a group with ADD and Lewy body disease (LBD) not meeting criteria for DLB (ADLB) and a clinically normal control group were also included. The subjects with DLB, PDD+AD and PDD-AD all had lower (one-way ANOVA p < 0.0001, pairwise Bonferroni p < 0.05) first and mean UPSIT scores than the ADD, ADLB or control groups. For DLB subjects with first and mean UPSIT scores less than 20 and 17, respectively, Firth logistic regression analysis, adjusted for age, gender and mean MMSE score, conferred statistically significant odds ratios of 17.5 and 18.0 for the diagnosis, vs ADD. For other group comparisons (PDD+AD and PDD-AD vs ADD) and UPSIT cutoffs of 17, the same analyses resulted in odds ratios ranging from 16.3 to 31.6 (p < 0.0001). To our knowledge, this is the largest study to date comparing olfactory function in subjects with neuropathologically-confirmed LBD and ADD. Olfactory function testing may be a convenient and inexpensive strategy for enriching dementia studies or clinical trials with DLB subjects, or conversely, reducing the inclusion of DLB subjects in ADD studies or trials.
Collapse
Affiliation(s)
- Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charles H. Adler
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | | | - Shayamal H. Mehta
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Edouard E. Zamrini
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, United States of America
| | - Holly A. Shill
- Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Christine M. Belden
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Kathryn J. Davis
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Kathy E. Long
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lisa R. Nicholson
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Anthony J. Intorcia
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael J. Glass
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jessica E. Walker
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael M. Callan
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Javon C. Oliver
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard Arce
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
6
|
|
7
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
8
|
Abstract
Measures of the severity of cognitive impairment or parkinsonism are the usual endpoints in clinical trials for Alzheimer’s disease (AD) and Parkinson’s disease (PD), but are critically hampered by their lack of disease sensitivity and specificity. Due to the high failure rate of clinical trials, the rate of regulatory approval for efficacious new drugs has stagnated in the past few decades, with the gap between basic science discovery and clinical application metaphorically termed the “Valley of Death”. While the causes for this are probably multiple and complex, the usage of biomarkers as surrogate endpoints, particularly when they are molecularly-specific for the disease, has achieved some success in cancer trials, and it is likely that neurodegenerative disease trials would benefit from the same approach. As dementia and parkinsonism are not disease-specific clinical syndromes, both AD and PD trials have been flawed by reliance on clinical diagnosis and clinical endpoints. Clinical improvement has been a requirement for regulatory approval, but molecularly-specific biomarkers should improve both diagnostic accuracy and tracking of disease progression, allowing quicker screening of drug candidates. However, even when a molecularly-specific biomarker is found, such as amyloid imaging for AD, it may not reflect the entire extant molecular disease repertoire and may not serve equally well in the different roles of preclinical detection, diagnostic confirmation and surrogate endpoint, necessitating the usage of two, three or more biomarkers, deployed in series or in parallel.
Collapse
|
9
|
Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. J Neurochem 2017; 138 Suppl 1:193-210. [PMID: 27502125 DOI: 10.1111/jnc.13656] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a clinically and neuroanatomically heterogeneous neurodegenerative disorder with multiple underlying genetic and pathological causes. Whilst initial neuroimaging studies highlighted the presence of frontal and temporal lobe atrophy or hypometabolism as the unifying feature in patients with FTD, more detailed studies have revealed diverse patterns across individuals, with variable frontal or temporal predominance, differing degrees of asymmetry, and the involvement of other cortical areas including the insula and cingulate, as well as subcortical structures such as the basal ganglia and thalamus. Recent advances in novel imaging modalities including diffusion tensor imaging, resting-state functional magnetic resonance imaging and molecular positron emission tomography imaging allow the possibility of investigating alterations in structural and functional connectivity and the visualisation of pathological protein deposition. This review will cover the major imaging modalities currently used in research and clinical practice, focusing on the key insights they have provided into FTD, including the onset and evolution of pathological changes and also importantly their utility as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. Validating neuroimaging biomarkers that are able to accomplish these tasks will be crucial for the ultimate goal of powering upcoming clinical trials by correctly stratifying patient enrolment and providing sensitive markers for evaluating the effects and efficacy of disease-modifying therapies. This review describes the key insights provided by research into the major neuroimaging modalities currently used in research and clinical practice, including what they tell us about the onset and evolution of FTD and how they may be used as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Elizabeth Gordon
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
10
|
Canu E, Agosta F, Mandic-Stojmenovic G, Stojković T, Stefanova E, Inuggi A, Imperiale F, Copetti M, Kostic VS, Filippi M. Multiparametric MRI to distinguish early onset Alzheimer's disease and behavioural variant of frontotemporal dementia. NEUROIMAGE-CLINICAL 2017; 15:428-438. [PMID: 28616383 PMCID: PMC5458769 DOI: 10.1016/j.nicl.2017.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
This prospective study explored whether an approach combining structural [cortical thickness and white matter (WM) microstructure] and resting state functional MRI can aid differentiation between 62 early onset Alzheimer's disease (EOAD) and 27 behavioural variant of frontotemporal dementia (bvFTD) patients. Random forest and receiver operator characteristic curve analyses assessed the ability of MRI in classifying the two clinical syndromes. All patients showed a distributed pattern of brain alterations relative to controls. Compared to bvFTD, EOAD patients showed bilateral inferior parietal cortical thinning and decreased default mode network functional connectivity. Compared to EOAD, bvFTD patients showed bilateral orbitofrontal and temporal cortical thinning, and WM damage of the corpus callosum, bilateral uncinate fasciculus, and left superior longitudinal fasciculus. Random forest analysis revealed that left inferior parietal cortical thickness (accuracy 0.78, specificity 0.76, sensitivity 0.83) and WM integrity of the right uncinate fasciculus (accuracy 0.81, specificity 0.96, sensitivity 0.43) were the best predictors of clinical diagnosis. The combination of cortical thickness and DT MRI measures was able to distinguish patients with EOAD and bvFTD with accuracy 0.82, specificity 0.76, and sensitivity 0.96. The diagnostic ability of MRI models was confirmed in a subsample of patients with biomarker-based clinical diagnosis. Multiparametric MRI is useful to identify brain alterations which are specific to EOAD and bvFTD. A severe cortical involvement is suggestive of EOAD, while a prominent WM damage is indicative of bvFTD. Multimodal MRI distinguishes in vivo EOAD and bvFTD patients EOAD and bvFTD show a distributed pattern of structural brain alterations A severe cortical involvement is suggestive of EOAD relative to bvFTD A prominent WM damage is indicative of bvFTD relative to EOAD
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination-revised
- Behavioural variant of frontotemporal dementia
- CC, corpus callosum
- CSF, cerebrospinal fluid
- Cortical thickness
- DMN, default mode network
- DT, diffusion tensor
- Diagnosis
- EOAD, early onset Alzheimer's disease
- Early onset Alzheimer's disease
- GM, grey matter
- IC, independent component
- ILF, inferior longitudinal fasciculus
- LOAD, late onset Alzheimer's disease
- MNI, Montreal Neurological Institute
- NVI, Normalized Variable Importance
- RS fMRI, resting state functional MRI
- RSN, resting state network
- Resting state functional MRI
- SLF, superior longitudinal fasciculus
- TFCE, threshold-free cluster enhancement
- WM, white matter
- White matter (WM) damage
- bvFTD, behavioural variant frontotemporal dementia
Collapse
Affiliation(s)
- Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Gorana Mandic-Stojmenovic
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Tanja Stojković
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Elka Stefanova
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Alberto Inuggi
- Unit of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Francesca Imperiale
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
11
|
|
12
|
Abstract
Amyloid plaques, along with neurofibrillary tangles, are a neuropathologic hallmark of Alzheimer disease (AD). Recently, amyloid PET radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disorders. In both research and clinical settings, amyloid PET imaging has provided important diagnostic and prognostic information for the management of patients with possible AD, mild cognitive impairment (MCI), and other challenging diagnostic presentations. Although the overall impact of amyloid imaging is still being evaluated, the Society of Nuclear Medicine and Molecular Imaging and Alzheimer's Association Amyloid Imaging Task Force have created appropriate use criteria for the standard clinical use of amyloid PET imaging. By the appropriate use criteria, amyloid imaging is appropriate for patients with (1) persistent or unexplained MCI, (2) AD as a possible but still uncertain diagnosis after expert evaluation and (3) atypically early-age-onset progressive dementia. To better understand the clinical and economic effect of amyloid imaging, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study is an ongoing large multicenter study in the United States, which is evaluating how amyloid imaging affects diagnosis, management, and outcomes for cognitively impaired patients who cannot be completely evaluated by clinical assessment alone. Multiple other large-scale studies are evaluating the prognostic role of amyloid PET imaging for predicting MCI progression to AD in general and high-risk populations. At the same time, amyloid imaging is an important tool for evaluating potential disease-modifying therapies for AD. Overall, the increased use of amyloid PET imaging has led to a better understanding of the strengths and limitations of this imaging modality and how it may best be used with other clinical, molecular, and imaging assessment techniques for the diagnosis and management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Atul Mallik
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT.
| | - Alex Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
13
|
Teipel S, Drzezga A, Grothe MJ, Barthel H, Chételat G, Schuff N, Skudlarski P, Cavedo E, Frisoni GB, Hoffmann W, Thyrian JR, Fox C, Minoshima S, Sabri O, Fellgiebel A. Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection. Lancet Neurol 2015; 14:1037-53. [PMID: 26318837 DOI: 10.1016/s1474-4422(15)00093-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease that typically manifests clinically as an isolated amnestic deficit that progresses to a characteristic dementia syndrome. Advances in neuroimaging research have enabled mapping of diverse molecular, functional, and structural aspects of Alzheimer's disease pathology in ever increasing temporal and regional detail. Accumulating evidence suggests that distinct types of imaging abnormalities related to Alzheimer's disease follow a consistent trajectory during pathogenesis of the disease, and that the first changes can be detected years before the disease manifests clinically. These findings have fuelled clinical interest in the use of specific imaging markers for Alzheimer's disease to predict future development of dementia in patients who are at risk. The potential clinical usefulness of single or multimodal imaging markers is being investigated in selected patient samples from clinical expert centres, but additional research is needed before these promising imaging markers can be successfully translated from research into clinical practice in routine care.
Collapse
Affiliation(s)
- Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany.
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Michel J Grothe
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Norbert Schuff
- Department of Veterans Affairs Medical Center and Department of Radiology, University of California in San Francisco, San Francisco, CA, USA
| | - Pawel Skudlarski
- Olin Neuropsychiatry Research Center, Hartford Hospital and Institute of Living, Hartford, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Enrica Cavedo
- LENITEM Laboratory of Epidemiology, Neuroimaging, and Telemedicine-IRCCS Centro San Giovanni di Dio-FBF, Brescia, Italy; Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer and Institut du Cerveau et de la Moelle Epinière, UMR S 1127, Hôpital de la Pitié-Salpêtrière Paris and CATI Multicenter Neuroimaging Platform, France
| | - Giovanni B Frisoni
- LENITEM Laboratory of Epidemiology, Neuroimaging, and Telemedicine-IRCCS Centro San Giovanni di Dio-FBF, Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany; DZNE, German Centre for Neurodegenerative Diseases, Greifswald, Germany
| | - Jochen René Thyrian
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany; DZNE, German Centre for Neurodegenerative Diseases, Greifswald, Germany
| | - Chris Fox
- Dementia Research Innovation Group, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Satoshi Minoshima
- Neuroimaging and Biotechnology Laboratory, Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Andreas Fellgiebel
- Department of Psychiatry, University Medical Center of Mainz, Mainz, Germany
| |
Collapse
|
14
|
Farid K, Carter SF, Rodriguez-Vieitez E, Almkvist O, Andersen P, Wall A, Blennow K, Portelius E, Zetterberg H, Nordberg A. Case Report of Complex Amyotrophic Lateral Sclerosis with Cognitive Impairment and Cortical Amyloid Deposition. J Alzheimers Dis 2015; 47:661-7. [DOI: 10.3233/jad-141965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Karim Farid
- Department NVS, Centre for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen F. Carter
- Department NVS, Centre for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Wolfson Molecular Imaging Cener, University of Manchester, Manchester, United Kingdom
| | - Elena Rodriguez-Vieitez
- Department NVS, Centre for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Ove Almkvist
- Department NVS, Centre for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Pia Andersen
- Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anders Wall
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
| | - Agneta Nordberg
- Department NVS, Centre for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
15
|
Kobylecki C, Langheinrich T, Hinz R, Vardy ERLC, Brown G, Martino ME, Haense C, Richardson AM, Gerhard A, Anton-Rodriguez JM, Snowden JS, Neary D, Pontecorvo MJ, Herholz K. 18F-florbetapir PET in patients with frontotemporal dementia and Alzheimer disease. J Nucl Med 2015; 56:386-91. [PMID: 25655625 DOI: 10.2967/jnumed.114.147454] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Pathologic deposition of amyloid β (Aβ) protein is a key component in the pathogenesis of Alzheimer disease (AD) but not a feature of frontotemporal dementia (FTD). PET ligands for Aβ protein are increasingly used in diagnosis and research of dementia syndromes. Here, we report a PET study using (18)F-florbetapir in healthy controls and patients with AD and FTD. METHODS Ten healthy controls (mean age ± SD, 62.5 ± 5.2 y), 10 AD patients (mean age ± SD, 62.6 ± 4.5), and 8 FTD patients (mean age ± SD, 62.5 ± 9.6) were recruited to the study. All patients underwent detailed clinical and neuropsychologic assessment and T1-weighted MR imaging and were genotyped for apolipoprotein E status. All participants underwent dynamic (18)F-florbetapir PET on a high-resolution research tomograph, and FTD patients also underwent (18)F-FDG PET scans. Standardized uptake value ratios (SUVRs) were extracted for predefined gray and white matter regions of interest using cerebellar gray matter as a reference region. Static PET images were evaluated by trained raters masked to clinical status and regional analysis. RESULTS Total cortical gray matter (18)F-florbetapir uptake values were significantly higher in AD patients (median SUVR, 1.73) than FTD patients (SUVR, 1.13, P = 0.002) and controls (SUVR, 1.26, P = 0.04). (18)F-Florbetapir uptake was also higher in AD patients than FTD patients and controls in the frontal, parietal, occipital, and cingulate cortices and in the central subcortical regions. Only 1 FTD patient (homozygous for apolipoprotein E ε4) displayed high cortical (18)F-florbetapir retention, whereas (18)F-FDG PET demonstrated mesiofrontal hypometabolism consistent with the clinical diagnosis of FTD. Most visual raters classified 1 control (10%) and 8 AD (80%) and 2 FTD (25%) patients as amyloid-positive, whereas ratings were tied in another 2 FTD patients and 1 healthy control. CONCLUSION Cortical (18)F-florbetapir uptake is low in most FTD patients, providing good discrimination from AD. However, visual rating of FTD scans was challenging, with a higher rate of discordance between interpreters than in AD and control subjects.
Collapse
Affiliation(s)
- Christopher Kobylecki
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Tobias Langheinrich
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Rainer Hinz
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom
| | - Emma R L C Vardy
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom Department of Older Peoples Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Gavin Brown
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom
| | - María-Elena Martino
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Cathleen Haense
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Anna M Richardson
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom Manchester Medical School, University of Manchester, Manchester, United Kingdom; and
| | - Alexander Gerhard
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Jose M Anton-Rodriguez
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom
| | - Julie S Snowden
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - David Neary
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | | | - Karl Herholz
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A, Saxon-Labelle M, Pullen J, Scroggins A, Filon J, Scott S, Hoffman B, Garcia A, Caviness JN, Hentz JG, Driver-Dunckley E, Jacobson SA, Davis KJ, Belden CM, Long KE, Malek-Ahmadi M, Powell JJ, Gale LD, Nicholson LR, Caselli RJ, Woodruff BK, Rapscak SZ, Ahern GL, Shi J, Burke AD, Reiman EM, Sabbagh MN. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015; 35:354-89. [PMID: 25619230 DOI: 10.1111/neup.12189] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Abstract
The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200 grant-funded projects.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - LihFen Lue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex E Roher
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Chera Maarouf
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex C Birdsill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Joel Pullen
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Jessica Filon
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Sarah Scott
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Angelica Garcia
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | - Kathryn J Davis
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kathy E Long
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Lisa D Gale
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | | | - Jiong Shi
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Anna D Burke
- Banner Alzheimer Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|