1
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
2
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
3
|
Wyman-Chick KA, Chaudhury P, Bayram E, Abdelnour C, Matar E, Chiu SY, Ferreira D, Hamilton CA, Donaghy PC, Rodriguez-Porcel F, Toledo JB, Habich A, Barrett MJ, Patel B, Jaramillo-Jimenez A, Scott GD, Kane JPM. Differentiating Prodromal Dementia with Lewy Bodies from Prodromal Alzheimer's Disease: A Pragmatic Review for Clinicians. Neurol Ther 2024; 13:885-906. [PMID: 38720013 PMCID: PMC11136939 DOI: 10.1007/s40120-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
This pragmatic review synthesises the current understanding of prodromal dementia with Lewy bodies (pDLB) and prodromal Alzheimer's disease (pAD), including clinical presentations, neuropsychological profiles, neuropsychiatric symptoms, biomarkers, and indications for disease management. The core clinical features of dementia with Lewy bodies (DLB)-parkinsonism, complex visual hallucinations, cognitive fluctuations, and REM sleep behaviour disorder are common prodromal symptoms. Supportive clinical features of pDLB include severe neuroleptic sensitivity, as well as autonomic and neuropsychiatric symptoms. The neuropsychological profile in mild cognitive impairment attributable to Lewy body pathology (MCI-LB) tends to include impairment in visuospatial skills and executive functioning, distinguishing it from MCI due to AD, which typically presents with impairment in memory. pDLB may present with cognitive impairment, psychiatric symptoms, and/or recurrent episodes of delirium, indicating that it is not necessarily synonymous with MCI-LB. Imaging, fluid and other biomarkers may play a crucial role in differentiating pDLB from pAD. The current MCI-LB criteria recognise low dopamine transporter uptake using positron emission tomography or single photon emission computed tomography (SPECT), loss of REM atonia on polysomnography, and sympathetic cardiac denervation using meta-iodobenzylguanidine SPECT as indicative biomarkers with slowing of dominant frequency on EEG among others as supportive biomarkers. This review also highlights the emergence of fluid and skin-based biomarkers. There is little research evidence for the treatment of pDLB, but pharmacological and non-pharmacological treatments for DLB may be discussed with patients. Non-pharmacological interventions such as diet, exercise, and cognitive stimulation may provide benefit, while evaluation and management of contributing factors like medications and sleep disturbances are vital. There is a need to expand research across diverse patient populations to address existing disparities in clinical trial participation. In conclusion, an early and accurate diagnosis of pDLB or pAD presents an opportunity for tailored interventions, improved healthcare outcomes, and enhanced quality of life for patients and care partners.
Collapse
Affiliation(s)
- Kathryn A Wyman-Chick
- Struthers Parkinson's Center and Center for Memory and Aging, Department of Neurology, HealthPartners/Park Nicollet, Bloomington, USA.
| | - Parichita Chaudhury
- Cleo Roberts Memory and Movement Center, Banner Sun Health Research Institute, Sun City, USA
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, University of California San Diego, San Diego, USA
| | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shannon Y Chiu
- Department of Neurology, Mayo Clinic Arizona, Phoenix, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- Department of Radiology, Mayo Clinic Rochester, Rochester, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Jon B Toledo
- Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Matthew J Barrett
- Department of Neurology, Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, USA
| | - Bhavana Patel
- Department of Neurology, College of Medicine, University of Florida, Gainesville, USA
- Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, USA
| | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- School of Medicine, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Gregory D Scott
- Department of Pathology and Laboratory Services, VA Portland Medical Center, Portland, USA
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Bousiges O, Cretin B, Muller C, Botzung A, Sanna L, Anthony P, Philippi N, Demuynck C, Blanc F. Involvement of ApoE4 in dementia with Lewy bodies in the prodromal and demented stages: evaluation of the Strasbourg cohort. GeroScience 2024; 46:1527-1542. [PMID: 37653269 PMCID: PMC10828291 DOI: 10.1007/s11357-023-00883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
ApoE4 as a risk factor for dementia with Lewy bodies (DLB) is still an issue. We sought to determine the involvement of ApoE4 according to different clinical parameters in our cohort of patients from Strasbourg, France. ApoE genotyping was performed on the AlphaLewyMA cohort. In this cohort, 197 patients were genotyped: 105 DLB patients, 37 Alzheimer's disease (AD) patients, 29 patients with AD/DLB comorbidity, and 26 control subjects (CS). The groups of patients were also classified according to the stage of evolution of the disease: prodromal or demented. We analyzed other parameters in relation to ApoE4 status, such as years of education (YOE) and Alzheimer CSF biomarkers. We observed a higher proportion of ApoE4 carriers in the AD (51.4%) and AD/DLB (72.4%) groups compared to the DLB (25.7%) and CS (11.5%) groups (p < 0.0001). We found a correlation between age at disease onset and YOE in the AD group (p = 0.039) but not in the DLB group (p = 0.056). Interestingly, in the DLB group, the subgroup of patients with high YOE (≥ 11) had significantly more patients with ApoE4 than the subgroup with low YOE (< 11). AD biomarkers did not seem to be impacted by the presence of ApoE4, except for Aβ42: DLB ApoE4-positive demented patients showed a more marked Aβ42 decrease. ApoE4 does not appear to be a risk factor for "pure" DLB patients. These results suggest a strong link between ApoE4 and amyloidopathy and consequently with AD. Trial registration: AlphaLewyMa, Identifier: NCT01876459, date of registration: June 12, 2013.
Collapse
Affiliation(s)
- Olivier Bousiges
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France.
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France.
| | - Benjamin Cretin
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Anne Botzung
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Lea Sanna
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- CM2R, Neuropsychology Unit, Head and Neck Department, Neurology Department, University of Strasbourg, Strasbourg, France
- CM2R, Geriatrics Department and Neurology Department, Colmar General Hospital, Colmar, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Head and Neck Department, Neurology Department, University of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IMAGeS Team, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatrics Department, Geriatric Day Hospital, Neurogeriatric Service, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
6
|
Burgio MI, Veronese N, Sarà D, Saccaro C, Masnata R, Vassallo G, Catania A, Catanese G, Mueller C, Smith L, Dominguez LJ, Vernuccio L, Barbagallo M. Markers for the detection of Lewy body disease versus Alzheimer's disease in mild cognitive impairment: a systematic review and meta-analysis. Aging Clin Exp Res 2024; 36:60. [PMID: 38451331 PMCID: PMC10920203 DOI: 10.1007/s40520-024-02704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Mild cognitive impairment (MCI) may evolve into dementia. Early recognition of possible evolution to Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB) is of importance, but actual diagnostic criteria have some limitations. In this systematic review and meta-analysis, we aimed to find the most accurate markers that can discriminate patients with DLB versus AD, in MCI stage. METHODS We searched several databases up to 17 August 2023 including studies comparing markers that may distinguish DLB-MCI from AD-MCI. We reported data regarding sensitivity, specificity, and the area under the curves (AUCs) with their 95% confidence intervals (CIs). RESULTS Among 2219 articles initially screened, eight case-control studies and one cohort study were included for a total of 832 outpatients with MCI. The accuracy of cerebrospinal fluid (CSF) markers was the highest among the markers considered (AUC > 0.90 for the CSF markers), with the AUC of CSF Aβ42/Aβ40 of 0.94. The accuracy for clinical symptom scales was very good (AUC = 0.93), as evaluated in three studies. Although limited to one study, the accuracy of FDG-PET (cingulate island sign ratio) was very good (AUC = 0.95) in discriminating DLB from AD in MCI, while the accuracy of SPECT markers and EEG frequencies was variable. CONCLUSIONS Few studies have assessed the accuracy of biomarkers and clinical tools to distinguish DLB from AD at the MCI stage. While results are promising for CSF markers, FDG-PET and clinical symptoms scales, more studies, particularly with a prospective design, are needed to evaluate their accuracy and clinical usefulness. CLINICAL TRIAL REGISTRATION Prospero (CRD42023422600).
Collapse
Affiliation(s)
- Marianna Ilarj Burgio
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Nicola Veronese
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy.
| | - Davide Sarà
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Carlo Saccaro
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Roberta Masnata
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Giusy Vassallo
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Angela Catania
- International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Giuseppina Catanese
- Geriatric Unit, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, Palermo, Italy
| | - Christoph Mueller
- South London and Maudsley National Health Service Foundation Trust, London, UK
- Institute of Psychiatry Psychology and Neuroscience, Kings College London, London, UK
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Ligia Juliana Dominguez
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Laura Vernuccio
- Geriatric Unit, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, Palermo, Italy
| | - Mario Barbagallo
- Department of Health Promotion, Mother Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
7
|
Diaz-Galvan P, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Gunter JL, Jack CR, Min HKP, Jain M, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Ross O, Graff-Radford N, Day GS, Dickson DW, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, Kantarci K. β-Amyloid Load on PET Along the Continuum of Dementia With Lewy Bodies. Neurology 2023; 101:e178-e188. [PMID: 37202168 PMCID: PMC10351554 DOI: 10.1212/wnl.0000000000207393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES β-Amyloid (Aβ) plaques can co-occur with Lewy-related pathology in patients with dementia with Lewy bodies (DLB), but Aβ load at prodromal stages of DLB still needs to be elucidated. We investigated Aβ load on PET throughout the DLB continuum, from an early prodromal stage of isolated REM sleep behavior disorder (iRBD) to a stage of mild cognitive impairment with Lewy bodies (MCI-LB), and finally DLB. METHODS We performed a cross-sectional study in patients with a diagnosis of iRBD, MCI-LB, or DLB from the Mayo Clinic Alzheimer Disease Research Center. Aβ levels were measured by Pittsburgh compound B (PiB) PET, and global cortical standardized uptake value ratio (SUVR) was calculated. Global cortical PiB SUVR values from each clinical group were compared with each other and with those of cognitively unimpaired (CU) individuals (n = 100) balanced on age and sex using analysis of covariance. We used multiple linear regression testing for interaction to study the influences of sex and APOE ε4 status on PiB SUVR along the DLB continuum. RESULTS Of the 162 patients, 16 had iRBD, 64 had MCI-LB, and 82 had DLB. Compared with CU individuals, global cortical PiB SUVR was higher in those with DLB (p < 0.001) and MCI-LB (p = 0.012). The DLB group included the highest proportion of Aβ-positive patients (60%), followed by MCI-LB (41%), iRBD (25%), and finally CU (19%). Global cortical PiB SUVR was higher in APOE ε4 carriers compared with that in APOE ε4 noncarriers in MCI-LB (p < 0.001) and DLB groups (p = 0.049). Women had higher PiB SUVR with older age compared with men across the DLB continuum (β estimate = 0.014, p = 0.02). DISCUSSION In this cross-sectional study, levels of Aβ load was higher further along the DLB continuum. Whereas Aβ levels were comparable with those in CU individuals in iRBD, a significant elevation in Aβ levels was observed in the predementia stage of MCI-LB and in DLB. Specifically, APOE ε4 carriers had higher Aβ levels than APOE ε4 noncarriers, and women tended to have higher Aβ levels than men as they got older. These findings have important implications in targeting patients within the DLB continuum for clinical trials of disease-modifying therapies.
Collapse
Affiliation(s)
- Patricia Diaz-Galvan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Scott A Przybelski
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Timothy G Lesnick
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Christopher G Schwarz
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jeffrey L Gunter
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hoon-Ki Paul Min
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Manoj Jain
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Toji Miyagawa
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Leah K Forsberg
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Julie A Fields
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Rodolfo Savica
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David T Jones
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Erik K St Louis
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Vijay K Ramanan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Owen Ross
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Gregory S Day
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Tanis J Ferman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
8
|
Donaghy PC, Carrarini C, Ferreira D, Habich A, Aarsland D, Babiloni C, Bayram E, Kane JP, Lewis SJ, Pilotto A, Thomas AJ, Bonanni L. Research diagnostic criteria for mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis. Alzheimers Dement 2023; 19:3186-3202. [PMID: 37096339 PMCID: PMC10695683 DOI: 10.1002/alz.13105] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Operationalized research criteria for mild cognitive impairment with Lewy bodies (MCI-LB) were published in 2020. The aim of this systematic review and meta-analysis was to review the evidence for the diagnostic clinical features and biomarkers in MCI-LB set out in the criteria. METHODS MEDLINE, PubMed, and Embase were searched on 9/28/22 for relevant articles. Articles were included if they presented original data reporting the rates of diagnostic features in MCI-LB. RESULTS Fifty-seven articles were included. The meta-analysis supported the inclusion of the current clinical features in the diagnostic criteria. Evidence for striatal dopaminergic imaging and meta-iodobenzylguanidine cardiac scintigraphy, though limited, supports their inclusion. Quantitative electroencephalogram (EEG) and fluorodeoxyglucose positron emission tomography (PET) show promise as diagnostic biomarkers. DISCUSSION The available evidence largely supports the current diagnostic criteria for MCI-LB. Further evidence will help refine the diagnostic criteria and understand how best to apply them in clinical practice and research. HIGHLIGHTS A meta-analysis of the diagnostic features of MCI-LB was carried out. The four core clinical features were more common in MCI-LB than MCI-AD/stable MCI. Neuropsychiatric and autonomic features were also more common in MCI-LB. More evidence is needed for the proposed biomarkers. FDG-PET and quantitative EEG show promise as diagnostic biomarkers in MCI-LB.
Collapse
Affiliation(s)
- Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Carrarini
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, California, USA
| | - Joseph Pm Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Simon Jg Lewis
- Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Peña-Bautista C, Álvarez-Sánchez L, Pascual R, Moreno MJ, Baquero M, Cháfer-Pericás C. Clinical usefulness of cerebrospinal fluid biomarkers in Alzheimer's disease. Eur J Clin Invest 2023; 53:e13910. [PMID: 36401799 DOI: 10.1111/eci.13910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex disease that shares clinical features with other dementias. It is important to establish a specific and reliable diagnosis. Nowadays, AD diagnosis is based on cerebrospinal fluid (CSF) biomarkers. However, the corresponding cut-offs differ amongst studies. This study aims to evaluate the CSF biomarkers in the AD differential diagnosis. METHODS Clinical relevant biomarkers (amyloid β42 (Aβ42), t-Tau, p-Tau, amyloid β40 (Aβ40), neurofilament light chain (NfL)) were determined in CSF samples from participants classified as AD (n = 124) and non-AD (n = 148) patients from the Neurology Unit. They were included and evaluated consecutively (August 2018-October 2020). The clinical utility of these biomarkers was evaluated by AUC-ROC curves and the corresponding cut-off points were defined. RESULTS The results showed satisfactory accuracy (AUC-ROC 0.91 for Aβ42, 0.890 for t-Tau and 0.933 for p-Tau); whilst Aβ40 and NfL did not show good discriminatory capacity (AUC-ROC 0.557 and 0.738, respectively). The ratios Aβ42/Aβ40 and t-Tau/Aβ42 improved the diagnosis indices of each individual biomarker, with AUC-ROC of 0.980 and 0.971, respectively. Also, elevated levels of NfL were found in the frontotemporal dementia group compared with the other participant groups. CONCLUSIONS The ratio Aβ42/Aβ40 showed the highest discriminating capacity between AD and non-AD patients and might be useful in clinical practice. Regarding NfL, it is not a specific biomarker for AD; however, it might be helpful for the differential diagnosis of frontotemporal dementia. Nevertheless, further analysis in an external cohort is required in order to validate these results.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Lourdes Álvarez-Sánchez
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Rosa Pascual
- University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Miguel Baquero
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
10
|
Constantinides VC, Paraskevas GP, Boufidou F, Bourbouli M, Pyrgelis ES, Stefanis L, Kapaki E. CSF Aβ42 and Aβ42/Aβ40 Ratio in Alzheimer's Disease and Frontotemporal Dementias. Diagnostics (Basel) 2023; 13:diagnostics13040783. [PMID: 36832271 PMCID: PMC9955886 DOI: 10.3390/diagnostics13040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease dementia (ADD) may manifest with atypical phenotypes, resembling behavioral variant frontotemporal dementia (bvFTD) and corticobasal syndrome (CBS), phenotypes which typically have an underlying frontotemporal lobar degeneration with tau proteinopathy (FTLD-tau), such as Pick's disease, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), or FTLD with TDP-43 proteinopathy (FTLD-TDP). CSF biomarkers total and phosphorylated tau (τT and τP-181), and amyloid beta with 42 and 40 amino acids (Aβ42 and Aβ40) are biomarkers of AD pathology. The primary aim of this study was to compare the diagnostic accuracy of Aβ42 to Aβ42/Aβ40 ratio in: (a) differentiating ADD vs. frontotemporal dementias; (b) patients with AD pathology vs. non-AD pathologies; (c) compare biomarker ratios and composite markers to single CSF biomarkers in the differentiation of AD from FTD; Methods: In total, 263 subjects were included (ADD: n = 98; bvFTD: n = 49; PSP: n = 50; CBD: n = 45; controls: n = 21). CSF biomarkers were measured by commercially available ELISAs (EUROIMMUN). Multiple biomarker ratios (Aβ42/Aβ40; τT/τP-181; τT/Aβ42; τP-181/Aβ42) and composite markers (t-tau: τT/(Aβ42/Aβ40); p-tau: τP-181/(Aβ42/Aβ40) were calculated. ROC curve analysis was performed to compare AUCs of Aβ42 and Aβ42/Aβ40 ratio and relevant composite markers between ADD and FTD, as defined clinically. BIOMARKAPD/ABSI criteria (abnormal τT, τP-181 Aβ42, and Aβ42/Aβ40 ratio) were used to re-classify all patients into AD pathology vs. non-AD pathologies, and ROC curve analysis was repeated to compare Aβ42 and Aβ42/Aβ40; Results: Aβ42 did not differ from Aβ42/Aβ40 ratio in the differentiation of ADD from FTD (AUCs 0.752 and 0.788 respectively; p = 0.212). The τT/Aβ42 ratio provided maximal discrimination between ADD and FTD (AUC:0.893; sensitivity 88.8%, specificity 80%). BIOMARKAPD/ABSI criteria classified 60 patients as having AD pathology and 211 as non-AD. A total of 22 had discrepant results and were excluded. Aβ42/Aβ40 ratio was superior to Aβ42 in the differentiation of AD pathology from non-AD pathology (AUCs: 0.939 and 0.831, respectively; p < 0.001). In general, biomarker ratios and composite markers were superior to single CSF biomarkers in both analyses. CONCLUSIONS Aβ42/Aβ40 ratio is superior to Aβ42 in identifying AD pathology, irrespective of the clinical phenotype. CSF biomarker ratios and composite markers provide higher diagnostic accuracy compared to single CSF biomarkers.
Collapse
Affiliation(s)
- Vasilios C. Constantinides
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Correspondence: ; Tel.: +30-21-0728-9285
| | - George P. Paraskevas
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Second Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University General Hospital, Rimini 1, 12462 Athens, Greece
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Mara Bourbouli
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Leonidas Stefanis
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Elisabeth Kapaki
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| |
Collapse
|
11
|
From protein biomarkers to proteomics in dementia with Lewy Bodies. Ageing Res Rev 2023; 83:101771. [PMID: 36328346 DOI: 10.1016/j.arr.2022.101771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Dementia with Lewy Bodies (DLB) is the second most common neurodegenerative dementia. Despite considerable research progress, there remain gaps in our understanding of the pathophysiology and there is no disease-modifying treatment. Proteomics is a powerful tool to elucidate complex biological pathways across heterogenous conditions. This review summarizes the widely used proteomic methods and presents evidence for protein dysregulation in the brain and peripheral tissues in DLB. Proteomics of post-mortem brain tissue shows that DLB shares common features with other dementias, such as synaptic dysfunction, but retains a unique protein signature. Promising diagnostic biomarkers are being identified in cerebrospinal fluid (CSF), blood, and peripheral tissues, such as serum Heart-type fatty acid binding protein. Research is needed to track these changes from the prodromal stage to established dementia, with standardized workflows to ensure replicability. Identifying novel protein targets in causative biological pathways could lead to the development of new targeted therapeutics or the stratification of participants for clinical trials.
Collapse
|
12
|
Hirczy S, Salinas M. Clinical Presentation, Diagnosis, and Pathogenesis of Dementia With Lewy Bodies. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20220907-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Bonomo R, Elia AE, Cilia R, Romito LM, Golfrè Andreasi N, Devigili G, Bonvegna S, Straccia G, Garavaglia B, Panteghini C, Eleopra R. Cerebrospinal fluid neuropathological biomarkers in beta-propeller protein-associated neurodegeneration, with complicated parkinsonian phenotype. Parkinsonism Relat Disord 2022; 98:38-40. [PMID: 35462318 DOI: 10.1016/j.parkreldis.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Roberta Bonomo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy; Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio E Elia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Luigi M Romito
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Nico Golfrè Andreasi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Grazia Devigili
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Giulia Straccia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Barbara Garavaglia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| | - Celeste Panteghini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| | - Roberto Eleopra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| |
Collapse
|
14
|
Foska A, Tsantzali I, Sideri E, Stefanou MI, Bakola E, Kitsos DK, Zompola C, Bonakis A, Giannopoulos S, Voumvourakis KI, Tsivgoulis G, Paraskevas GP. Classical Cerebrospinal Fluid Biomarkers in Dementia with Lewy Bodies. Medicina (B Aires) 2022; 58:medicina58050612. [PMID: 35630029 PMCID: PMC9144333 DOI: 10.3390/medicina58050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
The use and interpretation of diagnostic cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders, such as Dementia with Lewy bodies (DLB), represent a clinical challenge. According to the literature, the composition of CSF in DLB patients varies. Some patients present with reduced levels of amyloid, others with full Alzheimer Disease CSF profile (both reduced amyloid and increased phospho-tau) and some with a normal profile. Some patients may present with abnormal levels of a-synuclein. Continuous efforts will be required to establish useful CSF biomarkers for the early diagnosis of DLB. Given the heterogeneity of methods and results between studies, further validation is fundamental before conclusions can be drawn.
Collapse
|
15
|
Blanc F, Bousiges O. Biomarkers and diagnosis of dementia with Lewy bodies including prodromal: Practical aspects. Rev Neurol (Paris) 2022; 178:472-483. [PMID: 35491246 DOI: 10.1016/j.neurol.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. More than half of the patients affected are not or misdiagnosed because of the clinical similarity with Alzheimer's disease (AD), Parkinson's disease but also psychiatric diseases such as depression or psychosis. In this review, we evaluate the interest of different biomarkers in the diagnostic process: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, perfusion SPECT, FDG-PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routine is not demonstrated. Among the AD biomarkers (t-Tau, phospho-Tau181, Aβ42 and Aβ40) used routinely, t-Tau and phospho-Tau181 have shown excellent discrimination whatever the clinical stages severity. CSF Alpha-synuclein assay in the CSF has also an interest in the discrimination between DLB and AD but not in segregation between DLB and healthy elderly subjects. CSF synuclein RT-QuIC seems to be an excellent biomarker but its application in clinical routine remains to be demonstrated, given the non-automation of the process.
Collapse
Affiliation(s)
- F Blanc
- Hôpitaux Universitaire de Strasbourg, CM2R (Centre Mémoire de Ressource et de Recherche), Hôpital de jour, pôle de Gériatrie, Strasbourg, France; CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France.
| | - O Bousiges
- CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France; Hôpitaux Universitaire de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, Strasbourg, France
| |
Collapse
|
16
|
Sodhi K, Pratt R, Wang X, Lakhani HV, Pillai SS, Zehra M, Wang J, Grover L, Henderson B, Denvir J, Liu J, Pierre S, Nelson T, Shapiro JI. Role of adipocyte Na,K-ATPase oxidant amplification loop in cognitive decline and neurodegeneration. iScience 2021; 24:103262. [PMID: 34755095 PMCID: PMC8564125 DOI: 10.1016/j.isci.2021.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that a western diet may contribute to clinical neurodegeneration and dementia. Adipocyte-specific expression of the Na,K-ATPase signaling antagonist, NaKtide, ameliorates the pathophysiological consequences of murine experimental obesity and renal failure. In this study, we found that a western diet produced systemic oxidant stress along with evidence of activation of Na,K-ATPase signaling within both murine brain and peripheral tissues. We also noted this diet caused increases in circulating inflammatory cytokines as well as behavioral, and brain biochemical changes consistent with neurodegeneration. Adipocyte specific NaKtide affected by a doxycycline on/off expression system ameliorated all of these diet effects. These data suggest that a western diet produces cognitive decline and neurodegeneration through augmented Na,K-ATPase signaling and that antagonism of this pathway in adipocytes ameliorates the pathophysiology. If this observation is confirmed in humans, the adipocyte Na,K-ATPase may serve as a clinical target in the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rebecca Pratt
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Xiaoliang Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sneha S. Pillai
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Mishghan Zehra
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiayan Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lawrence Grover
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Brandon Henderson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sandrine Pierre
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Thomas Nelson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
17
|
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu‐Gaya L, Pannee J, O´Connor A, Weston PSJ, Lantero‐Rodriguez J, Keshavan A, Snellman A, Gobom J, Paterson RW, Schott JM, Blennow K, Fox NC, Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease. J Intern Med 2021; 290:583-601. [PMID: 34021943 PMCID: PMC8416781 DOI: 10.1111/joim.13332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence, now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. While these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N) and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
Collapse
Affiliation(s)
- D. O. T. Alawode
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - A. J. Heslegrave
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - N. J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - T. K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Montoliu‐Gaya
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - A. O´Connor
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - P. S. J. Weston
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - A. Keshavan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - A. Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - R. W. Paterson
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. M. Schott
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - K. Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - N. C. Fox
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - H. Zetterberg
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
18
|
Kokkinou M, Beishon LC, Smailagic N, Noel-Storr AH, Hyde C, Ukoumunne O, Worrall RE, Hayen A, Desai M, Ashok AH, Paul EJ, Georgopoulou A, Casoli T, Quinn TJ, Ritchie CW. Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting. Cochrane Database Syst Rev 2021; 2:CD010945. [PMID: 33566374 PMCID: PMC8078224 DOI: 10.1002/14651858.cd010945.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dementia is a syndrome that comprises many differing pathologies, including Alzheimer's disease dementia (ADD), vascular dementia (VaD) and frontotemporal dementia (FTD). People may benefit from knowing the type of dementia they live with, as this could inform prognosis and may allow for tailored treatment. Beta-amyloid (1-42) (ABeta42) is a protein which decreases in both the plasma and cerebrospinal fluid (CSF) of people living with ADD, when compared to people with no dementia. However, it is not clear if changes in ABeta42 are specific to ADD or if they are also seen in other types of dementia. It is possible that ABeta42 could help differentiate ADD from other dementia subtypes. OBJECTIVES To determine the accuracy of plasma and CSF ABeta42 for distinguishing ADD from other dementia subtypes in people who meet the criteria for a dementia syndrome. SEARCH METHODS We searched MEDLINE, and nine other databases up to 18 February 2020. We checked reference lists of any relevant systematic reviews to identify additional studies. SELECTION CRITERIA We considered cross-sectional studies that differentiated people with ADD from other dementia subtypes. Eligible studies required measurement of participant plasma or CSF ABeta42 levels and clinical assessment for dementia subtype. DATA COLLECTION AND ANALYSIS Seven review authors working independently screened the titles and abstracts generated by the searches. We collected data on study characteristics and test accuracy. We used the second version of the 'Quality Assessment of Diagnostic Accuracy Studies' (QUADAS-2) tool to assess internal and external validity of results. We extracted data into 2 x 2 tables, cross-tabulating index test results (ABeta42) with the reference standard (diagnostic criteria for each dementia subtype). We performed meta-analyses using bivariate, random-effects models. We calculated pooled estimates of sensitivity, specificity, positive predictive values, positive and negative likelihood ratios, and corresponding 95% confidence intervals (CIs). In the primary analysis, we assessed accuracy of plasma or CSF ABeta42 for distinguishing ADD from other mixed dementia types (non-ADD). We then assessed accuracy of ABeta42 for differentiating ADD from specific dementia types: VaD, FTD, dementia with Lewy bodies (DLB), alcohol-related cognitive disorder (ARCD), Creutzfeldt-Jakob disease (CJD) and normal pressure hydrocephalus (NPH). To determine test-positive cases, we used the ABeta42 thresholds employed in the respective primary studies. We then performed sensitivity analyses restricted to those studies that used common thresholds for ABeta42. MAIN RESULTS We identified 39 studies (5000 participants) that used CSF ABeta42 levels to differentiate ADD from other subtypes of dementia. No studies of plasma ABeta42 met the inclusion criteria. No studies were rated as low risk of bias across all QUADAS-2 domains. High risk of bias was found predominantly in the domains of patient selection (28 studies) and index test (25 studies). The pooled estimates for differentiating ADD from other dementia subtypes were as follows: ADD from non-ADD: sensitivity 79% (95% CI 0.73 to 0.85), specificity 60% (95% CI 0.52 to 0.67), 13 studies, 1704 participants, 880 participants with ADD; ADD from VaD: sensitivity 79% (95% CI 0.75 to 0.83), specificity 69% (95% CI 0.55 to 0.81), 11 studies, 1151 participants, 941 participants with ADD; ADD from FTD: sensitivity 85% (95% CI 0.79 to 0.89), specificity 72% (95% CI 0.55 to 0.84), 17 studies, 1948 participants, 1371 participants with ADD; ADD from DLB: sensitivity 76% (95% CI 0.69 to 0.82), specificity 67% (95% CI 0.52 to 0.79), nine studies, 1929 participants, 1521 participants with ADD. Across all dementia subtypes, sensitivity was greater than specificity, and the balance of sensitivity and specificity was dependent on the threshold used to define test positivity. AUTHORS' CONCLUSIONS Our review indicates that measuring ABeta42 levels in CSF may help differentiate ADD from other dementia subtypes, but the test is imperfect and tends to misdiagnose those with non-ADD as having ADD. We would caution against the use of CSF ABeta42 alone for dementia classification. However, ABeta42 may have value as an adjunct to a full clinical assessment, to aid dementia diagnosis.
Collapse
Affiliation(s)
- Michelle Kokkinou
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Nadja Smailagic
- Institute of Public Health, University of Cambridge , Cambridge, UK
| | | | - Chris Hyde
- Exeter Test Group, College of Medicine and Health, University of Exeter Medical School, University of Exeter, Exeter , UK
| | - Obioha Ukoumunne
- NIHR CLAHRC South West Peninsula (PenCLAHRC), University of Exeter Medical School, Exeter, UK
| | | | - Anja Hayen
- Department of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Meera Desai
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Abhishekh Hulegar Ashok
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College , London, UK
| | - Eleanor J Paul
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
20
|
Bousiges O, Philippi N, Lavaux T, Perret-Liaudet A, Lachmann I, Schaeffer-Agalède C, Anthony P, Botzung A, Rauch L, Jung B, de Sousa PL, Demuynck C, Martin-Hunyadi C, Cretin B, Blanc F. Differential diagnostic value of total alpha-synuclein assay in the cerebrospinal fluid between Alzheimer's disease and dementia with Lewy bodies from the prodromal stage. ALZHEIMERS RESEARCH & THERAPY 2020; 12:120. [PMID: 32993772 PMCID: PMC7523311 DOI: 10.1186/s13195-020-00684-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Background Several studies have investigated the value of alpha-synuclein assay in the cerebrospinal fluid (CSF) of Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) patients in the differential diagnosis of these two pathologies. However, very few studies have focused on this assay in AD and DLB patients at the MCI stage. Methods All patients were enrolled under a hospital clinical research protocol from the tertiary Memory Clinic (CM2R) of Alsace, France, by an experienced team of clinicians. A total of 166 patients were included in this study: 21 control subjects (CS), 51 patients with DLB at the prodromal stage (pro-DLB), 16 patients with DLB at the demented stage (DLB-d), 33 AD patients at the prodromal stage (pro-AD), 32 AD patients at the demented stage (AD-d), and 13 patients with mixed pathology (AD+DLB). CSF levels of total alpha-synuclein were assessed using a commercial enzyme-linked immunosorbent assay (ELISA) for alpha-synuclein (AJ Roboscreen). Alzheimer’s biomarkers (t-Tau, P-Tau, Aβ42, and Aβ40) were also measured. Results The alpha-synuclein assays showed a significant difference between the AD and DLB groups. Total alpha-synuclein levels were significantly higher in AD patients than in DLB patients. However, the ROC curves show a moderate discriminating power between AD and DLB (AUC = 0.78) which does not improve the discriminating power of the combination of Alzheimer biomarkers (AUC = 0.95 with or without alpha-synuclein). Interestingly, the levels appeared to be altered from the prodromal stage in both AD and DLB. Conclusions The modification of total alpha-synuclein levels in the CSF of patients occurs early, from the prodromal stage. The adding of alpha-synuclein total to the combination of Alzheimer’s biomarker does not improve the differential diagnosis between AD and DLB. Trial registration ClinicalTrials.gov, NCT01876459 (AlphaLewyMa)
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000, Strasbourg, France. .,Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), University of Strasbourg, 67000, Strasbourg, France. .,CNRS UMR7364, 67000, Strasbourg, France. .,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.
| | - Nathalie Philippi
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, Strasbourg, France
| | - Thomas Lavaux
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000, Strasbourg, France
| | - Armand Perret-Liaudet
- Neurochemistry Laboratory, Biochemistry Department, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 59 bd Pinel, 69677, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028, Université de Lyon - Université Claude Bernard, 95 bd Pinel, 69675, Bron, France.,Center for Memory Resources and Research, Hospices Civils de Lyon, Charpennes Hospital, Lyon 1 University, 69100, Villeurbanne, France
| | - Ingolf Lachmann
- AJ Roboscreen GmbH, Hohmannstraße 7, 04129, Leipzig, Germany
| | - Caroline Schaeffer-Agalède
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000, Strasbourg, France
| | - Pierre Anthony
- Geriatrics Department, General Hospital Centre, CM2R, Geriatric Day Hospital, Colmar, France
| | - Anne Botzung
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Lucie Rauch
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Barbara Jung
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Catherine Martin-Hunyadi
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, Strasbourg, France
| | - Frédéric Blanc
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, Strasbourg, France
| |
Collapse
|
21
|
Ferreira D, Przybelski SA, Lesnick TG, Lemstra AW, Londos E, Blanc F, Nedelska Z, Schwarz CG, Graff-Radford J, Senjem ML, Fields JA, Knopman DS, Savica R, Ferman TJ, Graff-Radford NR, Lowe VJ, Jack CR, Petersen RC, Mollenhauer B, Garcia-Ptacek S, Abdelnour C, Hort J, Bonanni L, Oppedal K, Kramberger MG, Boeve BF, Aarsland D, Westman E, Kantarci K. β-Amyloid and tau biomarkers and clinical phenotype in dementia with Lewy bodies. Neurology 2020; 95:e3257-e3268. [PMID: 32989106 DOI: 10.1212/wnl.0000000000010943] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE In a multicenter cohort of probable dementia with Lewy bodies (DLB), we tested the hypothesis that β-amyloid and tau biomarker positivity increases with age, which is modified by APOE genotype and sex, and that there are isolated and synergistic associations with the clinical phenotype. METHODS We included 417 patients with DLB (age 45-93 years, 31% women). Positivity on β-amyloid (A+) and tau (T+) biomarkers was determined by CSF β-amyloid1-42 and phosphorylated tau in the European cohort and by Pittsburgh compound B and AV-1451 PET in the Mayo Clinic cohort. Patients were stratified into 4 groups: A-T-, A+T-, A-T+, and A+T+. RESULTS A-T- was the largest group (39%), followed by A+T- (32%), A+T+ (15%), and A-T+ (13%). The percentage of A-T- decreased with age, and A+ and T+ increased with age in both women and men. A+ increased more in APOE ε4 carriers with age than in noncarriers. A+ was the main predictor of lower cognitive performance when considered together with T+. T+ was associated with a lower frequency of parkinsonism and probable REM sleep behavior disorder. There were no significant interactions between A+ and T+ in relation to the clinical phenotype. CONCLUSIONS Alzheimer disease pathologic changes are common in DLB and are associated with the clinical phenotype. β-Amyloid is associated with cognitive impairment, and tau pathology is associated with lower frequency of clinical features of DLB. These findings have important implications for diagnosis, prognosis, and disease monitoring, as well as for clinical trials targeting disease-specific proteins in DLB. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in patients with probable DLB, β-amyloid is associated with lower cognitive performance and tau pathology is associated with lower frequency of clinical features of DLB.
Collapse
Affiliation(s)
- Daniel Ferreira
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Scott A Przybelski
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Timothy G Lesnick
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Afina W Lemstra
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Elisabet Londos
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Frederic Blanc
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Zuzana Nedelska
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Christopher G Schwarz
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Jonathan Graff-Radford
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Matthew L Senjem
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Julie A Fields
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - David S Knopman
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Rodolfo Savica
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Tanis J Ferman
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Neill R Graff-Radford
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Val J Lowe
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Clifford R Jack
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Ronald C Petersen
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Brit Mollenhauer
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sara Garcia-Ptacek
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Carla Abdelnour
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Jakub Hort
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Laura Bonanni
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Ketil Oppedal
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Milica G Kramberger
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Bradley F Boeve
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Dag Aarsland
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Eric Westman
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Kejal Kantarci
- From the Division of Clinical Geriatrics (D.F., S.G.-P., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., Z.N., C.G.S., M.L.S., V.J.L., C.R.J., K.K.), Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center (A.W.L.), VU University Medical Center, Amsterdam, the Netherlands; Clinical Memory Research Unit (E.L.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Day Hospital of Geriatrics (F.B.), Memory Resource and Research Centre (CM2R) of Strasbourg; Department of Geriatrics (F.B.), Hopitaux Universitaires de Strasbourg; University of Strasbourg and French National Centre for Scientific Research (CNRS) (F.B.), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France; Department of Neurology (Z.N., J.H.), Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Paracelsus-Elena-Klinik (B.M.), Kassel; and University Medical Center (B.M.), Department of Neurosurgery and Institute of Neuropathology, Göttingen, Germany; Fundació ACE (C.A.), Alzheimer Research Center and Memory Clinic, Institut Català de Neurociències Aplicades, Barcelona, Spain; International Clinical Research Center (J.H.), St. Anne's University Hospital Brno, Czech Republic; Department of Neuroscience Imaging and Clinical Sciences and CESI (L.B.), University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Centre for Age-Related Medicine (K.O., D.A.), Stavanger University Hospital; Stavanger Medical Imaging Laboratory (SMIL) (K.O.), Department of Radiology, Stavanger University Hospital; Department of Electrical Engineering and Computer Science (K.O.), University of Stavanger, Norway; Department of Neurology (M.G.K.), University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Slovenia; Institute of Psychiatry, Psychology and Neuroscience (D.A.) and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| |
Collapse
|
22
|
Agin A, Blanc F, Bousiges O, Villette C, Philippi N, Demuynck C, Martin-Hunyadi C, Cretin B, Lang S, Zumsteg J, Namer IJ, Heintz D. Environmental exposure to phthalates and dementia with Lewy bodies: contribution of metabolomics. J Neurol Neurosurg Psychiatry 2020; 91:968-974. [PMID: 32636213 DOI: 10.1136/jnnp-2020-322815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND In neurodegenerative diseases, alongside genetic factors, the possible intervention of environmental factors in the pathogenesis is increasingly being considered. In particular, recent evidence suggests the intervention of a pesticide-like xenobiotic in the initiation of disease with Lewy bodies (DLB). OBJECTIVES To test for the presence of pesticides or other xenobiotics in the cerebrospinal fluid (CSF) of patients with DLB. METHODS A total of 45 patients were included in this study: 16 patients with DLB at the prodromal stage, 8 patients with DLB at the demented stage, 8 patients with Alzheimer's disease (AD) at the prodromal stage and 13 patients with AD at the demented stage. CSF was obtained by lumbar puncture and analysed by liquid chromatography-mass spectrometry. RESULTS Among the compounds detected in greater abundance in the CSF of patients with DLB compared with patients with AD, only one had a xenobiotic profile potentially related to the pathophysiology of DLB. After normalisation and scaling, bis(2-ethylhexyl) phthalate was more abundant in the CSF of patients with DLB (whole cohort: 2.7-fold abundant in DLB, p=0.031; patients with dementia: 3.8-fold abundant in DLB, p=0.001). CONCLUSIONS This study is the first reported presence of a phthalate in the CSF of patients with DLB. This molecule, which is widely distributed in the environment and enters the body orally, nasally and transdermally, was first introduced in the 1920s as a plasticizer. Thereafter, the first cases of DLB were described in the 1960s and 1970s. These observations suggest that phthalates may be involved in the pathophysiology of DLB.
Collapse
Affiliation(s)
- Arnaud Agin
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France .,Nuclear Medicine and Molecular Imaging Department, ICANS (Institut de Cancérologie Strasbourg Europe), Strasbourg, France
| | - Frédéric Blanc
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Martin-Hunyadi
- Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Sabine Lang
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| | - Izzie Jacques Namer
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Nuclear Medicine and Molecular Imaging Department, ICANS (Institut de Cancérologie Strasbourg Europe), Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4920. [PMID: 32664669 PMCID: PMC7404195 DOI: 10.3390/ijms21144920] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer's disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10-20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (U.H.I.); (E.Z.)
| |
Collapse
|
24
|
Gmitterová K, Gawinecka J, Llorens F, Varges D, Valkovič P, Zerr I. Cerebrospinal fluid markers analysis in the differential diagnosis of dementia with Lewy bodies and Parkinson's disease dementia. Eur Arch Psychiatry Clin Neurosci 2020; 270:461-470. [PMID: 30083957 DOI: 10.1007/s00406-018-0928-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) share a couple of clinical similarities that is often a source of diagnostic pitfalls. We evaluated the discriminatory potential of brain-derived CSF markers [tau, p-tau (181P), Aβ1-42, NSE and S100B] across the spectrum of Lewy body disorders and assessed whether particular markers are associated with cognitive status in investigated patients. The tau CSF level, amyloid β1-42 and p-tau/tau ratio were helpful in the distinction between DLB and PDD (p = 0.04, p = 0.002 and p = 0.02, respectively) as well as from PD patients (p < 0.001, p = 0.001 and p = 0.002, respectively). Furthermore, the p-tau/tau ratio enabled the differentiation of DLB with mild dementia from PDD patients (p = 0.02). The CSF tau and p-tau levels in DLB and CSF tau and p-tau/tau ratio in PDD patients reflected the severity of dementia. Rapid disease course was associated with the decrease of Aβ1-42 in DLB but not in PDD. Elevation of S100B in DLB (p < 0.0001) as well as in PDD patients (p = 0.002) in comparison to controls was estimated. Hence, with the appropriate clinical context; the CSF marker profile could be helpful in distinguishing DLB from PDD patients even in early stages of dementia.
Collapse
Affiliation(s)
- Karin Gmitterová
- Department of Neurology, Clinical Dementia Center and DZNE, National TSE Reference Centre, University Medical School, Georg-August University, Robert-Koch-Str. 40, 37073, Göttingen, Germany
- Second Department of Neurology, Comenius University, Bratislava, Slovakia
| | - Joanna Gawinecka
- Department of Neurology, Clinical Dementia Center and DZNE, National TSE Reference Centre, University Medical School, Georg-August University, Robert-Koch-Str. 40, 37073, Göttingen, Germany
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center and DZNE, National TSE Reference Centre, University Medical School, Georg-August University, Robert-Koch-Str. 40, 37073, Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, Clinical Dementia Center and DZNE, National TSE Reference Centre, University Medical School, Georg-August University, Robert-Koch-Str. 40, 37073, Göttingen, Germany
| | - Peter Valkovič
- Second Department of Neurology, Comenius University, Bratislava, Slovakia
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, National TSE Reference Centre, University Medical School, Georg-August University, Robert-Koch-Str. 40, 37073, Göttingen, Germany.
| |
Collapse
|
25
|
Santangelo R, Dell'Edera A, Sala A, Cecchetti G, Masserini F, Caso F, Pinto P, Leocani L, Falautano M, Passerini G, Martinelli V, Comi G, Perani D, Magnani G. The CSF p-tau181/Aβ42 Ratio Offers a Good Accuracy “In Vivo” in the Differential Diagnosis of Alzheimer’s Dementia. Curr Alzheimer Res 2019; 16:587-595. [DOI: 10.2174/1567205016666190725150836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/06/2019] [Accepted: 07/04/2019] [Indexed: 11/22/2022]
Abstract
Background:
The incoming disease-modifying therapies against Alzheimer’s disease (AD)
require reliable diagnostic markers to correctly enroll patients all over the world. CSF AD biomarkers,
namely amyloid-β 42 (Aβ42), total tau (t-tau), and tau phosphorylated at threonine 181 (p-tau181),
showed good diagnostic accuracy in detecting AD pathology, but their real usefulness in daily clinical
practice is still a matter of debate. Therefore, further validation in complex clinical settings, that is patients
with different types of dementia, is needed to uphold their future worldwide adoption.
Methods:
We measured CSF AD biomarkers’ concentrations in a sample of 526 patients with a clinical
diagnosis of dementia (277 with AD and 249 with Other Type of Dementia, OTD). Brain FDG-PET was
also considered in a subsample of 54 patients with a mismatch between the clinical diagnosis and the
CSF findings.
Results:
A p-tau181/Aβ42 ratio higher than 0.13 showed the best diagnostic performance in differentiating
AD from OTD (86% accuracy index, 74% sensitivity, 81% specificity). In cases with a mismatch
between clinical diagnosis and CSF findings, brain FDG-PET partially agreed with the p-tau181/Aβ42
ratio, thus determining an increase in CSF accuracy.
Conclusions:
The p-tau181/Aβ42 ratio alone might reliably detect AD pathology in heterogeneous samples
of patients suffering from different types of dementia. It might constitute a simple, cost-effective
and reproducible in vivo proxy of AD suitable to be adopted worldwide not only in daily clinical practice
but also in future experimental trials, to avoid the enrolment of misdiagnosed AD patients.
Collapse
Affiliation(s)
- Roberto Santangelo
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Alessandro Dell'Edera
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Arianna Sala
- Nuclear Medicine Unit, IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giordano Cecchetti
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Federico Masserini
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Francesca Caso
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Patrizia Pinto
- Department of Neurology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Letizia Leocani
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | | | - Gabriella Passerini
- Department of Laboratory Medicine, IRCCS-San Raffaele Hospital, Milan, Italy
| | - Vittorio Martinelli
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Daniela Perani
- Nuclear Medicine Unit, IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| |
Collapse
|
26
|
Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:34. [PMID: 31010420 PMCID: PMC6477717 DOI: 10.1186/s13195-019-0485-0] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cerebrospinal fluid (CSF) biochemical markers (biomarkers) Amyloidβ 42 (Aβ42), total Tau (T-tau) and Tau phosphorylated at threonine 181 (P-tau181) have proven diagnostic accuracy for mild cognitive impairment and dementia due to Alzheimer’s Disease (AD). In an effort to improve the accuracy of an AD diagnosis, it is important to be able to distinguish between AD and other types of dementia (non-AD). The concentration ratio of Aβ42 to Aβ40 (Aβ42/40 Ratio) has been suggested to be superior to the concentration of Aβ42 alone when identifying patients with AD. This article reviews the available evidence on the use of the CSF Aβ42/40 ratio in the diagnosis of AD. Based on the body of evidence presented herein, it is the conclusion of the current working group that the CSF Aβ42/40 ratio, rather than the absolute value of CSF Aβ42, should be used when analysing CSF AD biomarkers to improve the percentage of appropriately diagnosed patients.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sylvain Lehmann
- Center of Excellence for Neurodegenerative disorders (COEN) of Montpellier, Montpellier University, CHU Montpellier, INSERM, Montpellier, France
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. .,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland. .,Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
27
|
Bousiges O, Blanc F. Diagnostic value of cerebro-spinal fluid biomarkers in dementia with lewy bodies. Clin Chim Acta 2019; 490:222-228. [DOI: 10.1016/j.cca.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
|
28
|
Gámez-Valero A, Beyer K, Borràs FE. Extracellular vesicles, new actors in the search for biomarkers of dementias. Neurobiol Aging 2019; 74:15-20. [DOI: 10.1016/j.neurobiolaging.2018.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
|
29
|
Bousiges O, Bombois S, Schraen S, Wallon D, Quillard MM, Gabelle A, Lehmann S, Paquet C, Amar-Bouaziz E, Magnin E, Miguet-Alfonsi C, Delbeuck X, Lavaux T, Anthony P, Philippi N, Blanc F. Cerebrospinal fluid Alzheimer biomarkers can be useful for discriminating dementia with Lewy bodies from Alzheimer's disease at the prodromal stage. J Neurol Neurosurg Psychiatry 2018; 89:467-475. [PMID: 29321140 DOI: 10.1136/jnnp-2017-316385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/24/2017] [Accepted: 11/08/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Differential diagnosis between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) is not straightforward, especially in the early stages of disease. We compared AD biomarkers (phospho-Tau181, total-Tau, Aβ42 and Aβ40) in cerebrospinal fluid (CSF) of patients with DLB and AD, focusing especially on the prodromal stage. METHODS A total of 1221 CSF were collected in different memory centres (ePLM network) in France and analysed retrospectively. Samples were obtained from patients with prodromal DLB (pro-DLB; n=57), DLB dementia (DLB-d; n=154), prodromal AD (pro-AD; n=132) and AD dementia (n=783), and control subjects (CS; n=95). These centres use the same diagnostic procedure and criteria to evaluate the patients. RESULTS In patients with pro-DLB, CSF Aβ42 levels appeared much less disrupted than in patients at the demented stage (DLB-d) (P<0.05 CS>pro-DLB; P<0.001 CS>DLB-d). On average, Aβ40 levels in patients with DLB (pro-DLB and DLB-d) were much below those in patients with pro-AD (P<0.001 DLB groups<pro-AD). The Aβ42/Aβ40 ratio in patients with pro-DLB remained close to that of CS. t-Tau and phospho-Tau181 levels were unaltered in patients with DLB (pro-DLB and DLB-d). CONCLUSIONS Reduced levels of CSF Aβ42 were found in patients with DLB but rather at a later stage, reaching those of patients with AD, in whom Aβ42 levels were decreased even at the prodromal stage. At the prodromal stage of DLB, the majority of patients presented a normal CSF profile. CSF t-Tau and phospho-Tau181 were the best biomarkers to discriminate between AD and DLB, whatever the stage of disease.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, and CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), University Hospital of Strasbourg, Strasbourg, Alsace, France
| | - Stephanie Bombois
- Université Lille Nord de France, DISTALZ, Memory Center, Lille, France
| | - Susanna Schraen
- UMR-S 1172 - JPArc-Centre de recherches Jean-Pierre Aubert Neurosciences et Cancer and CHU Lille, UF Neurobiologie, Université Lille, Lille, France
| | - David Wallon
- Department of Neurology, Rouen University Hospital, Rouen, France
| | | | - Audrey Gabelle
- CMRR (Memory Resources and Research Centre), Department of Neurology, CHU de Montpellier, Hôpital, Gui de Chauliac, Montpellier, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie et Protéomique Clinique, CHU de Montpellier and Université de Montpellier, IRMB, CRB, Montpellier, France
| | - Claire Paquet
- CMRR (Memory Resources and Research Centre) Paris Nord Ile de France and Histologie et Biologie du Vieillissement, Groupe Hospitalier Saint-Louis Lariboisière Fernand-Widal APHP, INSERM U942, Université Paris Diderot, Paris, France
| | - Elodie Amar-Bouaziz
- Service de Biochimie et Biologie moléculaire, GH Saint-Louis-Lariboisière-Fernand Widal, APHP, Paris, France
| | - Eloi Magnin
- Department of Neurology, Centre Mémoire Ressources Recherche Besançon Franche-Comté, CHU de Besançon, Besançon, France
| | | | - Xavier Delbeuck
- Université Lille Nord de France, DISTALZ, Memory Center, Lille, France
| | - Thomas Lavaux
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- Neuropsychology Unit, Neurology Service, and CNRS, ICube Laboratory UMR 7357 and FMTS, Team IMIS/Neurocrypto, University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Nathalie Philippi
- Neuropsychology Unit, Neurology Service, and CNRS, ICube Laboratory UMR 7357 and FMTS, Team IMIS/Neurocrypto, University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Frederic Blanc
- Neuropsychology Unit, Neurology Service, and CNRS, ICube Laboratory UMR 7357 and FMTS, Team IMIS/Neurocrypto, University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | | |
Collapse
|
30
|
Teunissen CE, Otto M, Engelborghs S, Herukka SK, Lehmann S, Lewczuk P, Lleó A, Perret-Liaudet A, Tumani H, Turner MR, Verbeek MM, Wiltfang J, Zetterberg H, Parnetti L, Blennow K. White paper by the Society for CSF Analysis and Clinical Neurochemistry: Overcoming barriers in biomarker development and clinical translation. ALZHEIMERS RESEARCH & THERAPY 2018; 10:30. [PMID: 29544527 PMCID: PMC5855933 DOI: 10.1186/s13195-018-0359-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Body fluid biomarkers have great potential for different clinical purposes, including diagnosis, prognosis, patient stratification and treatment effect monitoring. This is exemplified by current use of several excellent biomarkers, such as the Alzheimer’s disease cerebrospinal fluid (CSF) biomarkers, anti-neuromyelitis optica antibodies and blood neurofilament light. We still, however, have a strong need for additional biomarkers and several gaps in their development and implementation should be filled. Examples of such gaps are i) limited knowledge of the causes of neurological diseases, and thus hypotheses about the best biomarkers to detect subclinical stages of these diseases; ii) the limited success translating discoveries obtained by e.g. initial mass spectrometry proteomic low-throughput studies into immunoassays for widespread clinical implementation; iii) lack of interaction among all stakeholders to optimise and adapt study designs throughout the biomarker development process to medical needs, which may change during the long period needed for biomarker development. The Society for CSF Analysis and Clinical Neurochemistry (established in 2015) has been founded as a concerted follow-up of large standardisation projects, including BIOMARKAPD and SOPHIA, and the BioMS-consortium. The main aims of the CSF society are to exchange high level international scientific experience, to facilitate the incorporation of CSF diagnostics into clinical practice and to give advice on inclusion of CSF analysis into clinical guidelines. The society has a broad scope, as its vision is that the gaps in development and implementation of biomarkers are shared among almost all neurological diseases and thus they can benefit from the activities of the society.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Sanna-Kaisa Herukka
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sylvain Lehmann
- Université de Montpellier, University Hospital, INSERM U1183, Montpellier, France
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Erlangen, Germany.,Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Armand Perret-Liaudet
- Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon, France.,University of Lyon 1, CNRS UMR5292, INSERM U1028, BioRan, Lyon, France
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, MS Outpatient Unit, University Hospital of Ulm, Ulm, Germany.,Specialty Hospital of Neurology Dietenbronn, Acadamic Hospital of University of Ulm, Schwendi, Germany
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Marcel M Verbeek
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University, Goettingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Lucilla Parnetti
- Center for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
31
|
Biomarkers in cerebrospinal fluid for synucleinopathies, tauopathies, and other neurodegenerative disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:99-113. [DOI: 10.1016/b978-0-12-804279-3.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Chimagomedova AS, Vasenina EE, Levin OS. [Diagnostic of prodromal dementia with Levy bodies]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:23-32. [PMID: 28980609 DOI: 10.17116/jnevro20171176223-32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The issues of diagnosis of prodromal dementia with Lewy bodies are considered. Despite numerous studies using international diagnostic criteria, clinical and diagnosis are often inconsistent. Early and more accurate detection of dementia with Lewy bodies is needed for prognosis, optimal management and effective pharmacotherapy.
Collapse
Affiliation(s)
- A Sh Chimagomedova
- Russian Medical Academy of Continued Professional Education, Moscow, Russia
| | - E E Vasenina
- Russian Medical Academy of Continued Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of Continued Professional Education, Moscow, Russia
| |
Collapse
|
33
|
Blanc F, Mahmoudi R, Jonveaux T, Galmiche J, Chopard G, Cretin B, Demuynck C, Martin-Hunyadi C, Philippi N, Sellal F, Michel JM, Tio G, Stackfleth M, Vandel P, Magnin E, Novella JL, Kaltenbach G, Benetos A, Sauleau EA. Long-term cognitive outcome of Alzheimer's disease and dementia with Lewy bodies: dual disease is worse. ALZHEIMERS RESEARCH & THERAPY 2017; 9:47. [PMID: 28655337 PMCID: PMC5488368 DOI: 10.1186/s13195-017-0272-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/02/2017] [Indexed: 11/10/2022]
Abstract
Background Longitudinal studies of dementia with Lewy bodies (DLB) are rare. Clinically, DLB is usually considered to worsen into Alzheimer’s disease (AD). The aim of our study was to compare the rate of the cognitive decline in DLB, AD, and the association of the two diseases (AD + DLB). Methods Using the Regional Network for Diagnostic Aid and Management of Patients with Cognitive Impairment database, which includes all the patients seen at all memory clinics (medical consultation and day hospitals) in four French regions, and beta regression, we compared the longitudinal the Mini-Mental State Examination scores of 1159 patients with AD (n = 1000), DLB (n = 131) and AD + DLB (association of the two) (n = 28) during follow-up of at least 4 years. Results The mean follow-up of the patients was 5.88 years. Using beta regression without propensity scores, the comparison of the decline of patients with AD and patients with DLB did not show a significant difference, but the decline of patients with AD + DLB was worse than that of either patients with DLB (P = 0.006) or patients with AD (P < 0.001). Using beta regression weighted by a propensity score, comparison of patients with AD and patients with DLB showed a faster decline for patients with DLB (P < 0.001). The comparison of the decline of patients with AD + DLB with that of patients with DLB (P < 0.001) and patients with AD (P < 0.001) showed that the decline was clearly worse in the patients with dual disease. Conclusions Whatever the analysis, the rate of decline is faster in patients with AD + DLB dual disease. The identification of such patients is important to enable clinicians to optimise treatment and care and to better inform and help patients and caregivers.
Collapse
Affiliation(s)
- Frédéric Blanc
- Memory Resource and Research Centre (CM2R), Geriatrics Day Hospital, Geriatrics Department, University Hospital of Strasbourg, 21 rue David Richard, 67091, Strasbourg Cedex, France. .,University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS)/Neurocrypto, Strasbourg, France. .,University of Strasbourg, Laboratory of Biostatistics and French National Centre for Scientific Research (CNRS), ICube Laboratory, Team Modèles, Images et Vision (MIV), Strasbourg, France.
| | - Rachid Mahmoudi
- Geriatrics Department, Centre Hospitalier Universitaire Reims, Memory Resource and Research Centre (CM2R) Champagne-Ardenne, Reims, France
| | - Thérèse Jonveaux
- Geriatrics Department, Centre Hospitalier Universitaire Nancy, Université de Lorraine, Memory Resource and Research Centre (CM2R) Lorraine, Nancy, France
| | - Jean Galmiche
- Association pour le Développement de la Neuropsychologie Appliquée (ADNA), Besançon, France
| | - Gilles Chopard
- Association pour le Développement de la Neuropsychologie Appliquée (ADNA), Besançon, France
| | - Benjamin Cretin
- Memory Resource and Research Centre (CM2R), Geriatrics Day Hospital, Geriatrics Department, University Hospital of Strasbourg, 21 rue David Richard, 67091, Strasbourg Cedex, France.,University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS)/Neurocrypto, Strasbourg, France
| | - Catherine Demuynck
- Memory Resource and Research Centre (CM2R), Geriatrics Day Hospital, Geriatrics Department, University Hospital of Strasbourg, 21 rue David Richard, 67091, Strasbourg Cedex, France
| | - Catherine Martin-Hunyadi
- Memory Resource and Research Centre (CM2R), Geriatrics Day Hospital, Geriatrics Department, University Hospital of Strasbourg, 21 rue David Richard, 67091, Strasbourg Cedex, France
| | - Nathalie Philippi
- Memory Resource and Research Centre (CM2R), Geriatrics Day Hospital, Geriatrics Department, University Hospital of Strasbourg, 21 rue David Richard, 67091, Strasbourg Cedex, France.,University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS)/Neurocrypto, Strasbourg, France
| | - François Sellal
- Geriatrics Department and Neurology Department, Centre Hospitalier Général (CHG) de Colmar, Memory Resource and Research Centre (CM2R) Alsace, Colmar, France.,Neurology Department,
- Centre Hospitalier Général (CHG) de Colmar, Memory Resource and Research Centre (CM2R) Alsace, Colmar, France
| | - Jean-Marc Michel
- Geriatrics Department and Neurology Department, Centre Hospitalier Général (CHG) de Colmar, Memory Resource and Research Centre (CM2R) Alsace, Colmar, France.,Neurology Department,
- Centre Hospitalier Général (CHG) de Colmar, Memory Resource and Research Centre (CM2R) Alsace, Colmar, France
| | - Gregory Tio
- Psychiatry Department, Centre Hospitalier Universitaire Besançon, Memory Resource and Research Centre (CM2R) Franche Comté, Besançon, France.,Neurology Department, Centre Hospitalier Universitaire Besançon, Memory Resource and Research Centre (CM2R) Franche Comté, Besançon, France.,Association pour le Développement de la Neuropsychologie Appliquée (ADNA), Besançon, France
| | - Melanie Stackfleth
- Memory Resource and Research Centre (CM2R), Geriatrics Day Hospital, Geriatrics Department, University Hospital of Strasbourg, 21 rue David Richard, 67091, Strasbourg Cedex, France
| | - Pierre Vandel
- Psychiatry Department, Centre Hospitalier Universitaire Besançon, Memory Resource and Research Centre (CM2R) Franche Comté, Besançon, France.,Association pour le Développement de la Neuropsychologie Appliquée (ADNA), Besançon, France
| | - Eloi Magnin
- Neurology Department, Centre Hospitalier Universitaire Besançon, Memory Resource and Research Centre (CM2R) Franche Comté, Besançon, France.,Association pour le Développement de la Neuropsychologie Appliquée (ADNA), Besançon, France
| | - Jean-Luc Novella
- Geriatrics Department, Centre Hospitalier Universitaire Reims, Memory Resource and Research Centre (CM2R) Champagne-Ardenne, Reims, France
| | - Georges Kaltenbach
- Memory Resource and Research Centre (CM2R), Geriatrics Day Hospital, Geriatrics Department, University Hospital of Strasbourg, 21 rue David Richard, 67091, Strasbourg Cedex, France
| | - Athanase Benetos
- Geriatrics Department, Centre Hospitalier Universitaire Nancy, Université de Lorraine, Memory Resource and Research Centre (CM2R) Lorraine, Nancy, France
| | - Erik A Sauleau
- University of Strasbourg, Laboratory of Biostatistics and French National Centre for Scientific Research (CNRS), ICube Laboratory, Team Modèles, Images et Vision (MIV), Strasbourg, France
| |
Collapse
|
34
|
Gervaise-Henry C, Watfa G, Albuisson E, Kolodziej A, Dousset B, Olivier JL, Jonveaux TR, Malaplate-Armand C. Cerebrospinal Fluid Aβ42/Aβ40 as a Means to Limiting Tube- and Storage-Dependent Pre-Analytical Variability in Clinical Setting. J Alzheimers Dis 2017; 57:437-445. [DOI: 10.3233/jad-160865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christelle Gervaise-Henry
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
| | - Gasshan Watfa
- CMRR de Lorraine Hôpital de Brabois CHU Nancy, Vandoeuvre lès Nancy, Nancy, France
| | - Eliane Albuisson
- Unité ESPRI-BioBase, CHRU Nancy, Vandoeuvre lès Nancy, Nancy, France
| | - Allan Kolodziej
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
| | - Brigitte Dousset
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
| | - Jean-Luc Olivier
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
- UR AFPA–USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| | | | - Catherine Malaplate-Armand
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
- UR AFPA–USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| |
Collapse
|