1
|
Castellanos-Perilla N, Borda MG, Aarsland D, Barreto GE. An analysis of omega-3 clinical trials and a call for personalized supplementation for dementia prevention. Expert Rev Neurother 2024; 24:313-324. [PMID: 38379273 PMCID: PMC11090157 DOI: 10.1080/14737175.2024.2313547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Targeted interventions are needed to delay or prevent the onset of neurodegenerative diseases. Poor dietary habits are associated with cognitive decline, highlighting the benefits of a healthy diet with fish and polyunsaturated fatty acids (PUFAs). Intake of omega-3 PUFAs docosahexaenoic acid (DHA), α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) is linked with healthy aging, cardiovascular benefits, and reduced risk of Alzheimer's disease. Although omega-3 has health benefits, its intake is often inadequate and insufficient in modern diets. Although fish oil supplements offer an alternative source, inconsistent results from clinical trials raise questions about the factors determining their success. AREAS COVERED In this this review, the authors discuss the aforementioned determining factors and highlight strategies that could enhance the effectiveness of omega-3 PUFAs interventions for dementia and cognitive decline. Moreover, the authors provide suggestions for potential future research. EXPERT OPINION Factors such as diet, lifestyle, and genetic predisposition can all influence the effectiveness of omega-3 supplementation. When implementing clinical trials, it is crucial to consider these factors and recognize their potential impact on the interpretation of results. It is important to study each variable independently and the interactions between them.
Collapse
Affiliation(s)
- Nicolás Castellanos-Perilla
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Miguel Germán Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
Wang J, Yu Z, Peng Y, Xu B. Insights into prevention mechanisms of bioactive components from healthy diets against Alzheimer's disease. J Nutr Biochem 2023:109397. [PMID: 37301484 DOI: 10.1016/j.jnutbio.2023.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in which senile plaques, neurofibrillary tangles, insulin resistance, oxidative stress, chronic neuroinflammation, and abnormal neurotransmission are the potential mechanisms involved in its onset and development. Although it is still an intractable disorder, diet intervention has been developed as an innovative strategy for AD prevention. Some bioactive compounds and micronutrients from food, including soy isoflavones, rutin, vitamin B1, etc., have exhibited numerous neuronal health-promoting effects in both in vivo and in vitro studies. It is well known that their antiapoptotic, antioxidative, and anti-inflammatory properties prevent the neuronal or glial cells from injury or death, minimize oxidative damage, inhibit the production of proinflammatory cytokines by modulating typical signaling pathways of MAPK, NF-kβ, and TLR, and further reduce Aβ genesis and tau hyperphosphorylation. However, parts of the dietary components trigger AD-related proteins productions and inflammasome as well as inflammatory gene upregulation. This review summarized the neuroprotective or nerve damage-promoting role and underlying molecular mechanisms of flavonoids, vitamins, and fatty acids via the data from library databases, PubMed, and journal websites, which provides a comprehensive analysis of the prevention potential of these dietary components against AD.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
3
|
Satizabal CL, Himali JJ, Beiser AS, Ramachandran V, Melo van Lent D, Himali D, Aparicio HJ, Maillard P, DeCarli CS, Harris WS, Seshadri S. Association of Red Blood Cell Omega-3 Fatty Acids With MRI Markers and Cognitive Function in Midlife: The Framingham Heart Study. Neurology 2022; 99:e2572-e2582. [PMID: 36198518 PMCID: PMC9754651 DOI: 10.1212/wnl.0000000000201296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Diet may be a key contributor to brain health in midlife. In particular, omega-3 fatty acids have been related to better neurologic outcomes in older adults. However, studies focusing on midlife are lacking. We investigated the cross-sectional association of red blood cell (RBC) omega-3 fatty acid concentrations with MRI and cognitive markers of brain aging in a community-based sample of predominantly middle-aged adults and further explore effect modification by APOE genotype. METHODS We included participants from the Third-Generation and Omni 2 cohorts of the Framingham Heart Study attending their second examination. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations were measured from RBC using gas chromatography, and the Omega-3 index was calculated as EPA + DHA. We used linear regression models to relate omega-3 fatty acid concentrations to brain MRI measures (i.e., total brain, total gray matter, hippocampal, and white matter hyperintensity volumes) and cognitive function (i.e., episodic memory, processing speed, executive function, and abstract reasoning) adjusting for potential confounders. We further tested for interactions between omega-3 fatty acid levels and APOE genotype (e4 carrier vs noncarrier) on MRI and cognitive outcomes. RESULTS We included 2,183 dementia-free and stroke-free participants (mean age of 46 years, 53% women, 22% APOE-e4 carriers). In multivariable models, higher Omega-3 index was associated with larger hippocampal volumes (standard deviation unit beta ±standard error; 0.003 ± 0.001, p = 0.013) and better abstract reasoning (0.17 ± 0.07, p = 0.013). Similar results were obtained for DHA or EPA concentrations individually. Stratification by APOE-e4 status showed associations between higher DHA concentrations or Omega-3 index and larger hippocampal volumes in APOE-e4 noncarriers, whereas higher EPA concentrations were related to better abstract reasoning in APOE-e4 carriers. Finally, higher levels of all omega-3 predictors were related to lower white matter hyperintensity burden but only in APOE-e4 carriers. DISCUSSION Our results, albeit exploratory, suggest that higher omega-3 fatty acid concentrations are related to better brain structure and cognitive function in a predominantly middle-aged cohort free of clinical dementia. These associations differed by APOE genotype, suggesting potentially different metabolic patterns by APOE status. Additional studies in middle-aged populations are warranted to confirm these findings.
Collapse
Affiliation(s)
- Claudia L Satizabal
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD.
| | - Jayandra Jung Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Alexa S Beiser
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Vasan Ramachandran
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Debora Melo van Lent
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Dibya Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Hugo J Aparicio
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Pauline Maillard
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Charles S DeCarli
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - William S Harris
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Sudha Seshadri
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| |
Collapse
|
4
|
Ali S, Aiello A, Zotti T, Accardi G, Cardinale G, Vito P, Calabrò A, Ligotti ME, Intrieri M, Corbi G, Caruso C, Candore G, Scapagnini G, Davinelli S. Age-associated changes in circulatory fatty acids: new insights on adults and long-lived individuals. GeroScience 2022; 45:781-796. [PMID: 36449220 PMCID: PMC9886696 DOI: 10.1007/s11357-022-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Long-lived individuals (LLIs) are considered an ideal model to study healthy human aging. Blood fatty acid (FA) profile of a cohort of LLIs (90-111 years old, n = 49) from Sicily was compared to adults (18-64 years old, n = 69) and older adults (65-89 years old, n = 54) from the same area. Genetic variants in key enzymes related to FA biosynthesis and metabolism were also genotyped to investigate a potential genetic predisposition in determining the FA profile. Gas chromatography was employed to determine the FA profile, and genotyping was performed using high-resolution melt (HRM) analysis. Blood levels of total polyunsaturated FA (PUFA) and total trans-FA decreased with age, while the levels of saturated FA (SFA) remained unchanged. Interestingly, distinctively higher circulatory levels of monounsaturated FA (MUFA) in LLIs compared to adults and older adults were observed. In addition, among LLIs, rs174537 in the FA desaturase 1/2 (FADS1/2) gene was associated with linoleic acid (LA, 18:2n-6) and docosatetraenoic acid (DTA, 22:4n-6) levels, and the rs953413 in the elongase of very long FA 2 (ELOVL2) was associated with DTA levels. We further observed that rs174579 and rs174626 genotypes in FADS1/2 significantly affect delta-6 desaturase (D6D) activity. In conclusion, our results suggest that the LLIs have a different FA profile characterized by high MUFA content, which indicates reduced peroxidation while maintaining membrane fluidity.
Collapse
Affiliation(s)
- Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Tiziana Zotti
- Dipartimento Di Scienze E Tecnologie, Università Degli Studi del Sannio, Benevento, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | - Pasquale Vito
- Dipartimento Di Scienze E Tecnologie, Università Degli Studi del Sannio, Benevento, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy.
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| |
Collapse
|
5
|
Huang Y, Deng Y, Zhang P, Lin J, Guo D, Yang L, Liu D, Xu B, Huang C, Zhang H. Associations of fish oil supplementation with incident dementia: Evidence from the UK Biobank cohort study. Front Neurosci 2022; 16:910977. [PMID: 36161159 PMCID: PMC9489907 DOI: 10.3389/fnins.2022.910977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although numerous studies have investigated the association of dietary intake of omega-3 fatty acids with cognitive function and the risks of dementia, the relationship between fish oil supplementation and incident dementia in a large population-based cohort study has not yet well studied. Materials and methods A total of 211,094 community-dwelling older persons over 60 years from the UK Biobank cohorts enrolled between 2006 and 2010 that reported regularly taking fish oil and had no dementia at baseline, was included in the present study. All participants completed an electronic questionnaire regarding habitual use of supplements including fish oil. Results Overall, 83,283 (39.5%) participants reported regularly taking fish oil at baseline. Of 211,094 participants with the median age was 64.1 years, 5,274 participants developed dementia events during a median follow-up of 11.7 years, with 3,290 individuals derived from fish oil non-users. In the multivariable adjusted models, the adjusted hazard ratios (HRs) associated with fish oil supplementation for all-cause dementia, vascular dementia, frontotemporal dementia, and other dementia were 0.91 [CI = 0.84-0.97], 0.83 [CI = 0.71-0.97], 0.43 [CI = 0.26-0.72], 0.90 [CI = 0.82-0.98], respectively (all P < 0.05). However, no significant association between fish oil supplementation and Alzheimer's disease was found (HR = 1.00 [CI = 0.89-1.12], P = 0.977). In the subgroup analyses, the associations between use of fish oil and the risk of all-cause dementia (P for interaction = 0.007) and vascular dementia were stronger among men (P for interaction = 0.026). Conclusion Among older adults, regular fish oil supplementation was significantly associated with a lower risks of incident all-cause dementia, as well as vascular dementia, frontotemporal dementia and other dementia but not Alzheimer's disease. These findings support that habitual use of fish oils may be beneficial for the prevention of dementia in clinical practice.
Collapse
Affiliation(s)
- Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linjie Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyan Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chensihan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
- Department of Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
7
|
Herrmann M, Simstich S, Fauler G, Hofer E, Fritz-Petrin E, Herrmann W, Schmidt R. The relationship between plasma free fatty acids, cognitive function and structural integrity of the brain in middle-aged healthy humans. Aging (Albany NY) 2021; 13:22078-22091. [PMID: 34554925 PMCID: PMC8507298 DOI: 10.18632/aging.203573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
Background: The cerebral composition of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) is believed to influence cognitive function and structural damage of the aging brain. However, existing data is inconsistent. Materials and Methods: This retrospective study explored the association between free plasma PUFA concentrations, cognitive function and brain structure atrophy in a well-characterized community-dwelling cohort of elderly individuals without stroke and dementia. Ten different fatty acids were analyzed in stored plasma samples from 391 non-demented elderly individuals by gas chromatography mass spectrometry. Neuropsychiatric tests capturing memory, executive function and visuopractical skills were performed in all participants. Brain atrophy was assessed by MRI in a subset of 167 individuals. Results: Higher plasma concentrations of free ω-6 PUFAs (p = 0.042), and, in particular, linoleic acid (p = 0.01), were significantly associated with lower executive function. No significant association existed between ω-3 PUFA concentrations and cognitive functioning. The volume of the frontal lobes was inversely associated with ω-6 PUFAs, whereas ω-3 PUFAs were positively related with temporal lobe volumes. All associations did not withstand correction for multiple comparisons. Conclusions: Our study suggests subtle effects of PUFA imbalances on cognition and brain structure. Yet the observed associations are weak and unlikely to be of clinical relevance. The brain regions that seem to be most sensitive to imbalances of ω-3 and ω-6 PUFAs are the frontal and temporal lobes.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sebastian Simstich
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Eva Fritz-Petrin
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Patan MJ, Kennedy DO, Husberg C, Hustvedt SO, Calder PC, Khan J, Forster J, Jackson PA. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid, improves global cognitive function in healthy, young adults: results from randomized controlled trials. Am J Clin Nutr 2021; 114:914-924. [PMID: 34113957 PMCID: PMC8408864 DOI: 10.1093/ajcn/nqab174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Evidence regarding the effects of the omega-3 (ɷ-3) PUFAs (n-3 PUFAs) DHA and EPA on cognition is lacking. OBJECTIVES We investigated whether supplementation with oils rich in EPA or DHA improves cognition, prefrontal cortex (PFC) hemoglobin (Hb) oxygenation, and memory consolidation. METHODS Healthy adults (n = 310; age range: 25-49 y) completed a 26-wk randomized controlled trial in which they consumed either 900 mg DHA/d and 270 mg EPA/d (DHA-rich oil), 360 mg DHA/d and 900 mg EPA/d (EPA-rich oil), or 3000 mg/d refined olive oil (placebo). Cognitive performance and memory consolidation were assessed via computerized cognitive test battery. PFC Hb oxygenation was measured using near infrared spectroscopy (NIRS). RESULTS Both global accuracy and speed improved with EPA-rich oil compared with placebo and DHA-rich oil [EPA vs. placebo accuracy: estimated marginal mean (EMM) = 0.17 (95% CI: 0.09, 0.24) vs. EMM = 0.03 (95% CI = -0.04, 0.11); P = 0.044; EPA vs. placebo speed: EMM = -0.15 (95% CI: -0.22, -0.07) vs. EMM = 0.03 (95% CI: -0.05, 0.10); P = 0.003]. Accuracy of memory was improved with EPA compared with DHA [EMM = 0.66 (95% CI: 0.26, 1.06) vs. EMM = -0.08 (95% CI: -0.49, 0.33); P = 0.034]. Both EPA- and DHA-rich oils showed trends towards reduced PFC oxygenated Hb (oxy-Hb) compared with placebo [placebo: EMM = 27.36 µM (95% CI: 25.73, 28.98); DHA: EMM = 24.62 µM (95% CI: 22.75, 26.48); P = 0.060; EPA: EMM = 24.97 µM (95% CI: 23.35, 26.59); P = 0.082]. CONCLUSIONS EPA supplementation improved global cognitive function and was superior to the oil enriched with DHA. Interpreted within a neural efficiency framework, reduced PFC oxygenated Hb suggests that n-3 PUFAs may be associated with increased efficiency.These trials were registered in the clinical trials registry (https://clinicaltrials.gov/) as NCT03158545, NCT03592251, NCT02763514.
Collapse
Affiliation(s)
- Michael J Patan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - David O Kennedy
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute of Health Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Julie Khan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Joanne Forster
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Philippa A Jackson
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
9
|
Erhardt R, Cardoso BR, Meyer BJ, Brownell S, O'Connell S, Mirzaee S, Duckham RL, Macpherson H. Omega-3 Long-Chain Polyunsaturated Fatty Acids: Are They Beneficial for Physical and Cognitive Functioning in Older Adults? J Nutr Health Aging 2021; 25:454-461. [PMID: 33786562 DOI: 10.1007/s12603-020-1553-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND There is equivocal evidence about beneficial properties of omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFA) for older adults. OBJECTIVE This study investigated the relationship between circulating ω-3 LCPUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) levels and their corresponding dietary intakes with cognition and physical function in a cohort of community-dwelling older adults at risk of dementia. METHODS A cross-sectional analysis was conducted among 142 community-dwelling older adults (60-85 years) with subjective memory complaints. Erythrocyte fatty acids (ω-3 LCPUFA) and the omega-3 index were measured; dietary DHA and EPA were assessed with a LCPUFA specific questionnaire. Cognition was measured using the Cogstate computerised battery and Trail-making tests. Muscle strength was assessed by grip strength and physical function via the four-square step test, 30-second sit-to-stand, timed up-and-go test, and 4-m walk test. Multiple regression analysis was used to assess the relationship between erythrocyte ω-3 LCPUFA, dietary intake, cognitive and physical function. RESULTS Higher dietary DHA and EPA were associated with better global cognitive function (DHA: β=0.164, p=0.042; EPA: β=0.188, p=0.020). Higher dietary EPA was associated with better attention/psychomotor composite scores (β=0.196, p=0.024), mobility (four-square step test: β=-0.202, p=0.015) and gait speed (4m walk test: β=-0.200, p=0.017). No associations were found between erythrocyte ω-3 LCPUFA and cognitive or functional performance measures. CONCLUSIONS In community-dwelling older adults with subjective memory complaints, higher dietary ω-3 LCPUFA intake was associated with better cognitive and physical function, supporting the evidence that ω-3 fatty acids play a role in optimising physical and cognitive health during ageing.
Collapse
Affiliation(s)
- R Erhardt
- Barbara R Cardoso, Department of Nutrition and Dietetics, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia;
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Thomas A, Baillet M, Proust-Lima C, Féart C, Foubert-Samier A, Helmer C, Catheline G, Samieri C. Blood polyunsaturated omega-3 fatty acids, brain atrophy, cognitive decline, and dementia risk. Alzheimers Dement 2020; 17:407-416. [PMID: 33090665 DOI: 10.1002/alz.12195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION We searched for consistent associations of an omega-3 index in plasma (sum of eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) with several dementia-related outcomes in a large cohort of older adults. METHODS We included 1279 participants from the Three-City study, non-demented at the time of blood measurements at baseline, with face-to-face neuropsychological assessment and systematic detection of incident dementia over a 17-year follow-up. An ancillary study included 467 participants with up to three repeated brain imaging exams over 10 years. RESULTS In multivariable models, higher levels of plasma EPA+DHA were consistently associated with a lower risk of dementia (hazard ratio for 1 standard deviation = 0.87 [95% confidence interval, 0.76-0.98]), and a lower decline in global cognition (P = .04 for change over time), memory (P = .06), and medial temporal lobe volume (P = .02). DISCUSSION This prospective study provides compelling evidence for a relationship between long-chain omega-3 fatty acids levels and lower risks for dementia and related outcomes.
Collapse
Affiliation(s)
- Aline Thomas
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| | - Marion Baillet
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| | | | - Catherine Féart
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| | - Alexandra Foubert-Samier
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
- Institut des Maladies Neurodégénératives, Bordeaux Univ. Hospital, Bordeaux, F-33000, France
| | | | - Gwénaëlle Catheline
- CNRS, INCIA, UMR5287, Univ. Bordeaux, Bordeaux, F-33000, France
- Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL, Bordeaux, F-33000, France
| | - Cécilia Samieri
- INSERM, BPH, U1219, Univ. Bordeaux, Bordeaux, F-33000, France
| |
Collapse
|
11
|
Umesawa M, Yamagishi K, Iso H. Intake of fish and long-chain n-3 polyunsaturated fatty acids and risk of diseases in a Japanese population: a narrative review. Eur J Clin Nutr 2020; 75:902-920. [PMID: 32939045 DOI: 10.1038/s41430-020-00751-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 11/09/2022]
Abstract
Since the 1970s, the potential benefit of fish intake in terms of noncommunicable diseases has been one of the most important themes in disease prevention. Epidemiological studies have revealed the extent to which fish consumption affects the incidence of and mortality from diseases. Meta-analyses summarized the effect of fish and long-chain n-3 polyunsaturated fatty acid intake on noncommunicable diseases, especially cardiovascular diseases in Western countries. However, few reviews have spotlighted the effect of fish intake in East-Asian countries that have high population levels of fish intake such as Japan. We narratively reviewed the epidemiological studies concerned with the associations of fish and long-chain n-3 polyunsaturated fatty acid intake with risk of noncommunicable diseases, mainly of cardiovascular disease, among Japanese, whose fish intake has been twice or more than that of most Westerners. Overall, fish or long-chain n-3 polyunsaturated fatty acid intake may be beneficial for prevention of noncommunicable diseases, especially coronary heart disease and heart failure in Japanese as well as in Westerners. However, the beneficial effects of their intakes seemed to be nonlinear and varied according to disease severity and culture. Studies on other noncommunicable disease were also narratively reviewed.
Collapse
Affiliation(s)
- Mitsumasa Umesawa
- Dokkyo Medical University School of Medicine, Mibu, Japan.,Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan. .,Ibaraki Western Medical Center, Chikusei, Japan.
| | - Hiroyasu Iso
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan.,Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
12
|
Charles LE, Fekedulegn D, Burchfiel CM, Fujishiro K, Al Hazzouri AZ, Fitzpatrick AL, Rapp SR. Work Hours and Cognitive Function: The Multi-Ethnic Study of Atherosclerosis. Saf Health Work 2020; 11:178-186. [PMID: 32596013 PMCID: PMC7303534 DOI: 10.1016/j.shaw.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022] Open
Abstract
Background Cognitive impairment is a public health burden. Our objective was to investigate associations between work hours and cognitive function. Methods Multi-Ethnic Study of Atherosclerosis (MESA) participants (n = 2,497; 50.7% men; age range 44–84 years) reported hours per week worked in all jobs in Exams 1 (2000–2002), 2 (2002–2004), 3 (2004–2005), and 5 (2010–2011). Cognitive function was assessed (Exam 5) using the Cognitive Abilities Screening Instrument (version 2), a measure of global cognitive functioning; the Digit Symbol Coding, a measure of processing speed; and the Digit Span test, a measure of attention and working memory. We used a prospective approach and linear regression to assess associations for every 10 hours of work. Results Among all participants, associations of hours worked with cognitive function of any type were not statistically significant. In occupation-stratified analyses (interaction p = 0.051), longer work hours were associated with poorer global cognitive function among Sales/Office and blue-collar workers, after adjustment for age, sex, physical activity, body mass index, race/ethnicity, educational level, annual income, history of heart attack, diabetes, apolipoprotein E-epsilon 4 allele (ApoE4) status, birth-place, number of years in the United States, language spoken at MESA Exam 1, and work hours at Exam 5 (β = –0.55, 95% CI = –0.99, –0.09) and (β = –0.80, –1.51, –0.09), respectively. In occupation-stratified analyses (interaction p = 0.040), we also observed an inverse association with processing speed among blue-collar workers (adjusted β = –0.80, –1.52, –0.07). Sex, race/ethnicity, and ApoE4 did not significantly modify associations between work hours and cognitive function. Conclusion Weak inverse associations were observed between work hours and cognitive function among Sales/Office and blue-collar workers.
Collapse
Affiliation(s)
- Luenda E. Charles
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
- Corresponding author. U.S. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, HELD/BEB, MS L-4050, 1095 Willowdale Road, Morgantown, WV 26505-2888, USA.
| | - Desta Fekedulegn
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Cecil M. Burchfiel
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kaori Fujishiro
- Division of Surveillance, Hazard Evaluation, and Field Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | | | - Annette L. Fitzpatrick
- Departments of Family Medicine, Epidemiology and Global Health, University of Washington, Seattle, WA, USA
| | - Stephen R. Rapp
- Department of Psychiatry and Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
13
|
Chan SY, Capitão L, Probert F, Klinge C, Hoeckner S, Harmer CJ, Cowen PJ, Anthony DC, Burnet PWJ. A single administration of the antibiotic, minocycline, reduces fear processing and improves implicit learning in healthy volunteers: analysis of the serum metabolome. Transl Psychiatry 2020; 10:148. [PMID: 32404908 PMCID: PMC7220900 DOI: 10.1038/s41398-020-0818-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Minocycline has shown therapeutic promise in pre-clinical animal models and early phase clinical trials for a variety of psychiatric disorders. Previous studies on minocycline have shown its ability to suppress microglia activity and reduce inflammatory cytokine levels, and its amelioration of depressive-like behaviour in animals and humans. However, the underlying mechanisms that lead to minocycline's psychotropic effects are not clear. In this study, we investigated the psychological and biochemical effects of an acute dose of minocycline or placebo in 40 healthy adult volunteers. Psychological changes in emotional processing, implicit learning, and working memory were assessed. Plasma inflammatory markers, measured with enzyme-linked immunosorbent assays, and serum metabolites, measured with proton nuclear magnetic resonance combined with multi-variate analysis techniques, were also studied. Results showed that minocycline administration decreased fear misclassification and increased contextual learning, which suggested that reducing negative biases and improving cognition, respectively, may underlie the antidepressant actions of this agent. An examination of serum metabolites revealed higher levels of lipoproteins, particularly cholesterol, in the minocycline group. Minocycline also decreased circulating concentrations of the inflammatory marker C-Reactive Peptide, which is consistent with previous research. These effects highlight two important psychological mechanisms that may be relevant to the efficacy of minocycline reported in clinical trials, and also suggest a possible largely unexplored lipid-related biochemical pathway for the action of this drug.
Collapse
Affiliation(s)
- Shi Yu Chan
- Department of Psychiatry, University of Oxford, Oxford, UK
- Psychosis Neurobiology Lab, McLean Hospital, Belmont, MA, 02478, USA
| | - Liliana Capitão
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Fay Probert
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Corinna Klinge
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | | | | |
Collapse
|
14
|
Shinto L, Lahna D, Murchison CF, Dodge H, Hagen K, David J, Kaye J, Quinn JF, Wall R, Silbert LC. Oxidized Products of Omega-6 and Omega-3 Long Chain Fatty Acids Are Associated with Increased White Matter Hyperintensity and Poorer Executive Function Performance in a Cohort of Cognitively Normal Hypertensive Older Adults. J Alzheimers Dis 2020; 74:65-77. [DOI: 10.3233/jad-191197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lynne Shinto
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - David Lahna
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Charles F. Murchison
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroko Dodge
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Kirsten Hagen
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jason David
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jeffrey Kaye
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| | - Rachel Wall
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| | - Lisa C. Silbert
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
15
|
Wade AT, Tregoweth E, Greaves D, Olds TS, Buckley JD, Keage HAD, Coates AM, Smith AE. Long-Chain Omega-3 Fatty Acid Intake Is Associated with Age but not Cognitive Performance in an Older Australian Sample. J Nutr Health Aging 2020; 24:857-864. [PMID: 33009536 DOI: 10.1007/s12603-020-1405-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Long-chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA) are essential nutrients and may be capable of delaying age-related cognitive decline. However, previous studies indicate that Australians are not meeting recommendations for LCn-3 PUFA intake. The current study therefore examined LCn-3 PUFA intake in an older Australia sample, as well as associations between LCn-3 PUFA intake and cognitive function. METHODS Cross-sectional data were collected from 90 adults aged 50 to 80 years. LCn-3 PUFA intake was assessed using a food frequency questionnaire and red blood cell fatty acid profiles were used to calculate the Omega-3 Index (RBC n-3 index). Cognitive function was measured using Addenbrooke's Cognitive Examination-III. RESULTS Positive associations were observed between age and RBC n-3 index (b=0.06, 95% CI: 0.01 - 0.10, P=0.01), and age and LCn-3 PUFA intake from fish oil capsules (b=17.5, 95% CI: 2.4 - 32.5 mg/day, P=0.02). When adjusting for LCn-3 PUFA from fish oil capsules, the association between age and RBC n-3 index was no longer significant. No associations were observed between LCn-3 PUFA intake and cognitive function. CONCLUSION LCn-3 PUFA and fish oil consumption increased with age in this sample of older Australians, particularly due to supplement intake. However, LCn-3 PUFA intake was not associated with cognitive function.
Collapse
Affiliation(s)
- A T Wade
- Ashleigh E. Smith, Alliance for Research in Exercise Nutrition and Activity, Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001. Tel: +618 8302 1735.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Deák F, Anderson RE, Fessler JL, Sherry DM. Novel Cellular Functions of Very Long Chain-Fatty Acids: Insight From ELOVL4 Mutations. Front Cell Neurosci 2019; 13:428. [PMID: 31616255 PMCID: PMC6763723 DOI: 10.3389/fncel.2019.00428] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ferenc Deák
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Robert E Anderson
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David M Sherry
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 2019; 13:612-623. [PMID: 28960209 DOI: 10.1038/nrneurol.2017.111] [Citation(s) in RCA: 496] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the most common type of dementia, and is currently incurable; existing treatments for AD produce only a modest amelioration of symptoms. Research into this disease has conventionally focused on the CNS. However, several peripheral and systemic abnormalities are now understood to be linked to AD, and our understanding of how these alterations contribute to AD is becoming more clearly defined. This Review focuses on amyloid-β (Aβ), a major hallmark of AD. We review emerging findings of associations between systemic abnormalities and Aβ metabolism, and describe how these associations might interact with or reflect on the central pathways of Aβ production and clearance. On the basis of these findings, we propose that these abnormal systemic changes might not only develop secondary to brain dysfunction but might also affect AD progression, suggesting that the interactions between the brain and the periphery have a crucial role in the development and progression of AD. Such a systemic view of the molecular pathogenesis of AD could provide a novel perspective for understanding this disease and present new opportunities for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| |
Collapse
|
18
|
Choi J, Ku B, You YG, Jo M, Kwon M, Choi Y, Jung S, Ryu S, Park E, Go H, Kim G, Cha W, Kim JU. Resting-state prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals. Sci Rep 2019; 9:10468. [PMID: 31320666 PMCID: PMC6639387 DOI: 10.1038/s41598-019-46789-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
We investigated whether cognitive decline could be explained by resting-state electroencephalography (EEG) biomarkers measured in prefrontal regions that reflect the slowing of intrinsic EEG oscillations. In an aged population dwelling in a rural community (total = 496, males = 165, females = 331), we estimated the global cognitive decline using the Mini-Mental State Examination (MMSE) and measured resting-state EEG parameters at the prefrontal regions of Fp1 and Fp2 in an eyes-closed state. Using a tertile split method, the subjects were classified as T3 (MMSE 28-30, N = 162), T2 (MMSE 25-27, N = 179), or T1 (MMSE ≤ 24, N = 155). The EEG slowing biomarkers of the median frequency, peak frequency and alpha-to-theta ratio decreased as the MMSE scores decreased from T2 to T1 for both sexes (-5.19 ≤ t-value ≤ -3.41 for males and -7.24 ≤ t-value ≤ -4.43 for females) after adjusting for age and education level. Using a double cross-validation procedure, we developed a prediction model for the MMSE scores using the EEG slowing biomarkers and demographic covariates of sex, age and education level. The maximum intraclass correlation coefficient between the MMSE scores and model-predicted values was 0.757 with RMSE = 2.685. The resting-state EEG biomarkers showed significant changes in people with early cognitive decline and correlated well with the MMSE scores. Resting-state EEG slowing measured in the prefrontal regions may be useful for the screening and follow-up of global cognitive decline in elderly individuals.
Collapse
Affiliation(s)
- Jungmi Choi
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Boncho Ku
- Korea Institute of Oriental Medicine, Yusung-gu, Deajon, Republic of Korea
| | - Young Gooun You
- Uiryeong Community Health Center, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Miok Jo
- Uiryeong Community Health Center, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Minji Kwon
- Uiryeong Community Health Center, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Youyoung Choi
- Uiryeong Community Health Center, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Segyeong Jung
- Uiryeong Community Health Center, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Soyoung Ryu
- Uiryeong Community Health Center, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Eunjeong Park
- Uiryeong Community Health Center, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Hoyeon Go
- Semyung University, Jecheon-si, Chungcheongbuk-do, Republic of Korea
| | - Gahye Kim
- Korea Institute of Oriental Medicine, Yusung-gu, Deajon, Republic of Korea
| | - Wonseok Cha
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, Gyeongsangnam-do, Republic of Korea
| | - Jaeuk U Kim
- Korea Institute of Oriental Medicine, Yusung-gu, Deajon, Republic of Korea.
| |
Collapse
|
19
|
Zwilling CE, Talukdar T, Zamroziewicz MK, Barbey AK. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage 2019; 188:239-251. [DOI: 10.1016/j.neuroimage.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022] Open
|
20
|
Stilling F, Wolk A, Religa D, Leppert J, Bergkvist L, Michaëlsson K, Larsson SC. Adipose tissue fatty acid composition and cognitive impairment. Nutrition 2018; 54:153-157. [PMID: 29982142 DOI: 10.1016/j.nut.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/06/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The aim of this study was to examine the association among adipose tissue eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and the ratios of EPA to AA and DHA to AA with impaired cognitive function. METHODS This cross-sectional analysis comprised 481 men participating in the Cohort of Swedish Men-Clinical and for whom adipose tissue fatty acid composition and results from a telephone-based cognitive test were available. Impaired cognitive function was defined using a predefined cutoff on the cognitive test. Binomial log-linear regression models were used to estimate prevalence ratios. In secondary analyses, Cox proportional hazards models were used to estimate relative risk for incident dementia ascertained by linkage with population-based registers. RESULTS We observed a graded reduction in the prevalence of impaired cognitive function across tertiles of adipose tissue EPA/AA- ratio (Ptrend = 0.01); compared with the lowest tertile, the multivariable-adjusted prevalence ratios were, respectively, 0.89 (95% confidence interval [CI], 0.67-1.17) and 0.64 (95% CI, 0.45-0.91) for the second and third tertiles. EPA, DHA, and the DHA/AA ratio showed similar patterns of association; however, the CIs included the null. AA alone was not associated with impaired cognitive function. Although with lower precision, estimates obtained from the prospective analysis were broadly consistent with the main analysis. CONCLUSIONS Findings from this study suggest that a high ratio of EPA to AA in adipose tissue may be associated with better cognitive function. A similar association was observed with EPA, DHA, and the ratio of DHA to AA, but the results did not exclude a null association.
Collapse
Affiliation(s)
- Frej Stilling
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Alicja Wolk
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Department of Surgical Sciences, Section of Orthopedics, Uppsala University, Uppsala, Sweden
| | - Dorota Religa
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Jerzy Leppert
- Centre for Clinical Research, Uppsala University, Västmanland County Hospital, Västerås, Sweden
| | - Leif Bergkvist
- Centre for Clinical Research, Uppsala University, Västmanland County Hospital, Västerås, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Section of Orthopedics, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
21
|
Lukaschek K, von Schacky C, Kruse J, Ladwig KH. Cognitive Impairment Is Associated with a Low Omega-3 Index in the Elderly: Results from the KORA-Age Study. Dement Geriatr Cogn Disord 2018; 42:236-245. [PMID: 27701160 DOI: 10.1159/000448805] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (PUFA) may affect the risk of cognitive decline in older adults. METHODS Cross-sectional analysis was conducted among 720 (50.4% women) participants aged 68-92 years (mean age: 77.6, SD ±6.2) of the population-based KORA-Age study. Eicosapentaenoic acid and docosahexaenoic acid (omega-3 index) were measured in erythrocytes as a percentage of total fatty acids. The categories low (<5.7), intermediate (5.7-6.8), and high (>6.8) levels of the omega-3 index were built using tertiles. The association between cognitive status and omega-3 levels was assessed by logistic regression analyses with adjustments for important concurrent risk factors of cognitive decline. RESULTS In the sex- and age-adjusted model (model 1), subjects with a low omega-3 index were at a significantly higher risk for cognitive impairment (OR: 1.77, 95% CI: 1.15-2.73, p = 0.009). This association remained stable after further adjusting for educational level (model 2; OR: 1.75, 95% CI: 1.13-2.71, p = 0.01) and metabolic risk factors (model 3; OR: 1.77, 95% CI: 1.14-2.75, p = 0.01). After further controlling for affective disorders (model 4), the association did not attenuate (OR: 1.77, 95% CI: 1.14-2.76, p = 0.01). CONCLUSION A robust association was found between low omega-3 levels and cognitive impairment in an elderly population. Further research is needed to understand the link between omega-3 PUFA and cognitive functioning.
Collapse
Affiliation(s)
- Karoline Lukaschek
- Department of Psychosomatic Medicine and Psychotherapy, University of Gießen, Gießen, Germany
| | | | | | | |
Collapse
|
22
|
Baseline Oxidative Stress Is Associated with Memory Changes in Omega-3 Fatty Acid Treated Coronary Artery Disease Patients. Cardiovasc Psychiatry Neurol 2017; 2017:3674371. [PMID: 29230323 PMCID: PMC5688343 DOI: 10.1155/2017/3674371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Objective This study investigated whether pretreatment oxidative stress, measured by lipid hydroperoxides (LPH), 4-hydroxy-2-nonenal (4-HNE), 8-isoprostane (8-ISO), and malondialdehyde (MDA), was associated with improvement in immediate recall among n-3 PUFA-treated coronary artery disease patients. Methods This was a secondary analysis of the CAROTID trial (NCT00981383). Composite immediate recall, measured using the California Verbal Learning Test, Second Edition, and the Brief Visuospatial Memory Test-Revised, was assessed. LPH, 4-HNE, 8-ISO, MDA, and n-3 PUFA concentrations were analysed from fasting blood. Patients then received either n-3 PUFA treatment or placebo for 12 weeks, after which composite immediate recall was reassessed. Linear regression was used to investigate relationships between lipid peroxidation markers and changes in composite immediate recall in each treatment group. Results Eighty-five patients (age = 61.1 ± 8.5, 77% male, mean years of education = 15.3 ± 3.4) were included (n = 46 placebo, n = 39 n-3 PUFA). After adjusting for multiple comparisons and potential confounders, greater baseline concentrations of LPH (β = 0.45, p = .002) and 4-HNE (β = 0.38, p = .005) were associated with greater improvement in composite immediate recall among n-3 PUFA-treated patients. No other associations were observed. Conclusions N-3 PUFA treatment may be more likely to improve immediate recall in patients with greater oxidative stress.
Collapse
|
23
|
Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer's disease and epigenetic. Crit Rev Food Sci Nutr 2017; 59:102-113. [PMID: 28799782 DOI: 10.1080/10408398.2017.1359488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and is a chronic neurodegenerative disease that is becoming widespread. For this reason, in recent years factors affecting the development, progression and cognitive function of the AD have been emphasized. Nutrients and other bioactive nutrients are among the factors that are effective in AD. In particular, vitamins A, C and E, vitamins B1, B6 and B12, folate, magnesium, choline, inositol, anthocyanins, isoflavones etc. nutrients and bioactive nutrients are known to be effective in the development of AD. Nutrients and nutrient components may also have an epigenetic effect on AD. At the same time, nutrients and bioactive food components slow down the progression of the disease. For this reason, the effect of nutrients and food components on AD was examined in this review.
Collapse
Affiliation(s)
- Elif Celik
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| | - Nevin Sanlier
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| |
Collapse
|
24
|
Micó V, Berninches L, Tapia J, Daimiel L. NutrimiRAging: Micromanaging Nutrient Sensing Pathways through Nutrition to Promote Healthy Aging. Int J Mol Sci 2017; 18:E915. [PMID: 28445443 PMCID: PMC5454828 DOI: 10.3390/ijms18050915] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Current sociodemographic predictions point to a demographic shift in developed and developing countries that will result in an unprecedented increase of the elderly population. This will be accompanied by an increase in age-related conditions that will strongly impair human health and quality of life. For this reason, aging is a major concern worldwide. Healthy aging depends on a combination of individual genetic factors and external environmental factors. Diet has been proved to be a powerful tool to modulate aging and caloric restriction has emerged as a valuable intervention in this regard. However, many questions about how a controlled caloric restriction intervention affects aging-related processes are still unanswered. Nutrient sensing pathways become deregulated with age and lose effectiveness with age. These pathways are a link between diet and aging. Thus, fully understanding this link is a mandatory step before bringing caloric restriction into practice. MicroRNAs have emerged as important regulators of cellular functions and can be modified by diet. Some microRNAs target genes encoding proteins and enzymes belonging to the nutrient sensing pathways and, therefore, may play key roles in the modulation of the aging process. In this review, we aimed to show the relationship between diet, nutrient sensing pathways and microRNAs in the context of aging.
Collapse
Affiliation(s)
- Víctor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Laura Berninches
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Javier Tapia
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Nutrition and Bromatology, CEU San Pablo University, Boadilla del Monte, 28668 Madrid, Spain.
| |
Collapse
|
25
|
Cederholm T. Fish consumption and omega-3 fatty acid supplementation for prevention or treatment of cognitive decline, dementia or Alzheimer's disease in older adults - any news? Curr Opin Clin Nutr Metab Care 2017; 20:104-109. [PMID: 27977429 DOI: 10.1097/mco.0000000000000350] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Twenty years of research indicates that fish and n-3 fatty acids (FAs), for example docosahexaenoic acid, may attenuate cognitive decline including Alzheimer's disease in older people. This review concerns reports during 2015-2016 in humans. RECENT FINDINGS One prospective cohort study showed that seafood consumption was related to less neuritic plaques and neurofibrillary tangles in brain autopsies from elderly care residents. In a large 5-year intervention no effects on cognition could be shown either in n-3 FA supplemented or in control patients. Two meta-analyses in community-dwelling patients support preservation of cognition with higher fish intake. Older adults with memory complaints may improve cortical blood flow during memory challenges by n-3 FA supplementation. Recalculations from a report in Alzheimer's disease patients indicated a dose-response pattern between increments of serum n-3 FAs and cognitive improvement. Still, a Cochrane review (using three randomized control trials) concluded that n-3 FAs cannot provide any 6-month benefit in patients with mild/moderate Alzheimer's disease. SUMMARY The accumulated knowledge indicates that healthy populations may have preventive benefits from fish and docosahexaenoic acid intake, like older adults with memory complaints/mild cognitive impairment, and maybe subgroups of patients with mild/moderate Alzheimer's disease may also show such benefits. Still, more studies are needed.
Collapse
Affiliation(s)
- Tommy Cederholm
- Departments of Geriatric Medicine, Uppsala University Hospital and Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Yanai H. Effects of N-3 Polyunsaturated Fatty Acids on Dementia. J Clin Med Res 2016; 9:1-9. [PMID: 27924168 PMCID: PMC5127208 DOI: 10.14740/jocmr2815w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/30/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) including α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory effects and neuronal protective functions and may benefit prevention of dementia; however, the epidemiological evidence is very limited. Therefore, the literature about the association between n-3 PUFA and dementia was searched, by using Pubmed. In the analyses of observational studies, n-3 PUFA has been reported to be beneficially associated with dementia in 17 studies; however, the beneficial association between n-3 PUFA and dementia was denied by three studies. In the analyses of intervention studies, n-3 PUFA supplementation was beneficially associated with dementia in eight studies; however, five studies reported the negligible effect of n-3 PUFA for dementia. N-3 PUFA may improve Alzheimer’s disease by increasing clearance of amyloid-β peptide, neurotrophic and neuroprotective factors, and by anti-inflammatory effects. In conclusion, patients with mild memory and/or cognitive impairment can be treated by a long-term and higher intake of n-3 PUFA.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa, Chiba 272-0034, Japan.
| |
Collapse
|