1
|
Katsumi Y, Howe IA, Eckbo R, Wong B, Quimby M, Hochberg D, McGinnis SM, Putcha D, Wolk DA, Touroutoglou A, Dickerson BC. Default mode network tau predicts future clinical decline in atypical early Alzheimer's disease. Brain 2025; 148:1329-1344. [PMID: 39412999 PMCID: PMC11969453 DOI: 10.1093/brain/awae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Identifying individuals with early-stage Alzheimer's disease (AD) at greater risk of steeper clinical decline would enable better-informed medical, support and life planning decisions. Despite accumulating evidence on the clinical prognostic value of tau PET in typical late-onset amnestic AD, its utility in predicting clinical decline in individuals with atypical forms of AD remains unclear. Across heterogeneous clinical phenotypes, patients with atypical AD consistently exhibit abnormal tau accumulation in the posterior nodes of the default mode network of the cerebral cortex. This evidence suggests that tau burden in this functional network could be a common imaging biomarker for prognostication across the syndromic spectrum of AD. Here, we examined the relationship between baseline tau PET signal and the rate of subsequent clinical decline in a sample of 48 A+/T+/N+ patients with mild cognitive impairment or mild dementia due to AD with atypical clinical phenotypes: Posterior Cortical Atrophy (n = 16); logopenic variant Primary Progressive Aphasia (n = 15); and amnestic syndrome with multi-domain impairment and young age of onset < 65 years (n = 17). All patients underwent MRI, tau PET and amyloid PET scans at baseline. Each patient's longitudinal clinical decline was assessed by calculating the annualized change in the Clinical Dementia Rating Sum-of-Boxes (CDR-SB) scores from baseline to follow-up (mean time interval = 14.55 ± 3.97 months). Atypical early AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per year: t(47) = 6.56, P < 0.001, Cohen's d = 0.95. Across clinical phenotypes, baseline tau in the default mode network was the strongest predictor of clinical decline (R2 = 0.30), outperforming a simpler model with baseline clinical impairment and demographic variables (R2 = 0.10), tau in other functional networks (R2 = 0.11-0.26) and the magnitude of cortical atrophy (R2 = 0.20) and amyloid burden (R2 = 0.09) in the default mode network. Overall, these findings point to the contribution of default mode network tau to predicting the magnitude of clinical decline in atypical early AD patients 1 year later. This simple measure could aid the development of a personalized prognostic, monitoring and treatment plan, which would help clinicians not only predict the natural evolution of the disease but also estimate the effect of disease-modifying therapies on slowing subsequent clinical decline given the patient's tau burden while still early in the disease course.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Inola A Howe
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham & Women’s Hospital, Boston, MA 02115, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham & Women’s Hospital, Boston, MA 02115, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Nabizadeh F. Local molecular and connectomic contributions of tau-related neurodegeneration. GeroScience 2025; 47:227-246. [PMID: 39343862 PMCID: PMC11872831 DOI: 10.1007/s11357-024-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is known to be mostly driven by tau neurofibrillary tangles. However, both tau and neurodegeneration exhibit variability in their distribution across the brain and among individuals, and the relationship between tau and neurodegeneration might be influenced by several factors. I aimed to map local molecular and connectivity characteristics that affect the association between tau pathology and neurodegeneration. The current study was conducted on the cross-sectional tau-PET and longitudinal T1-weighted MRI scan data of 186 participants from the ADNI dataset including 71 cognitively unimpaired (CU) and 115 mild cognitive impairment (MCI) individuals. Furthermore, the normative molecular profile of a region was defined using neurotransmitter receptor densities, gene expression, T1w/T2w ratio (myelination), FDG-PET (glycolytic index, glucose metabolism, and oxygen metabolism), and synaptic density. I found that the excitatory-inhibitory (E:I) ratio, myelination, synaptic density, glycolytic index, and functional connectivity are linked with deviation in the relationship between tau and neurodegeneration. Furthermore, there was spatial similarity between tau pathology and glycolytic index, synaptic density, and functional connectivity across brain regions. The current study demonstrates that the regional susceptibility to tau-related neurodegeneration is associated with specific molecular and connectomic characteristics of the affected neural systems. I found that the molecular and connectivity architecture of the human brain is linked to the different effects of tau pathology on downstream neurodegeneration.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| |
Collapse
|
3
|
Bischof GN, Jaeger E, Giehl K, Jessen F, Onur OA, O'Bryant S, Kara E, Weiss PH, Drzezga A. Cortical Tau Aggregation Patterns Associated With Apraxia in Patients With Alzheimer Disease. Neurology 2024; 103:e210062. [PMID: 39626130 PMCID: PMC11614392 DOI: 10.1212/wnl.0000000000210062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/01/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Apraxia is a frequently observed symptom in Alzheimer disease (AD), but the causal pathomechanism underlying this dysfunction is not well understood. Previous studies have demonstrated associations between various cognitive dysfunctions in AD and cortical tau deposition in specific brain areas, suggesting a causal relationship. Thus, we hypothesized that specific regional patterns of tau pathology in praxis-related brain regions may be associated with apraxic deficits in AD. For this purpose, we performed PET imaging with the second-generation tau-PET tracer [18F]PI-2620 in a well-defined group of patients with AD (N = 33) who had been systematically assessed for apraxia. METHODS Patients with a biomarker-confirmed diagnosis of AD were recruited in addition to a sample of cognitively unimpaired (CU1) control participants. Both groups underwent apraxia assessments with the Dementia Apraxia Screening Test. In addition, PET imaging with [18F]PI-2620 was performed to assess tau pathology in the patients with AD. To specifically investigate the association of apraxia severity with regional tau pathology, we compared the PET data from this group with an independent sample of amyloid-negative cognitively intact participants (CU2) by generation of z-score deviation maps and submitted these maps to a voxel-based multiple regression analysis. RESULTS A total of 120 participants (39% female) with a mean age of 67.9 (9.2) years were included in the study (AD = 33; CU1; N = 33; CU2; N = 54). We identified a significant correlation between circumscribed clusters of tau aggregation in praxis-related brain regions (including parietal (angular gyrus), temporal, and occipital regions) and severity of apraxia in patients with AD. By contrast, no significant correlations between tau tracer uptake in primary motor cortex or subcortical brain regions and apraxia were observed. DISCUSSION These results suggest that tau deposition in specific cortical praxis-related brain regions may induce local neuronal dysfunction leading to a dose-dependent functional decline in praxis performance in AD. The awareness of this relationship could further refine a differentiated individual diagnostic characterization and classification of patients with AD.
Collapse
Affiliation(s)
- Gérard N Bischof
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Elena Jaeger
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Kathrin Giehl
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Frank Jessen
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Oezguer A Onur
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Sid O'Bryant
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Esra Kara
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Peter H Weiss
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Alexander Drzezga
- From the Multimodal Neuroimaging Group, Department of Nuclear Medicine (G.N.B., E.J., K.G., A.D.), Department of Psychiatry (F.J.), Department of Neurology (O.A.O., E.K., P.H.W.), Medical Faculty and University Hospital of Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine II, Research Center Juelich; German Center for Neurodegenerative Diseases (F.J.), Bonn/Cologne, Germany; Institute for Translational Research (S.O.B.), and Department of Family Medicine (S.O.B.), Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth; and Cognitive Neuroscience (P.H.W.), Institute for Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| |
Collapse
|
4
|
Andrade-Guerrero J, Martínez-Orozco H, Villegas-Rojas MM, Santiago-Balmaseda A, Delgado-Minjares KM, Pérez-Segura I, Baéz-Cortés MT, Del Toro-Colin MA, Guerra-Crespo M, Arias-Carrión O, Diaz-Cintra S, Soto-Rojas LO. Alzheimer's Disease: Understanding Motor Impairments. Brain Sci 2024; 14:1054. [PMID: 39595817 PMCID: PMC11592238 DOI: 10.3390/brainsci14111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, profoundly impacts health and quality of life. While cognitive impairments-such as memory loss, attention deficits, and disorientation-predominate in AD, motor symptoms, though common, remain underexplored. These motor symptoms, including gait disturbances, reduced cardiorespiratory fitness, muscle weakness, sarcopenia, and impaired balance, are often associated with advanced stages of AD and contribute to increased mortality. Emerging evidence, however, suggests that motor symptoms may be present in earlier stages and can serve as predictive markers for AD in older adults. Despite a limited understanding of the underlying mechanisms driving these motor symptoms, several key pathways have been identified, offering avenues for further investigation. This review provides an in-depth analysis of motor symptoms in AD, discussing its progression, potential mechanisms, and therapeutic strategies. Addressing motor symptoms alongside cognitive decline may enhance patient functionality, improve quality of life, and support more comprehensive disease management strategies.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Karen M. Delgado-Minjares
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Mauricio T. Baéz-Cortés
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Miguel A. Del Toro-Colin
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| |
Collapse
|
5
|
Zhao L, Qiu Q, Zhang S, Yan F, Li X. Tau pathology mediated the plasma biomarkers and cognitive function in patients with mild cognitive impairment. Exp Gerontol 2024; 195:112535. [PMID: 39128687 DOI: 10.1016/j.exger.2024.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) are putative non-amyloid biomarkers indicative of ongoing inflammatory and neurodegenerative disease processes. Hence, this study aimed to demonstrate the relationship between plasma biomarkers (GFAP and NfL) and 18F-AV-1451 tau PET images, and to explore their effects on cognitive function. Ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and 20 participants from the Shanghai Action of Prevention Dementia for the Elderly (SHAPE) cohort underwent plasma biomarker testing, 18F-AV-1451 tau PET scans and cognitive function assessments. Within the ADNI, there were 42 cognitively normal (CN) individuals and 49 with mild cognitive impairment (MCI). Similarly, in the SHAPE, we had 10 CN and 10 MCI participants. We calculated the standardized uptake value ratios (SUVRs) for the regions of interest (ROIs) in the 18F-AV-1451 PET scans. Using plasma biomarkers and regional SUVRs, we trained machine learning models to differentiate between MCI and CN subjects with ADNI database and validated in SHAPE. Results showed that eight selected variables (including left amygdala SUVR, right amygdala SUVR, left entorhinal cortex SUVR, age, education, plasma NfL, plasma GFAP, plasma GFAP/ NfL) identified by LASSO could differentiate between the MCI and CN individuals, with AUC ranging from 0.783 to 0.926. Additionally, cognitive function was negatively associated with the plasma biomarkers and tau deposition in amygdala and left entorhinal cortex. Increased tau deposition in amygdala and left entorhinal cortex were related to increased plasma biomarkers. Moreover, tau pathology mediated the effect of plasma biomarkers level on the cognitive decline. The present study provides valuable insights into the association among plasma markers (GFAP and NfL), regional tau deposition and cognitive function. This study reports the mediation effect of brain regions tau deposition on the plasma biomarkers level and cognitive function, indicating the significance of tau pathology in the MCI patients.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, China.
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Missiego-Beltrán J, Beltrán-Velasco AI. The Role of Microbial Metabolites in the Progression of Neurodegenerative Diseases-Therapeutic Approaches: A Comprehensive Review. Int J Mol Sci 2024; 25:10041. [PMID: 39337526 PMCID: PMC11431950 DOI: 10.3390/ijms251810041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of this review is to provide a comprehensive examination of the role of microbial metabolites in the progression of neurodegenerative diseases, as well as to investigate potential therapeutic interventions targeting the microbiota. A comprehensive literature search was conducted across the following databases: PubMed, Scopus, Web of Science, ScienceDirect, and Wiley. Key terms related to the gut microbiota, microbial metabolites, neurodegenerative diseases, and specific metabolic products were used. The review included both preclinical and clinical research articles published between 2000 and 2024. Short-chain fatty acids have been demonstrated to play a crucial role in modulating neuroinflammation, preserving the integrity of the blood-brain barrier, and influencing neuronal plasticity and protection. Furthermore, amino acids and their derivatives have been demonstrated to exert a significant influence on CNS function. These microbial metabolites impact CNS health by regulating intestinal permeability, modulating immune responses, and directly influencing neuroinflammation and oxidative stress, which are integral to neurodegenerative diseases. Therapeutic strategies, including prebiotics, probiotics, dietary modifications, and fecal microbiota transplantation have confirmed the potential to restore microbial balance and enhance the production of neuroprotective metabolites. Furthermore, novel drug developments based on microbial metabolites present promising therapeutic avenues. The gut microbiota and its metabolites represent a promising field of research with the potential to advance our understanding of and develop treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ana Isabel Beltrán-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28015 Madrid, Spain;
| |
Collapse
|
7
|
Lee HL, Go MJ, Lee HS, Heo HJ. Ecklonia cava Ameliorates Cognitive Impairment on Amyloid β-Induced Neurotoxicity by Modulating Oxidative Stress and Synaptic Function in Institute of Cancer Research (ICR) Mice. Antioxidants (Basel) 2024; 13:951. [PMID: 39199197 PMCID: PMC11352165 DOI: 10.3390/antiox13080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigated the neuroprotective effect of 70% ethanol extract of Ecklonia cava (EE) in amyloid beta (Aβ)-induced cognitive deficit mice. As a result of analyzing the bioactive compounds in EE, nine compounds were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In particular, the diekcol content was quantified by high-performance liquid chromatography with diode-array detection (DAD-HPLC). Biochemical analysis was performed on brain tissue to determine the mechanism of the cognitive function improvement effect of EE. The result showed that EE ameliorated learning and memory decline in behavioral tests on Aβ-induced mice. EE also attenuated oxidative stress by regulating malondialdehyde (MDA) content, reduced glutathione (GSH), and superoxide dismutase (SOD) levels. Similarly, EE also improved mitochondrial dysfunction as mitochondrial membrane potential, ATP production, and reactive oxygen species (ROS) levels. In addition, EE enhanced synapse function by modulating acetylcholine-related enzymes and synaptic structural proteins in the whole brain, hippocampus, and cerebral cortex tissues. Also, EE regulated Aβ-induced apoptosis and inflammation through the c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways. Furthermore, EE protected neurotoxicity by increasing brain-derived neurotrophic factor (BDNF) production. These results suggest that EE may be used as a dietary supplement for the prevention and treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | | | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.L.L.); (M.J.G.); (H.S.L.)
| |
Collapse
|
8
|
Jaeger E, Bischof GN, Onur OA, Schlamann M, Drzezga A. Tau aggregation following subcortical hemorrhage. Eur J Nucl Med Mol Imaging 2024; 51:2515-2516. [PMID: 38433149 PMCID: PMC11178644 DOI: 10.1007/s00259-024-06662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Elena Jaeger
- Department of Nuclear Medicine, University of Cologne, University Hospital of Cologne, Kerpenerstraße 62, 50931, Cologne, Germany.
| | - Gérard N Bischof
- Department of Nuclear Medicine, University of Cologne, University Hospital of Cologne, Kerpenerstraße 62, 50931, Cologne, Germany
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany
| | - Oezguer A Onur
- Department of Neurology, University of Cologne, University Hospital of Cologne, Cologne, Germany
- Research Center Juelich, Institute for Neuroscience and Medicine III, Cognitive Neuroscience, Juelich, Germany
| | - Marc Schlamann
- Department of Diagnostic and Interventional Radiology, University of Cologne, University Hospital of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, University Hospital of Cologne, Kerpenerstraße 62, 50931, Cologne, Germany
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| |
Collapse
|
9
|
Katsumi Y, Howe IA, Eckbo R, Wong B, Quimby M, Hochberg D, McGinnis SM, Putcha D, Wolk DA, Touroutoglou A, Dickerson BC. Default mode network tau predicts future clinical decline in atypical early Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305620. [PMID: 38699357 PMCID: PMC11065041 DOI: 10.1101/2024.04.17.24305620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Identifying individuals with early stage Alzheimer's disease (AD) at greater risk of steeper clinical decline would allow professionals and loved ones to make better-informed medical, support, and life planning decisions. Despite accumulating evidence on the clinical prognostic value of tau PET in typical late-onset amnestic AD, its utility in predicting clinical decline in individuals with atypical forms of AD remains unclear. In this study, we examined the relationship between baseline tau PET signal and the rate of subsequent clinical decline in a sample of 48 A+/T+/N+ patients with mild cognitive impairment or mild dementia due to AD with atypical clinical phenotypes (Posterior Cortical Atrophy, logopenic variant Primary Progressive Aphasia, and amnestic syndrome with multi-domain impairment and age of onset < 65 years). All patients underwent structural magnetic resonance imaging (MRI), tau (18F-Flortaucipir) PET, and amyloid (either 18F-Florbetaben or 11C-Pittsburgh Compound B) PET scans at baseline. Each patient's longitudinal clinical decline was assessed by calculating the annualized change in the Clinical Dementia Rating Sum-of-Boxes (CDR-SB) scores from baseline to follow-up (mean time interval = 14.55 ± 3.97 months). Our sample of early atypical AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per year: t(47) = 6.56, p < .001, d = 0.95. These AD patients showed prominent baseline tau burden in posterior cortical regions including the major nodes of the default mode network, including the angular gyrus, posterior cingulate cortex/precuneus, and lateral temporal cortex. Greater baseline tau in the broader default mode network predicted faster clinical decline. Tau in the default mode network was the strongest predictor of clinical decline, outperforming baseline clinical impairment, tau in other functional networks, and the magnitude of cortical atrophy and amyloid burden in the default mode network. Overall, these findings point to the contribution of baseline tau burden within the default mode network of the cerebral cortex to predicting the magnitude of clinical decline in a sample of atypical early AD patients one year later. This simple measure based on a tau PET scan could aid the development of a personalized prognostic, monitoring, and treatment plan tailored to each individual patient, which would help clinicians not only predict the natural evolution of the disease but also estimate the effect of disease-modifying therapies on slowing subsequent clinical decline given the patient's tau burden while still early in the disease course.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Inola A Howe
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain Mind Medicine, Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain Mind Medicine, Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer's Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer's Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
10
|
Bischof GN, Jaeger E, Giehl K, Jessen F, Onur OA, O'Bryant S, Kara E, Weiss PH, Drzezga A. Cortical Tau Aggregation Patterns associated with Apraxia in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305535. [PMID: 38645131 PMCID: PMC11030486 DOI: 10.1101/2024.04.09.24305535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Objectives Apraxia is a core feature of Alzheimer's disease, but the pathomechanism of this characteristic symptom is not well understood. Here, we systematically investigated apraxia profiles in a well-defined group of patients with Alzheimer's disease (AD; N=32) who additionally underwent PET imaging with the second-generation tau PET tracer [18F]PI-2620. We hypothesized that specific patterns of tau pathology might be related to apraxic deficits. Methods Patients (N=32) with a biomarker-confirmed diagnosis of Alzheimer's disease were recruited in addition to a sample cognitively unimpaired controls (CU 1 ; N=41). Both groups underwent in-depth neuropsychological assessment of apraxia (Dementia Apraxia Screening Test; DATE and the Cologne Apraxia Screening; KAS). In addition, static PET imaging with [18F]PI-2620 was performed to assess tau pathology in the AD patients. To specifically investigate the association of apraxia with regional tau-pathology, we compared the PET-data from this group with an independent sample of amyloid-negative cognitively intact participants (CU 2; N=54) by generation of z-score-deviation maps as well as voxel- based multiple regression analyses. Results We identified significant clusters of tau-aggregation in praxis-related regions (e.g., supramarginal gyrus, angular gyrus, temporal, parietal and occipital regions) that were associated with apraxia. These regions were similar between the two apraxia assessments. No correlations between tau-tracer uptake in primary motor cortical or subcortical brain regions and apraxia were observed. Conclusions These results suggest that tau deposition in specific cortical brain regions may induce local neuronal dysfunction leading to a dose-dependent functional decline in praxis performance.
Collapse
|
11
|
Lee J, Burkett BJ, Min HK, Senjem ML, Dicks E, Corriveau-Lecavalier N, Mester CT, Wiste HJ, Lundt ES, Murray ME, Nguyen AT, Reichard RR, Botha H, Graff-Radford J, Barnard LR, Gunter JL, Schwarz CG, Kantarci K, Knopman DS, Boeve BF, Lowe VJ, Petersen RC, Jack CR, Jones DT. Synthesizing images of tau pathology from cross-modal neuroimaging using deep learning. Brain 2024; 147:980-995. [PMID: 37804318 PMCID: PMC10907092 DOI: 10.1093/brain/awad346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023] Open
Abstract
Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Brian J Burkett
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Carly T Mester
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily S Lundt
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Bischof GN, Jaeger E, Giehl K, Hönig MC, Weiss PH, Drzezga A. Affection of Motor Network Regions by Tau Pathology Across the Alzheimer's Disease Spectrum. eNeuro 2024; 11:ENEURO.0242-23.2023. [PMID: 38164539 PMCID: PMC10849022 DOI: 10.1523/eneuro.0242-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 01/03/2024] Open
Abstract
Stereotypical isocortical tau protein pathology along the Braak stages has been described as an instigator of neurodegeneration in Alzheimer's disease (AD). Less is known about tau pathology in motor regions, although higher-order motor deficits such as praxis dysfunction are part of the clinical description. Here, we examined how tau pathology in cytoarchitectonically mapped regions of the primary and higher-order motor network in comparison to primary visual and sensory regions varies across the clinical spectrum of AD. We analyzed tau PET scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort in patients with mild cognitive impairment (MCI; N = 84) and dementia of the Alzheimer's disease type (DAD; N = 25). Additionally, an amyloid-negative sample of healthy older individuals (HC; N = 26) were included. Standard uptake ratio values (SUVRs) were extracted in native space from the left and the right hemispheres. A repeated measurement analysis of variance was conducted to assess the effect of diagnostic disease category on tau pathology in the individual motor regions, controlling for age. We observed that tau pathology varies as a function of diagnostic category in predominantly higher motor regions (i.e., supplementary motor area, superior parietal lobe, angular gyrus, and dorsal premotor cortex) compared to primary visual, sensory and motor regions. Indeed, tau in higher-order motor regions was significantly associated with decline in cognitive function. Together, these results expand our knowledge on the in vivo pattern of tau pathology in AD and suggest that higher motor regions are not spared from tau aggregation in the course of disease, potentially contributing to the symptomatic appearance of the disease.
Collapse
Affiliation(s)
- Gérard N Bischof
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine II, Research Center Juelich, 52428 Juelich, Germany
| | - Elena Jaeger
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Kathrin Giehl
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine II, Research Center Juelich, 52428 Juelich, Germany
| | - Merle C Hönig
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine II, Research Center Juelich, 52428 Juelich, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute for Neuroscience and Medicine III, Research Center Juelich, 52428 Juelich,Germany
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Universityof Cologne, 50937 Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine II, Research Center Juelich, 52428 Juelich, Germany
- German Center for Neurodegenerative Diseases Bonn/Cologne, 53127 Bonn, Germany
| |
Collapse
|
13
|
Cogut V, McNeely TL, Bussian TJ, Graves SI, Baker DJ. Caloric Restriction Improves Spatial Learning Deficits in Tau Mice. J Alzheimers Dis 2024; 98:925-940. [PMID: 38517786 PMCID: PMC11068089 DOI: 10.3233/jad-231117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background Caloric restriction (CR) has been recognized for its benefits in delaying age-related diseases and extending lifespan. While its effects on amyloid pathology in Alzheimer's disease (AD) mouse models are well-documented, its effects on tauopathy, another hallmark of AD, are less explored. Objective To assess the impact of a short-term 30% CR regimen on age-dependent spatial learning deficits and pathological features in a tauopathy mouse model. Methods We subjected male PS19 tau P301S (hereafter PS19) and age-matched wildtype mice from two age cohorts (4.5 and 7.5 months old) to a 6-week 30% CR regimen. Spatial learning performance was assessed using the Barnes Maze test. Tau pathology, neuroinflammation, hippocampal cell proliferation, and neurogenesis were evaluated in the older cohort by immunohistochemical staining and RT-qPCR. Results CR mitigated age-dependent spatial learning deficits in PS19 mice but exhibited limited effects on tau pathology and the associated neuroinflammation. Additionally, we found a decrease in hippocampal cell proliferation, predominantly of Iba1+ cells. Conclusions Our findings reinforce the cognitive benefits conferred by CR despite its limited modulation of disease pathology. Given the pivotal role of microglia in tau-driven pathology, the observed reduction in Iba1+ cells under CR suggests potential therapeutic implications, particularly if CR would be introduced early in disease progression.
Collapse
Affiliation(s)
- Valeria Cogut
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Taylor L. McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Tyler J. Bussian
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sara I. Graves
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Darren J. Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
16
|
Sokolovič L, Hofmann MJ, Mohammad N, Kukolja J. Neuropsychological differential diagnosis of Alzheimer's disease and vascular dementia: a systematic review with meta-regressions. Front Aging Neurosci 2023; 15:1267434. [PMID: 38020767 PMCID: PMC10657839 DOI: 10.3389/fnagi.2023.1267434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Diagnostic classification systems and guidelines posit distinguishing patterns of impairment in Alzheimer's (AD) and vascular dementia (VaD). In our study, we aim to identify which diagnostic instruments distinguish them. Methods We searched PubMed and PsychInfo for empirical studies published until December 2020, which investigated differences in cognitive, behavioral, psychiatric, and functional measures in patients older than 64 years and reported information on VaD subtype, age, education, dementia severity, and proportion of women. We systematically reviewed these studies and conducted Bayesian hierarchical meta-regressions to quantify the evidence for differences using the Bayes factor (BF). The risk of bias was assessed using the Newcastle-Ottawa-Scale and funnel plots. Results We identified 122 studies with 17,850 AD and 5,247 VaD patients. Methodological limitations of the included studies are low comparability of patient groups and an untransparent patient selection process. In the digit span backward task, AD patients were nine times more probable (BF = 9.38) to outperform VaD patients (β g = 0.33, 95% ETI = 0.12, 0.52). In the phonemic fluency task, AD patients outperformed subcortical VaD (sVaD) patients (β g = 0.51, 95% ETI = 0.22, 0.77, BF = 42.36). VaD patients, in contrast, outperformed AD patients in verbal (β g = -0.61, 95% ETI = -0.97, -0.26, BF = 22.71) and visual (β g = -0.85, 95% ETI = -1.29, -0.32, BF = 13.67) delayed recall. We found the greatest difference in verbal memory, showing that sVaD patients outperform AD patients (β g = -0.64, 95% ETI = -0.88, -0.36, BF = 72.97). Finally, AD patients performed worse than sVaD patients in recognition memory tasks (β g = -0.76, 95% ETI = -1.26, -0.26, BF = 11.50). Conclusion Our findings show inferior performance of AD in episodic memory and superior performance in working memory. We found little support for other differences proposed by diagnostic systems and diagnostic guidelines. The utility of cognitive, behavioral, psychiatric, and functional measures in differential diagnosis is limited and should be complemented by other information. Finally, we identify research areas and avenues, which could significantly improve the diagnostic value of cognitive measures.
Collapse
Affiliation(s)
- Leo Sokolovič
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of General and Biological Psychology, University of Wuppertal, Wuppertal, Germany
| | - Markus J. Hofmann
- Department of General and Biological Psychology, University of Wuppertal, Wuppertal, Germany
| | - Nadia Mohammad
- Department of General and Biological Psychology, University of Wuppertal, Wuppertal, Germany
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
17
|
Brown A, Salo SK, Savage G. Frontal variant Alzheimer's disease: A systematic narrative synthesis. Cortex 2023; 166:121-153. [PMID: 37356113 DOI: 10.1016/j.cortex.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Frontal variant Alzheimer's disease (fvAD) is considered a rare form of Alzheimer's disease (AD) which may be misdiagnosed as behavioural variant frontotemporal dementia (bvFTD). The literature has tended to conflate behavioural and executive dysfunction in fvAD cohorts and uses both AD diagnostic criteria and bvFTD diagnostic criteria to classify fvAD cohorts. The primary aim of this narrative synthesis was to summarise neuropsychological findings in fvAD cohorts in the context of established AD pathology. METHODS EMBASE, PsycINFO, PROQUEST and MEDLINE databases were searched for studies eligible for inclusion. Studies with both neuropsychological and biomarker evidence were included in the final narrative synthesis. RESULTS Ten studies were reviewed, including samples totalling 342 fvAD participants, 178 typical AD participants and 250 bvFTD participants. The review revealed areas worthy of further investigation that may aid differential diagnosis, including the degree of executive dysfunction in fvAD cohorts relative to bvFTD cohorts, the onset of behavioural and cognitive symptomatology, and similarities between fvAD and typical AD cognitive profiles. CONCLUSION There was insufficient neuropsychological evidence to clearly differentiate fvAD and bvFTD cognitive phenotypes, however, the review has highlighted distinctive features of the two disorders that may guide differential diagnosis in future research. Moreover, the review has highlighted issues involving disparate diagnostic criteria used to classify fvAD cohorts, contributing to variation in findings.
Collapse
Affiliation(s)
- Andrea Brown
- School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Sarah K Salo
- Department of Psychology, Swansea University, Swansea, UK; School of Psychology, University of Plymouth, Plymouth, UK
| | - Greg Savage
- School of Psychological Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
18
|
Cogswell PM, Lundt ES, Therneau TM, Mester CT, Wiste HJ, Graff-Radford J, Schwarz CG, Senjem ML, Gunter JL, Reid RI, Przybelski SA, Knopman DS, Vemuri P, Petersen RC, Jack CR. Evidence against a temporal association between cerebrovascular disease and Alzheimer's disease imaging biomarkers. Nat Commun 2023; 14:3097. [PMID: 37248223 PMCID: PMC10226977 DOI: 10.1038/s41467-023-38878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Whether a relationship exists between cerebrovascular disease and Alzheimer's disease has been a source of controversy. Evaluation of the temporal progression of imaging biomarkers of these disease processes may inform mechanistic associations. We investigate the relationship of disease trajectories of cerebrovascular disease (white matter hyperintensity, WMH, and fractional anisotropy, FA) and Alzheimer's disease (amyloid and tau PET) biomarkers in 2406 Mayo Clinic Study of Aging and Mayo Alzheimer's Disease Research Center participants using accelerated failure time models. The model assumes a common pattern of progression for each biomarker that is shifted earlier or later in time for each individual and represented by a per participant age adjustment. An individual's amyloid and tau PET adjustments show very weak temporal association with WMH and FA adjustments (R = -0.07 to 0.07); early/late amyloid or tau timing explains <1% of the variation in WMH and FA adjustment. Earlier onset of amyloid is associated with earlier onset of tau (R = 0.57, R2 = 32%). These findings support a strong mechanistic relationship between amyloid and tau aggregation, but not between WMH or FA and amyloid or tau PET.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Emily S Lundt
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Terry M Therneau
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Carly T Mester
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Jeffrey L Gunter
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
19
|
Corriveau-Lecavalier N, Barnard LR, Lee J, Dicks E, Botha H, Graff-Radford J, Machulda MM, Boeve BF, Knopman DS, Lowe VJ, Petersen RC, Jack, Jr CR, Jones DT. Deciphering the clinico-radiological heterogeneity of dysexecutive Alzheimer's disease. Cereb Cortex 2023; 33:7026-7043. [PMID: 36721911 PMCID: PMC10233237 DOI: 10.1093/cercor/bhad017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
Dysexecutive Alzheimer's disease (dAD) manifests as a progressive dysexecutive syndrome without prominent behavioral features, and previous studies suggest clinico-radiological heterogeneity within this syndrome. We uncovered this heterogeneity using unsupervised machine learning in 52 dAD patients with multimodal imaging and cognitive data. A spectral decomposition of covariance between FDG-PET images yielded six latent factors ("eigenbrains") accounting for 48% of variance in patterns of hypometabolism. These eigenbrains differentially related to age at onset, clinical severity, and cognitive performance. A hierarchical clustering on the eigenvalues of these eigenbrains yielded four dAD subtypes, i.e. "left-dominant," "right-dominant," "bi-parietal-dominant," and "heteromodal-diffuse." Patterns of FDG-PET hypometabolism overlapped with those of tau-PET distribution and MRI neurodegeneration for each subtype, whereas patterns of amyloid deposition were similar across subtypes. Subtypes differed in age at onset and clinical severity where the heteromodal-diffuse exhibited a worse clinical picture, and the bi-parietal had a milder clinical presentation. We propose a conceptual framework of executive components based on the clinico-radiological associations observed in dAD. We demonstrate that patients with dAD, despite sharing core clinical features, are diagnosed with variability in their clinical and neuroimaging profiles. Our findings support the use of data-driven approaches to delineate brain-behavior relationships relevant to clinical practice and disease physiology.
Collapse
Affiliation(s)
| | | | - Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Seibyl JP, DuBois JM, Racine A, Collins J, Guo Q, Wooten D, Stage E, Cheng D, Gunn RN, Porat L, Whittington A, Kuo PH, Ichise M, Comley R, Martarello L, Salinas C. A Visual Interpretation Algorithm for Assessing Brain Tauopathy with 18F-MK-6240 PET. J Nucl Med 2023; 64:444-451. [PMID: 36175137 PMCID: PMC10071795 DOI: 10.2967/jnumed.122.264371] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo characterization of pathologic deposition of tau protein in the human brain by PET imaging is a promising tool in drug development trials of Alzheimer disease (AD). 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (18F-MK-6240) is a radiotracer with high selectivity and subnanomolar affinity for neurofibrillary tangles that shows favorable nonspecific brain penetration and excellent kinetic properties. The purpose of the present investigation was to develop a visual assessment method that provides both an overall assessment of brain tauopathy and regional characterization of abnormal tau deposition. Methods: 18F-MK-6240 scans from 102 participants (including cognitively normal volunteers and patients with AD or other neurodegenerative disorders) were reviewed by an expert nuclear medicine physician masked to each participant's diagnosis to identify common patterns of brain uptake. This initial visual read method was field-tested in a separate, nonoverlapping cohort of 102 participants, with 2 additional naïve readers trained on the method. Visual read outcomes were compared with semiquantitative assessments using volume-of-interest SUV ratio. Results: For the visual read, the readers assessed 8 gray-matter regions per hemisphere as negative (no abnormal uptake) or positive (1%-25% of the region involved, 25%-75% involvement, or >75% involvement) and then characterized the tau binding pattern as positive or negative for evidence of tau and, if positive, whether brain uptake was in an AD pattern. The readers demonstrated agreement 94% of the time for overall positivity or negativity. Concordance on the determination of regional binary outcomes (negative or positive) showed agreement of 74.3% and a Fleiss κ of 0.912. Using clinical diagnosis as the ground truth, the readers demonstrated a sensitivity of 73%-79% and specificity of 91%-93%, with a combined reader-concordance sensitivity of 80% and specificity of 93%. The average SUV ratio in cortical regions showed a robust correlation with visually derived ratings of regional involvement (r = 0.73, P < 0.0001). Conclusion: We developed a visual read algorithm for 18F-MK-6240 PET offering determination of both scan positivity and the regional degree of cortical involvement. These cross-sectional results show strong interreader concordance on both binary and regional assessments of tau deposition, as well as good sensitivity and excellent specificity supporting use as a tool for clinical trials.
Collapse
Affiliation(s)
- John P Seibyl
- Institute for Neurodegenerative Disorders, New Haven, Connecticut;
- Invicro, New Haven, Connecticut
| | | | | | | | - Qi Guo
- AbbVie, North Chicago, Illinois
| | | | | | | | | | | | | | | | - Masanori Ichise
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | | | | |
Collapse
|
21
|
Stocks J, Heywood A, Popuri K, Beg MF, Rosen H, Wang L. Longitudinal Spatial Relationships Between Atrophy and Hypometabolism Across the Alzheimer's Disease Continuum. J Alzheimers Dis 2023; 92:513-527. [PMID: 36776061 DOI: 10.3233/jad-220975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND The A/T/N framework allows for the assessment of pathology-specific markers of MRI-derived structural atrophy and hypometabolism on 18FDG-PET. However, how these measures relate to each other locally and distantly across pathology-defined A/T/N groups is currently unclear. OBJECTIVE To determine the regions of association between atrophy and hypometabolism in A/T/N groups both within and across time points. METHODS We examined multivariate multimodal neuroimaging relationships between MRI and 18FDG-PET among suspected non-Alzheimer's disease pathology (SNAP) (A-T/N+; n = 14), Amyloid Only (A+T-N-; n = 24) and Probable AD (A+T+N+; n = 77) groups. Sparse canonical correlation analyses were employed to model spatially disjointed regions of association between MRI and 18FDG-PET data. These relationships were assessed at three combinations of time points -cross-sectionally, between baseline visits and between month 12 (M-12) follow-up visits, as well as longitudinally between baseline and M-12 follow-up. RESULTS In the SNAP group, spatially overlapping relationships between atrophy and hypometabolism were apparent in the bilateral temporal lobes when both modalities were assessed at the M-12 timepoint. Amyloid-Only subjects showed spatially discordant distributed atrophy-hypometabolism relationships at all time points assessed. In Probable AD subjects, local correlations were evident in the bilateral temporal lobes when both modalities were assessed at baseline and at M-12. Across groups, hypometabolism at baseline correlated with non-local, or distant, atrophy at M-12. CONCLUSION These results support the view that local concordance of atrophy and hypometabolism is the result of a tau-mediated process driving neurodegeneration.
Collapse
Affiliation(s)
- Jane Stocks
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ashley Heywood
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Canada.,Memorial University of Newfoundland, Department of Computer Science, St. John's, NL, Canada
| | | | - Howie Rosen
- School of Medicine, University of California, San Francisco, CA, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | |
Collapse
|
22
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
23
|
Distinct brain iron profiles associated with logopenic progressive aphasia and posterior cortical atrophy. Neuroimage Clin 2022; 36:103161. [PMID: 36029670 PMCID: PMC9428862 DOI: 10.1016/j.nicl.2022.103161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Quantitative susceptibility mapping (QSM) can detect iron distribution in the brain by estimating local tissue magnetic susceptibility properties at every voxel. Iron deposition patterns are well studied in typical Alzheimer's disease (tAD), but little is known about these patterns in atypical clinical presentations of AD such as logopenic progressive aphasia (LPA) and posterior cortical atrophy (PCA). Seventeen PCA patients and eight LPA patients were recruited by the Neurodegenerative Research Group at Mayo Clinic, Rochester, MN, and underwent MRI that included a five-echo gradient echo sequence for calculation of QSM. Mean QSM signal was extracted from gray and white matter for regions-of-interest across the brain using the Mayo Clinic Adult Lifespan Template. Bayesian hierarchical models were fit per-region and per-hemisphere to compare PCA, LPA, 63 healthy controls, and 20 tAD patients. Strong evidence (posterior probability > 0.99) was observed for greater susceptibility in the middle occipital gyrus and amygdala in both LPA and PCA, and in the right inferior parietal, inferior temporal, and angular gyri in PCA and the caudate and substantia nigra in LPA compared to controls. Moderate evidence for greater susceptibility (posterior probability > 0.90) was also observed in the inferior occipital gyrus, precuneus, putamen and entorhinal cortex in both LPA and PCA, along with superior frontal gyrus in PCA and inferior temporal gyri, insula and basal ganglia in LPA, when compared to controls. Between phenotypic comparisons, LPA had greater susceptibility in the caudate, hippocampus, and posterior cingulate compared to PCA, while PCA showed greater susceptibility in the right superior frontal and middle temporal gyri compared to LPA. Both LPA and PCA showed moderate and strong evidence for greater susceptibility than tAD, particularly in medial and lateral parietal regions, while tAD showed greater susceptibility in the hippocampus and basal ganglia. This study proposes the possibility of unique iron profiles existing between LPA and PCA within cortical and subcortical structures. These changes match well with the disease-related changes of the clinical phenotypes, suggesting that QSM could be an informative candidate marker to study iron deposition in these patients.
Collapse
|
24
|
Corriveau-Lecavalier N, Machulda MM, Botha H, Graff-Radford J, Knopman DS, Lowe VJ, Fields JA, Stricker NH, Boeve BF, Jack CR, Petersen RC, Jones DT. Phenotypic subtypes of progressive dysexecutive syndrome due to Alzheimer's disease: a series of clinical cases. J Neurol 2022; 269:4110-4128. [PMID: 35211780 PMCID: PMC9308626 DOI: 10.1007/s00415-022-11025-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Diagnostic criteria for a progressive dysexecutive syndrome due to Alzheimer's disease (dAD) were proposed. Clinical observations suggest substantial variability in the clinico-radiological profiles within this syndrome. We report a case series of 6 patients with dAD highlighting this heterogeneity. Average age at diagnosis was 57.3 years, and patients were followed annually with clinical, cognitive, and multimodal imaging assessments for an average of 3.7 years. Cases were divided based into three subtypes based on their pattern of FDG-PET hypometabolism: predominantly left parieto-frontal (ldAD), predominantly right parieto-frontal (rdAD), or predominantly biparietal (bpdAD) (n = 2 for each). Prominent executive dysfunction was evidenced in all patients. ldAD cases showed greater impairment on measures of verbal working memory and verbal fluency compared to other subtypes. rdAD cases showed more severe alterations in measures of visual abilities compared to language-related domains and committed more perseverative errors on a measure of cognitive flexibility. bpdAD cases presented with predominant cognitive flexibility and inhibition impairment with relative sparing of working memory and a slower rate of clinical progression. rdAD and bpdAD patients developed neuropsychiatric symptoms, whereas none of the ldAD patients did. For each subtype, patterns of tau deposition relatively corresponded to the spatial pattern of FDG hypometabolism. dAD cases could be differentiated from two clinical cases of atypical AD variants (language and visual) in terms of clinical, cognitive and neuroimaging profiles, suggesting that dAD subtypes represent clinical entities separable from other variants of the disease. The recognition of distinct dAD phenotypes has clinical relevance for diagnosis, prognosis, and symptom management.
Collapse
Affiliation(s)
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | | | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nikki H Stricker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA.
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
Functional Imaging for Neurodegenerative Diseases. Presse Med 2022; 51:104121. [PMID: 35490910 DOI: 10.1016/j.lpm.2022.104121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Diagnosis and monitoring of neurodegenerative diseases has changed profoundly over the past twenty years. Biomarkers are now included in most diagnostic procedures as well as in clinical trials. Neuroimaging biomarkers provide access to brain structure and function over the course of neurodegenerative diseases. They have brought new insights into a wide range of neurodegenerative diseases and have made it possible to describe some of the imaging challenges in clinical populations. MRI mainly explores brain structure while molecular imaging, functional MRI and electro- and magnetoencephalography examine brain function. In this paper, we describe and analyse the current and potential contribution of MRI and molecular imaging in the field of neurodegenerative diseases.
Collapse
|
26
|
Qiao Z, Wang G, Zhao X, Wang K, Fan D, Chen Q, Ai L. Neuropsychological Performance Is Correlated With Tau Protein Deposition and Glucose Metabolism in Patients With Alzheimer’s Disease. Front Aging Neurosci 2022; 14:841942. [PMID: 35663582 PMCID: PMC9158435 DOI: 10.3389/fnagi.2022.841942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study characterizes glucose metabolism and tau protein deposition distribution in patients with Alzheimer’s disease (AD) and to evaluate the relationships between neuropsychological performance and tau protein deposition or glucose metabolism using 18F-FDG and 18F-AV1451 positron emission tomography/computed tomography (PET/CT). Methods Sixty-four patients with β-amyloid-positive (Aβ+) AD and twenty-five healthy participants were enrolled in this study. All participants underwent 18F-FDG and 18F-AV1451 PET/CT. Clinical data and neuropsychological scores were collected. Patients with AD were divided into mild, moderate, and severe groups according to mini-mental state examination (MMSE) scores. The standardized uptake value ratios (SUVRs) for both FDG and AV1451 PET images were calculated using the cerebellar vermis as reference. The SUVRs of the whole cerebral cortex and each brain region were calculated. The volume of interest (VOI) was obtained using automated anatomical atlas (AAL) and Brodmann regions. Student’s t-test was used to perform intergroup comparisons of SUVR. The partial correlation coefficient between SUVR and neuropsychological scores was computed in an inter-subject manner using age and education as covariates. Results The mild subgroup showed a reduction in glucose metabolism and aggregation of tau protein in the temporoparietal cortex. With a decline in neuropsychiatric performance, the SUVR on FDG PET decreased and SUVR on tau PET increased gradually. The areas of glucose metabolism reduction and tau protein deposition appeared first in the parietal cortex, followed by the temporal and frontal cortex, successively. Both FDG and tau SUVRs significantly correlated with MMSE, Montreal cognitive assessment (MOCA), auditory verbal learning test (AVLT), Boston naming test (BNT), clock drawing task (CDT), and verbal fluency test (VFT) (p < 0.05). The SUVR on FDG PET significantly correlated with activities of daily living (ADL) and the Hamilton depression scale (HAMD). There was no significant correlation between the tau SUVRs and ADL or HAMD. Conclusion The extension of tau protein deposition was similar but not exactly consistent with the area of glucose metabolism reduction. Both tau and FDG SUVRs correlated with cognitive function in domain-specific patterns, and the results of FDG PET more closely correlated with neuropsychological function than tau PET results did.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guihong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Guihong Wang,
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lin Ai,
| |
Collapse
|
27
|
Isella V, Crivellaro C, Formenti A, Musarra M, Pacella S, Morzenti S, Ferri F, Mapelli C, Gallivanone F, Guerra L, Appollonio I, Ferrarese C. Validity of cingulate–precuneus–temporo-parietal hypometabolism for single-subject diagnosis of biomarker-proven atypical variants of Alzheimer’s Disease. J Neurol 2022; 269:4440-4451. [PMID: 35347453 PMCID: PMC9293827 DOI: 10.1007/s00415-022-11086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022]
Abstract
The aim of our study was to establish empirically to what extent reduced glucose uptake in the precuneus, posterior cingulate and/or temporo-parietal cortex (PCTP), which is thought to indicate brain amyloidosis in patients with dementia or MCI due to Alzheimer’s Disease (AD), permits to distinguish amyloid-positive from amyloid-negative patients with non-classical AD phenotypes at the single-case level. We enrolled 127 neurodegenerative patients with cognitive impairment and a positive (n. 63) or negative (n. 64) amyloid marker (cerebrospinal fluid or amy-PET). Three rating methods of FDG-PET scan were applied: purely qualitative visual interpretation of uptake images (VIUI), and visual reading assisted by a semi-automated and semi-quantitative tool: INLAB, provided by the Italian National Research Council, or Cortex ID Suite, marketed by GE Healthcare. Fourteen scans (11.0%) patients remained unclassified by VIUI or INLAB procedures, therefore, validity values were computed on the remaining 113 cases. The three rating approaches showed good total accuracy (77–78%), good to optimal sensitivity (81–93%), but poorer specificity (62–75%). VIUI showed the highest sensitivity and the lowest specificity, and also the highest proportion of unclassified cases. Cases with asymmetric temporo-parietal hypometabolism and a progressive aphasia or corticobasal clinical profile, in particular, tended to be rated as AD-like, even if biomarkers indicated non-amyloid pathology. Our findings provide formal support to the value of PCTP hypometabolism for single-level diagnosis of amyloid pathophysiology in atypical AD, but also highlight the risk of qualitative assessment to misclassify patients with non-AD PPA or CBS underpinned by asymmetric temporo-parietal hypometabolism.
Collapse
|
28
|
Duong MT, Das SR, Lyu X, Xie L, Richardson H, Xie SX, Yushkevich PA, Wolk DA, Nasrallah IM. Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer's disease. Nat Commun 2022; 13:1495. [PMID: 35314672 PMCID: PMC8938426 DOI: 10.1038/s41467-022-28941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Alzheimer's disease (AD) is defined by amyloid (A) and tau (T) pathologies, with T better correlated to neurodegeneration (N). However, T and N have complex regional relationships in part related to non-AD factors that influence N. With machine learning, we assessed heterogeneity in 18F-flortaucipir vs. 18F-fluorodeoxyglucose positron emission tomography as markers of T and neuronal hypometabolism (NM) in 289 symptomatic patients from the Alzheimer's Disease Neuroimaging Initiative. We identified six T/NM clusters with differing limbic and cortical patterns. The canonical group was defined as the T/NM pattern with lowest regression residuals. Groups resilient to T had less hypometabolism than expected relative to T and displayed better cognition than the canonical group. Groups susceptible to T had more hypometabolism than expected given T and exhibited worse cognitive decline, with imaging and clinical measures concordant with non-AD copathologies. Together, T/NM mismatch reveals distinct imaging signatures with pathobiological and prognostic implications for AD.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xueying Lyu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Long Xie
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley Richardson
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Yushkevich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ilya M Nasrallah
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Wang Y, Cai L, Zhou K, Cui M, Yao S. Biodistribution and Dosimetry Evaluation for a Novel Tau Tracer [18F]-S16 in Healthy Volunteers and Its Application in Assessment of Tau Pathology in Alzheimer’s Disease. Front Bioeng Biotechnol 2022; 9:812818. [PMID: 35223820 PMCID: PMC8866701 DOI: 10.3389/fbioe.2021.812818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Background: The goal of this study was to report a fully automated radiosynthetic procedure of a novel tau tracer [18F]-S16 and its safety, biodistribution, and dosimetry in healthy volunteers as well as the potential utility of [18F]-S16 positron emission tomography (PET) in Alzheimer’s disease (AD).Methods: The automated radiosynthesis of [18F]-S16 was performed on a GE Tracerlab FX2 N module. For the biodistribution and dosimetry study, healthy volunteers underwent a series of PET scans acquired at 10, 60, 120, and 240 min post-injection. The biodistribution and safety were assessed. For the AD study, both AD and healthy controls (HCs) underwent dynamic [18F]-S16 and static [18F]-FDG PET imaging. [18F]-S16 binding was assessed quantitatively using standardized uptake value ratios (SUVRs) measured at different regions of interest (ROIs). [18F]-S16 SUVRs were compared between the AD patients and HCs using the Mann–Whitney U-test. In AD patients with all cortical ROIs, Spearman rank-correlation analysis was used to calculate the voxel-wise correlations between [18F]-S16 and [18F]-FDG.Results: The automated radiosynthesis of [18F]-S16 was finished within 45 min, with a radiochemical yield of 30 ± 5% (n = 8, non-decay-corrected). The radiochemical purity was greater than 98%, and the specific activity was calculated to be 1,047 ± 450 GBq/μmol (n = 5), and [18F]-S16 was stable in vitro. In the healthy volunteer study, no adverse effect was observed within 24 h post-injection, and no defluorination was observed in vivo. The radiotracer could pass through the blood–brain barrier easily and was rapidly cleared from the circulation and excreted through the hepatic system. The whole-body mean effective dose was 15.3 ± 0.3 μSv/MBq. In AD patients, [18F]-S16 accumulation was identified as involving the parietal, temporal, precuneus, posterior cingulate, and frontal lobes. No specific [18F]-S16 cerebral uptake was identified in HCs. The SUVR of AD patients was significantly higher than that of HCs. No specific binding uptake was found in the choroid plexus, venous sinus, and white matter. A significant correlation was found between [18F]-S16 binding and hypometabolism across neocortical regions.Conclusion: [18F]-S16 could be synthesized automatically, and it showed favorable biodistribution and safety in humans. [18F]-S16 PET indicated a high image quality for imaging tau deposition in AD and distinguishing AD from HCs.
Collapse
Affiliation(s)
- Ying Wang
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Cai
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaixiang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Shaobo Yao
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
- Department of Nuclear Medicine, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Shaobo Yao,
| |
Collapse
|
30
|
Lack of association between cortical amyloid deposition and glucose metabolism in early stage Alzheimer´s disease patients. Radiol Oncol 2021; 56:23-31. [PMID: 34957735 PMCID: PMC8884854 DOI: 10.2478/raon-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background Beta amyloid (Aβ) causes synaptic dysfunction leading to neuronal death. It is still controversial if the magnitude of Aβ deposition correlates with the degree of cognitive impairment. Diagnostic imaging may lead to a better understanding the role of Aβ in development of cognitive deficits. The aim of the present study was to investigate if Aβ deposition in the corresponding brain region of early stage Alzheimer´s disease (AD) patients, directly correlates to neuronal dysfunction and cognitive impairment indicated by reduced glucose metabolism. Patients and methods In 30 patients with a clinical phenotype of AD and amyloid positive brain imaging, 2-[18F] fluoro-2-deoxy-d-glucose (FDG) PET/CT was performed. We extracted the average [18F] flutemetamol (Vizamyl) uptake for each of the 16 regions of interest in both hemispheres and computed the standardized uptake value ratio (SUVR) by dividing the Vimazyl intensities by the mean signal of positive and negative control regions. Data were analysed using the R environment for statistical computing and graphics. Results Any negative correlation between Aβ deposition and glucose metabolism in 32 dementia related and corresponding brain regions in AD patients was not found. None of the correlation coefficient values were statistically significant different from zero based on two-sided p- value. Conclusions Regional Aβ deposition did not correlate negatively with local glucose metabolism in early stage AD patients. Our findings support the role of Aβ as a valid biomarker, but does not permit to conclude that Aβ is a direct cause for an aberrant brain glucose metabolism and neuronal dysfunction.
Collapse
|
31
|
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2021; 129:1-24. [DOI: 10.1007/s00702-021-02449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
|
32
|
Hojjati SH, Feiz F, Ozoria S, Razlighi QR. Topographical Overlapping of the Amyloid-β and Tau Pathologies in the Default Mode Network Predicts Alzheimer's Disease with Higher Specificity. J Alzheimers Dis 2021; 83:407-421. [PMID: 34219729 DOI: 10.3233/jad-210419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND While amyloid-β (Aβ) plaques and tau tangles are the well-recognized pathologies of Alzheimer's disease (AD), they are more often observed in healthy individuals than in AD patients. This discrepancy makes it extremely challenging to utilize these two proteinopathies as reliable biomarkers for the early detection as well as later diagnosis of AD. OBJECTIVE We hypothesize and provide preliminary evidence that topographically overlapping Aβ and tau within the default mode network (DMN) play more critical roles in the underlying pathophysiology of AD than each of the tau and/or Aβ pathologies alone. METHODS We used our newly developed quantification methods and publicly available neuroimaging data from 303 individuals to provide preliminary evidence of our hypothesis. RESULTS We first showed that the probability of observing overlapping Aβ and tau is significantly higher within than outside the DMN. We then showed evidence that using Aβ and tau overlap can increase the reliability of the prediction of healthy individuals converting to mild cognitive impairment (MCI) and to a lesser degree converting from MCI to AD. Finally, we provided evidence that while the initial accumulations of Aβ and tau seems to be started independently in the healthy participants, the accumulations of the two pathologies interact in the MCI and AD groups. CONCLUSION These findings shed some light on the complex pathophysiology of AD and suggest that overlapping Aβ and tau pathologies within the DMN might be a more reliable biomarker of AD for early detection and later diagnosis of the disease.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Farnia Feiz
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sindy Ozoria
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Qolamreza R Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
33
|
Wolters EE, Dodich A, Boccardi M, Corre J, Drzezga A, Hansson O, Nordberg A, Frisoni GB, Garibotto V, Ossenkoppele R. Clinical validity of increased cortical uptake of [ 18F]flortaucipir on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase biomarker development framework. Eur J Nucl Med Mol Imaging 2021; 48:2097-2109. [PMID: 33547556 PMCID: PMC8175307 DOI: 10.1007/s00259-020-05118-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE In 2017, the Geneva Alzheimer's disease (AD) Biomarker Roadmap initiative adapted the framework of the systematic validation of oncological diagnostic biomarkers to AD biomarkers, with the aim to accelerate their development and implementation in clinical practice. With this work, we assess the maturity of [18F]flortaucipir PET and define its research priorities. METHODS The level of maturity of [18F]flortaucipir was assessed based on the AD Biomarker Roadmap. The framework assesses analytical validity (phases 1-2), clinical validity (phases 3-4), and clinical utility (phase 5). RESULTS The main aims of phases 1 (rationale for use) and 2 (discriminative ability) have been achieved. [18F]Flortaucipir binds with high affinity to paired helical filaments of tau and has favorable kinetic properties and excellent discriminative accuracy for AD. The majority of secondary aims of phase 2 were fully achieved. Multiple studies showed high correlations between ante-mortem [18F]flortaucipir PET and post-mortem tau (as assessed by histopathology), and also the effects of covariates on tracer binding are well studied. The aims of phase 3 (early detection ability) were only partially or preliminarily achieved, and the aims of phases 4 and 5 were not achieved. CONCLUSION Current literature provides partial evidence for clinical utility of [18F]flortaucipir PET. The aims for phases 1 and 2 were mostly achieved. Phase 3 studies are currently ongoing. Future studies including representative MCI populations and a focus on healthcare outcomes are required to establish full maturity of phases 4 and 5.
Collapse
Affiliation(s)
- E E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Centre for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - M Boccardi
- Late Translational Dementia Studies Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | - J Corre
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- CURIC, Centre Universitaire Romand d'Implants Cochléaires, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - A Drzezga
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Research Center Jülich, Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - O Hansson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - R Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Dadgostar E, Tajiknia V, Shamsaki N, Naderi-Taheri M, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 and brain-related disorders: Insights into its apoptosis roles. EXCLI JOURNAL 2021; 20:983-994. [PMID: 34267610 PMCID: PMC8278210 DOI: 10.17179/excli2021-3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Brain-related disorders are leading global health problems. Various internal and external factors are involved in the progression of brain-related disorders. Inflammatory pathways, oxidative stresses, apoptosis, and deregulations of various channels are critical players in brain-related disorder pathogenesis. Among these players, aquaporins (AQP) have critical roles in various physiological and pathological conditions. AQPs are water channel molecules that permit water to cross the hydrophobic lipid bilayers of cellular membranes. AQP4 is one of the important members of AQP family. AQPs are involved in controlling apoptosis pathways in brain-related disorders. In this regard, several reports have evaluated the pathological effects of AQP4 by targeting the apoptosis-related processes in brain-related disorders. Here, for the first time, we highlight the impact of AQP4 on apoptosis-related processes in brain-related disorders.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Shamsaki
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Naderi-Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
35
|
Ossenkoppele R, Hansson O. Towards clinical application of tau PET tracers for diagnosing dementia due to Alzheimer's disease. Alzheimers Dement 2021; 17:1998-2008. [PMID: 33984177 DOI: 10.1002/alz.12356] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/07/2022]
Abstract
The recent development of several tau positron emission tomography (PET) tracers represents a major milestone for the Alzheimer's disease (AD) field. These tau PET tracers bind tau neurofibrillary tangles, a key neuropathological characteristic of AD that is tightly linked to synaptic loss, brain atrophy, and cognitive decline. It is notable that these tau PET tracers show low uptake in most non-AD tauopathies and other neurodegenerative disorders, resulting in a diagnostic specificity that is superior to that of amyloid beta (Aβ) PET and biofluid markers, especially at an older age when incidental Aβ pathology is common. Furthermore, tau PET tracers diagnostically outperform widely used MRI markers. Given its excellent diagnostic performance due to the combination of high sensitivity and specificity for detecting tau pathology in AD dementia, we hypothesize that tau PET can become an important diagnostic tool in specialized clinics for the differential diagnosis of dementia syndromes where AD is among the major possible underlying diseases.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oskar Hansson
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
36
|
Devous MD, Fleisher AS, Pontecorvo MJ, Lu M, Siderowf A, Navitsky M, Kennedy I, Southekal S, Harris TS, Mintun MA. Relationships Between Cognition and Neuropathological Tau in Alzheimer's Disease Assessed by 18F Flortaucipir PET. J Alzheimers Dis 2021; 80:1091-1104. [PMID: 33682705 DOI: 10.3233/jad-200808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tau neurofibrillary tangle burden increases with Alzheimer's disease (AD) stage and correlates with degree of cognitive impairment. Tau PET imaging could facilitate understanding the relationship between tau pathology and cognitive impairment. OBJECTIVE Evaluate the relationship between 18F flortaucipir uptake patterns and cognition across multiple cognitive domains. METHODS We acquired flortaucipir PET scans in 84 amyloid-positive control, mild cognitive impairment (MCI), and AD subjects. Flortaucipir standardized uptake value ratio (SUVr) values were obtained from a neocortical volume of interest (VOI), a precuneus VOI, and VOIs defined by the correlation between flortaucipir SUVr images and domain-specific cognitive tests. Cognitive assessments included Mini-Mental State Exam (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog), and a neuropsychological test battery (i.e., Wechsler Memory Scale-Revised Logical Memory (WMS-R), Trail Making Test, Boston Naming Test, Digit Symbol Substitution Test, Animal List Generation, WMS-R Digit Span, American National Adult Reading Test, Clock Drawing Test, Judgment of Line Orientation, and WMS-R Logical Memory II (Delayed Recall)) and the Functional Activities Questionnaire (FAQ). Correlation analyses compared regional and voxel-wise VOIs to cognitive scores. RESULTS Subjects included 5 controls, 47 MCI, and 32 AD subjects. Significant correlations were seen between both flortaucipir and florbetapir SUVrs and MMSE, ADAS-Cog, and FAQ. Cognitive impairment was associated with increased flortaucipir uptake in regionally specific patterns consistent with the neuroanatomy underlying specific cognitive tests. CONCLUSION Flortaucipir SUVr values demonstrated significant inverse correlations with cognitive scores in domain-specific patterns. Findings support the hypothesis that PET imaging of neuropathologic tau deposits may reflect underlying neurodegeneration in AD.
Collapse
Affiliation(s)
| | | | | | - Ming Lu
- Avid Radiopharmaceuticals, Inc., Philadelphia, PA, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian Kennedy
- Avid Radiopharmaceuticals, Inc., Philadelphia, PA, USA
| | | | | | - Mark A Mintun
- Avid Radiopharmaceuticals, Inc., Philadelphia, PA, USA
| |
Collapse
|
37
|
Radioactive synthesis of tau PET imaging agent 18F-AV-1451 and its role in monitoring the progression of Alzheimer's disease and supporting differential diagnosis. Ann Nucl Med 2021; 35:139-147. [PMID: 33460010 DOI: 10.1007/s12149-020-01566-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is on the rise all over the world, and brings with it great challenges to medical care and heavy burdens to family and society. Accurate diagnosis and differential diagnosis are of great importance. Tau positron emission tomography (PET) might offer novel insights and be of great assistance in monitoring disease progression and supporting the differential diagnosis. 18F-AV-1451, as the first Tau PET imaging agent approved by the Food and Drug Administration (FDA), has been of great potential in clinical trials. Here, we reviewed the synthesis and characteristics of 18F-AV-1451 and its role in monitoring AD progression and supporting the differential diagnosis.
Collapse
|
38
|
Bai D, Fan J, Li M, Dong C, Gao Y, Fu M, Huang G, Liu H. Effects of Folic Acid Combined with DHA Supplementation on Cognitive Function and Amyloid-β-Related Biomarkers in Older Adults with Mild Cognitive Impairment by a Randomized, Double Blind, Placebo-Controlled Trial. J Alzheimers Dis 2021; 81:155-167. [PMID: 33749643 DOI: 10.3233/jad-200997] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The neuroprotective benefits of combined folic acid and docosahexaenoic acid (DHA) on cognitive function in mild cognitive impairment (MCI) patients are suggested but unconfirmed. OBJECTIVE To explore the effects of 6-month folic acid + DHA on cognitive function in patients with MCI. METHODS Our randomized controlled trial (trial number ChiCTR-IOR-16008351) was conducted in Tianjin, China. We divided 160 MCI patients aged > 60 years into four regimen groups randomly: folic acid (0.8 mg/day) + DHA (800 mg/day), folic acid (0.8 mg/day), DHA (800 mg/day), and placebo, for 6 months. Cognitive function and blood amyloid-β peptide (Aβ) biomarker levels were measured at baseline and 6 months. Cognitive function was also measured at 12 months. RESULTS A total of 138 patients completed this trial. Folic acid improved the full-scale intelligence quotient (FSIQ), arithmetic, and picture complement scores; DHA improved the FSIQ, information, arithmetic, and digit span scores; folic acid + DHA improved the arithmetic (difference 1.67, 95% CI 1.02 to 2.31) and digital span (1.33, 0.24 to 2.43) scores compared to placebo. At 12 months, all scores declined in the intervention groups. Folic acid and folic acid + DHA increased blood folate (folic acid + DHA: 7.70, 3.81 to 11.59) and S-adenosylmethionine (23.93, 1.86 to 46.00) levels and reduced homocysteine levels (-6.51, -10.57 to -2.45) compared to placebo. DHA lower the Aβ40 levels (-40.57, -79.79 to -1.35) compared to placebo (p < 0.05), and folic acid + DHA reduced the Aβ42 (-95.59, -150.76 to -40.43) and Aβ40 levels (-45.75, -84.67 to -6.84) more than DHA (p < 0.05). CONCLUSION Folic acid and DHA improve cognitive function and reduce blood Aβ production in MCI patients. Combination therapy may be more beneficial in reducing blood Aβ-related biomarkers.
Collapse
Affiliation(s)
- Dong Bai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition, Tianjin First Central Hospital, Tianjin, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Mengyue Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Yiming Gao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Hujiayuan Community Health Service Center of Binhai New Area, Tianjin, China
| | - Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| |
Collapse
|
39
|
Ai J, Wang H, Chu P, Shopit A, Niu M, Ahmad N, Tesfaldet T, Wang FH, Fang JN, Li X, Tang SJ, Qing Ju Han, Han G, Peng J, Tang Z. The neuroprotective effects of phosphocreatine on Amyloid Beta 25-35-induced differentiated neuronal cell death through inhibition of AKT /GSK-3β /Tau/APP /CDK5 pathways in vivo and vitro. Free Radic Biol Med 2021; 162:181-190. [PMID: 33131696 DOI: 10.1016/j.freeradbiomed.2020.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer (AD) is a degenerative disease that can lead memory loss and behavioral dysfunction. Aβ protein and phosphorylation of Tau protein are related to the onset of AD. However, at present, its treatment and drugs are limited. The purpose of our study is to evaluate whether phosphocreatine (PCr) could protect neuronal injury induced by Aβ protein in vivo and in vitro through AKT/GSK-3β/Tau/APP/CDK5 pathways. Differentiated PC-12 cells were cultured with Aβ25-35 for 24 h, while the mice were injected with D-Galactose for eight weeks, both of them were pretreated with PCr for 2 h. The results showed PCr could obviously induce cells and hippocampus apoptosis using DAPI and TUNEL. PCr decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and increased the activities of superoxide dismutase (SOD). Besides, the apoptosis pathway was detected using Western blot, showing that PCr could significantly reduce caspase-3, caspase-9, Bcl-2/Bax expression in vivo and in vitro. At the same time, PCr could decreased Ca2+ and apoptosis by Flow Cytometry in PC-12 cells. We observed that the morphological alteration of hippocampus injury was mitigated with the pretreatment of PCr. Furthermore, PCr pretreatment could decrease Aβ25-35-induced PC-12 cells apoptosis with APP cDNA transfection, which up-regulated AKT/GSK-3β/CDK5 pathways and induced Tau phosphorylation. In summary, PCr could reduce Aβ25-35 toxicity to protect neuronal cells via AKT/GSK-3β/CDK5 pathways.
Collapse
Affiliation(s)
- Jie Ai
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Hongyan Wang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Peng Chu
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Abdullah Shopit
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Mengyue Niu
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Nisar Ahmad
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Tsehaye Tesfaldet
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Fu Han Wang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Jia Ni Fang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Xiaodong Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shi Jie Tang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Qing Ju Han
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Guozhu Han
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Jinyong Peng
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Zeyao Tang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
40
|
Iaccarino L, La Joie R, Edwards L, Strom A, Schonhaut DR, Ossenkoppele R, Pham J, Mellinger T, Janabi M, Baker SL, Soleimani-Meigooni D, Rosen HJ, Miller BL, Jagust WJ, Rabinovici GD. Spatial Relationships between Molecular Pathology and Neurodegeneration in the Alzheimer's Disease Continuum. Cereb Cortex 2021; 31:1-14. [PMID: 32808011 PMCID: PMC7727356 DOI: 10.1093/cercor/bhaa184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
A deeper understanding of the spatial relationships of β-amyloid (Aβ), tau, and neurodegeneration in Alzheimer's disease (AD) could provide insight into pathogenesis and clinical trial design. We included 81 amyloid-positive patients (age 64.4 ± 9.5) diagnosed with AD dementia or mild cognitive impairment due to AD and available 11C-PiB (PIB), 18F-Flortaucipir (FTP),18F-FDG-PET, and 3T-MRI, and 31 amyloid-positive, cognitively normal participants (age 77.3 ± 6.5, no FDG-PET). W-score voxel-wise deviation maps were created and binarized for each imaging-modality (W > 1.64, P < 0.05) adjusting for age, sex, and total intracranial volume (sMRI-only) using amyloid-negative cognitively normal adults. For symptomatic patients, FDG-PET and atrophy W-maps were combined into neurodegeneration maps (ND). Aβ-pathology showed the greatest proportion of cortical gray matter suprathreshold voxels (spatial extent) for both symptomatic and asymptomatic participants (median 94-55%, respectively), followed by tau (79-11%) and neurodegeneration (41-3%). Amyloid > tau > neurodegeneration was the most frequent hierarchy for both groups (79-77%, respectively), followed by tau > amyloid > neurodegeneration (13-10%) and amyloid > neurodegeneration > tau (6-13%). For symptomatic participants, most abnormal voxels were PIB+/FTP+/ND- (median 35%), and the great majority of ND+ voxels (91%) colocalized with molecular pathology. Amyloid spatially exceeded tau and neurodegeneration, with individual heterogeneities. Molecular pathology and neurodegeneration showed a progressive overlap along AD course, indicating shared vulnerabilities or synergistic toxic mechanisms.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel R Schonhaut
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rik Ossenkoppele
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Taylor Mellinger
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
41
|
Sintini I, Graff-Radford J, Senjem ML, Schwarz CG, Machulda MM, Martin PR, Jones DT, Boeve BF, Knopman DS, Kantarci K, Petersen RC, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Longitudinal neuroimaging biomarkers differ across Alzheimer's disease phenotypes. Brain 2020; 143:2281-2294. [PMID: 32572464 DOI: 10.1093/brain/awaa155] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease can present clinically with either the typical amnestic phenotype or with atypical phenotypes, such as logopenic progressive aphasia and posterior cortical atrophy. We have recently described longitudinal patterns of flortaucipir PET uptake and grey matter atrophy in the atypical phenotypes, demonstrating a longitudinal regional disconnect between flortaucipir accumulation and brain atrophy. However, it is unclear how these longitudinal patterns differ from typical Alzheimer's disease, to what degree flortaucipir and atrophy mirror clinical phenotype in Alzheimer's disease, and whether optimal longitudinal neuroimaging biomarkers would also differ across phenotypes. We aimed to address these unknowns using a cohort of 57 participants diagnosed with Alzheimer's disease (18 with typical amnestic Alzheimer's disease, 17 with posterior cortical atrophy and 22 with logopenic progressive aphasia) that had undergone baseline and 1-year follow-up MRI and flortaucipir PET. Typical Alzheimer's disease participants were selected to be over 65 years old at baseline scan, while no age criterion was used for atypical Alzheimer's disease participants. Region and voxel-level rates of tau accumulation and atrophy were assessed relative to 49 cognitively unimpaired individuals and among phenotypes. Principal component analysis was implemented to describe variability in baseline tau uptake and rates of accumulation and baseline grey matter volumes and rates of atrophy across phenotypes. The capability of the principal components to discriminate between phenotypes was assessed with logistic regression. The topography of longitudinal tau accumulation and atrophy differed across phenotypes, with key regions of tau accumulation in the frontal and temporal lobes for all phenotypes and key regions of atrophy in the occipitotemporal regions for posterior cortical atrophy, left temporal lobe for logopenic progressive aphasia and medial and lateral temporal lobe for typical Alzheimer's disease. Principal component analysis identified patterns of variation in baseline and longitudinal measures of tau uptake and volume that were significantly different across phenotypes. Baseline tau uptake mapped better onto clinical phenotype than longitudinal tau and MRI measures. Our study suggests that optimal longitudinal neuroimaging biomarkers for future clinical treatment trials in Alzheimer's disease are different for MRI and tau-PET and may differ across phenotypes, particularly for MRI. Baseline tau tracer retention showed the highest fidelity to clinical phenotype, supporting the important causal role of tau as a driver of clinical dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester MN, USA
| | - Peter R Martin
- Department of Health Science Research, Mayo Clinic, Rochester MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
42
|
Abstract
Pathological accumulated misfolded tau underlies various neurodegenerative diseases and associated clinical syndromes. To diagnose those diseases reliable before death or even at early stages, many different tau-specific radiotracers have been developed in the last decade to be used with positron-emission-tomography. In contrast to amyloid-β imaging, different isoforms of tau exist further complicating radiotracer development. First-generation radiotracers like [11C]PBB3, [18F]AV1451 and [18F]THK5351 have been extensively investigated in vitro and in vivo. In Alzheimer's disease (AD), high specific binding could be detected, and evidence of clinical applicability recently led to clinical approval of [18F]flortaucipir ([18F]AV1451) by the FDA. Nevertheless, absent or minor binding to non-AD tau isoforms and high off-target binding to non-tau brain structures limit the diagnostic applicability especially in non-AD tauopathies demanding further tracer development. In vitro assays and autoradiography results of next-generation radiotracers [18F]MK-6240, [18F]RO-948, [18F]PM-PBB3, [18F]GTP-1 and [18F]PI-2620 clearly indicate less off-target binding and high specific binding to tau neurofibrils. First in human studies have been conducted with promising results for all tracers in AD patients, and also some positive experience in non-AD tauopathies. Overall, larger scaled autoradiography and human studies are needed to further evaluate the most promising candidates and support future clinical approval.
Collapse
Affiliation(s)
- Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, Munich, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
43
|
Richter N, Bischof GN, Dronse J, Nellessen N, Neumaier B, Langen KJ, Drzezga A, Fink GR, van Eimeren T, Kukolja J, Onur OA. Entorhinal Tau Predicts Hippocampal Activation and Memory Deficits in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1601-1614. [PMID: 33164934 DOI: 10.3233/jad-200835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND To date, it remains unclear how amyloid plaques and neurofibrillary tangles are related to neural activation and, consequently, cognition in Alzheimer's disease (AD). Recent findings indicate that tau accumulation may drive hippocampal hyperactivity in cognitively normal aging, but it remains to be elucidated how tau accumulation is related to neural activation in AD. OBJECTIVE To determine whether the association between tau accumulation and hippocampal hyperactivation persists in mild cognitive impairment (MCI) and mild dementia or if the two measures dissociate with disease progression, we investigated the relationship between local tau deposits and memory-related neural activation in MCI and mild dementia due to AD. METHODS Fifteen patients with MCI or mild dementia due to AD underwent a neuropsychological assessment and performed an item memory task during functional magnetic resonance imaging. Cerebral tau accumulation was assessed using positron emission tomography and [18F]-AV-1451. RESULTS Entorhinal, but not global tau accumulation, was highly correlated with hippocampal activation due to visual item memory encoding and predicted memory loss over time. Neural activation in the posterior cingulate cortex and the fusiform gyrus was not significantly correlated with tau accumulation. CONCLUSION These findings extend previous observations in cognitively normal aging, demonstrating that entorhinal tau continues to be closely associated with hippocampal hyperactivity and memory performance in MCI and mild dementia due to AD. Furthermore, data suggest that this association is strongest in medial temporal lobe structures. In summary, our data provide novel insights into the relationship of tau accumulation to neural activation and memory in AD.
Collapse
Affiliation(s)
- Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gérard N Bischof
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Nellessen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernd Neumaier
- Nuclear Chemistry, Institute of Neuroscience and Medicine (INM-5), Research Center Jülich, Jülich, Germany.,Institute for Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Research Center Jülich, Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juraj Kukolja
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurology and Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Oezguer A Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Rubinski A, Franzmeier N, Neitzel J, Ewers M. FDG-PET hypermetabolism is associated with higher tau-PET in mild cognitive impairment at low amyloid-PET levels. ALZHEIMERS RESEARCH & THERAPY 2020; 12:133. [PMID: 33076977 PMCID: PMC7574434 DOI: 10.1186/s13195-020-00702-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/05/2020] [Indexed: 12/04/2022]
Abstract
Background FDG-PET hypermetabolism can be observed in mild cognitive impairment (MCI), but the link to primary pathologies of Alzheimer’s diseases (AD) including amyloid and tau is unclear. Methods Using voxel-based regression, we assessed local interactions between amyloid- and tau-PET on spatially matched FDG-PET in 72 MCI patients. Control groups included cerebrospinal fluid biomarker characterized cognitively normal (CN, n = 70) and AD dementia subjects (n = 95). Results In MCI, significant amyloid-PET by tau-PET interactions were found in frontal, lateral temporal, and posterior parietal regions, where higher local tau-PET was associated with higher spatially corresponding FDG-PET at low levels of local amyloid-PET. FDG-PET in brain regions with a significant local amyloid- by tau-PET interaction was higher compared to that in CN and AD dementia and associated with lower episodic memory. Conclusion Higher tau-PET in the presence of low amyloid-PET is associated with abnormally increased glucose metabolism that is accompanied by episodic memory impairment.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases, Munich, Germany.
| | | |
Collapse
|
45
|
Hammes J, Bischof GN, Bohn KP, Onur Ö, Schneider A, Fliessbach K, Hönig MC, Jessen F, Neumaier B, Drzezga A, van Eimeren T. One-Stop Shop: 18F-Flortaucipir PET Differentiates Amyloid-Positive and -Negative Forms of Neurodegenerative Diseases. J Nucl Med 2020; 62:240-246. [PMID: 32620704 DOI: 10.2967/jnumed.120.244061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Tau protein aggregations are a hallmark of amyloid-associated Alzheimer disease and some forms of non-amyloid-associated frontotemporal lobar degeneration. In recent years, several tracers for in vivo tau imaging have been under evaluation. This study investigated the ability of 18F-flortaucipir PET not only to assess tau positivity but also to differentiate between amyloid-positive and -negative forms of neurodegeneration on the basis of different 18F-flortaucipir PET signatures. Methods: The 18F-flortaucipir PET data of 35 patients with amyloid-positive neurodegeneration, 19 patients with amyloid-negative neurodegeneration, and 17 healthy controls were included in a data-driven scaled subprofile model (SSM)/principal-component analysis (PCA) identifying spatial covariance patterns. SSM/PCA pattern expression strengths were tested for their ability to predict amyloid status in a receiver-operating-characteristic analysis and validated with a leave-one-out approach. Results: Pattern expression strengths predicted amyloid status with a sensitivity of 0.94 and a specificity of 0.83. A support vector machine classification based on pattern expression strengths in 2 different SSM/PCA components yielded a prediction accuracy of 98%. Anatomically, prediction performance was driven by parietooccipital gray matter in amyloid-positive patients versus predominant white matter binding in amyloid-negative patients. Conclusion: SSM/PCA-derived binding patterns of 18F-flortaucipir differentiate between amyloid-positive and -negative neurodegenerative diseases with high accuracy. 18F-flortaucipir PET alone may convey additional information equivalent to that from amyloid PET. Together with a perfusion-weighted early-phase acquisition (18F-FDG PET-equivalent), a single scan potentially contains comprehensive information on amyloid (A), tau (T), and neurodegeneration (N) status as required by recent biomarker classification algorithms (A/T/N).
Collapse
Affiliation(s)
- Jochen Hammes
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany .,Radiologische Allianz, Hamburg, Germany
| | - Gérard N Bischof
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Karl P Bohn
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Department of Nuclear Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Özgür Onur
- Department of Neurology, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Merle C Hönig
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Psychiatry, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany; and
| | - Bernd Neumaier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany, and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Department of Neurology, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany
| |
Collapse
|
46
|
Visser D, Wolters EE, Verfaillie SCJ, Coomans EM, Timmers T, Tuncel H, Reimand J, Boellaard R, Windhorst AD, Scheltens P, van der Flier WM, Ossenkoppele R, van Berckel BNM. Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:3165-3175. [PMID: 32462397 PMCID: PMC7680306 DOI: 10.1007/s00259-020-04831-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Purpose We aimed to investigate associations between tau pathology and relative cerebral blood flow (rCBF), and their relationship with cognition in Alzheimer’s disease (AD), by using a single dynamic [18F]flortaucipir positron emission tomography (PET) scan. Methods Seventy-one subjects with AD (66 ± 8 years, mini-mental state examination (MMSE) 23 ± 4) underwent a dynamic 130-min [18F]flortaucipir PET scan. Cognitive assessment consisted of composite scores of four cognitive domains. For tau pathology and rCBF, receptor parametric mapping (cerebellar gray matter reference region) was used to create uncorrected and partial volume-corrected parametric images of non-displaceable binding potential (BPND) and R1, respectively. (Voxel-wise) linear regressions were used to investigate associations between BPND and/or R1 and cognition. Results Higher [18F]flortaucipir BPND was associated with lower R1 in the lateral temporal, parietal and occipital regions. Higher medial temporal BPND was associated with worse memory, and higher lateral temporal BPND with worse executive functioning and language. Higher parietal BPND was associated with worse executive functioning, language and attention, and higher occipital BPND with lower cognitive scores across all domains. Higher frontal BPND was associated with worse executive function and attention. For [18F]flortaucipir R1, lower values in the lateral temporal and parietal ROIs were associated with worse executive functioning, language and attention, and lower occipital R1 with lower language and attention scores. When [18F]flortaucipir BPND and R1 were modelled simultaneously, associations between lower R1 in the lateral temporal ROI and worse attention remained, as well as for lower parietal R1 and worse executive functioning and attention. Conclusion Tau pathology was associated with locally reduced rCBF. Tau pathology and low rCBF were both independently associated with worse cognitive performance. For tau pathology, these associations spanned widespread neocortex, while for rCBF, independent associations were restricted to lateral temporal and parietal regions and the executive functioning and attention domains. These findings indicate that each biomarker may independently contribute to cognitive impairment in AD. Electronic supplementary material The online version of this article (10.1007/s00259-020-04831-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Visser
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Emma E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma M Coomans
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hayel Tuncel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Juhan Reimand
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Townley RA, Graff-Radford J, Mantyh WG, Botha H, Polsinelli AJ, Przybelski SA, Machulda MM, Makhlouf AT, Senjem ML, Murray ME, Reichard RR, Savica R, Boeve BF, Drubach DA, Josephs KA, Knopman DS, Lowe VJ, Jack CR, Petersen RC, Jones DT. Progressive dysexecutive syndrome due to Alzheimer's disease: a description of 55 cases and comparison to other phenotypes. Brain Commun 2020; 2:fcaa068. [PMID: 32671341 PMCID: PMC7325839 DOI: 10.1093/braincomms/fcaa068] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
We report a group of patients presenting with a progressive dementia syndrome characterized by predominant dysfunction in core executive functions, relatively young age of onset and positive biomarkers for Alzheimer's pathophysiology. Atypical frontal, dysexecutive/behavioural variants and early-onset variants of Alzheimer's disease have been previously reported, but no diagnostic criteria exist for a progressive dysexecutive syndrome. In this retrospective review, we report on 55 participants diagnosed with a clinically defined progressive dysexecutive syndrome with 18F-fluorodeoxyglucose-positron emission tomography and Alzheimer's disease biomarkers available. Sixty-two per cent of participants were female with a mean of 15.2 years of education. The mean age of reported symptom onset was 53.8 years while the mean age at diagnosis was 57.2 years. Participants and informants commonly referred to initial cognitive symptoms as 'memory problems' but upon further inquiry described problems with core executive functions of working memory, cognitive flexibility and cognitive inhibitory control. Multi-domain cognitive impairment was evident in neuropsychological testing with executive dysfunction most consistently affected. The frontal and parietal regions which overlap with working memory networks consistently demonstrated hypometabolism on positron emission tomography. Genetic testing for autosomal dominant genes was negative in all eight participants tested and at least one APOE ε4 allele was present in 14/26 participants tested. EEG was abnormal in 14/17 cases with 13 described as diffuse slowing. Furthermore, CSF or neuroimaging biomarkers were consistent with Alzheimer's disease pathophysiology, although CSF p-tau was normal in 24% of cases. Fifteen of the executive predominate participants enrolled in research neuroimaging protocols and were compared to amnestic (n = 110), visual (n = 18) and language (n = 7) predominate clinical phenotypes of Alzheimer's disease. This revealed a consistent pattern of hypometabolism in parieto-frontal brain regions supporting executive functions with relative sparing of the medial temporal lobe (versus amnestic phenotype), occipital (versus visual phenotype) and left temporal (versus language phenotype). We propose that this progressive dysexecutive syndrome should be recognized as a distinct clinical phenotype disambiguated from behavioural presentations and not linked specifically to the frontal lobe or a particular anatomic substrate without further study. This clinical presentation can be due to Alzheimer's disease but is likely not specific for any single aetiology. Diagnostic criteria are proposed to facilitate additional research into this understudied clinical presentation.
Collapse
Affiliation(s)
- Ryan A Townley
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | | | - Hugo Botha
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | - Scott A Przybelski
- Department of Biomedical Statistics, Mayo Clinic, Rochester, MN 55902, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55902, USA
| | - Ahmed T Makhlouf
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55902, USA
| | - Matthew L Senjem
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Melissa E Murray
- Department of Molecular Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Rodolfo Savica
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - Bradley F Boeve
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | - Keith A Josephs
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - David S Knopman
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - Val J Lowe
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Clifford R Jack
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | | | - David T Jones
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
48
|
Rao CV, Asch AS, Carr DJJ, Yamada HY. "Amyloid-beta accumulation cycle" as a prevention and/or therapy target for Alzheimer's disease. Aging Cell 2020; 19:e13109. [PMID: 31981470 PMCID: PMC7059149 DOI: 10.1111/acel.13109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
The cell cycle and its regulators are validated targets for cancer drugs. Reagents that target cells in a specific cell cycle phase (e.g., antimitotics or DNA synthesis inhibitors/replication stress inducers) have demonstrated success as broad-spectrum anticancer drugs. Cyclin-dependent kinases (CDKs) are drivers of cell cycle transitions. A CDK inhibitor, flavopiridol/alvocidib, is an FDA-approved drug for acute myeloid leukemia. Alzheimer's disease (AD) is another serious issue in contemporary medicine. The cause of AD remains elusive, although a critical role of latent amyloid-beta accumulation has emerged. Existing AD drug research and development targets include amyloid, amyloid metabolism/catabolism, tau, inflammation, cholesterol, the cholinergic system, and other neurotransmitters. However, none have been validated as therapeutically effective targets. Recent reports from AD-omics and preclinical animal models provided data supporting the long-standing notion that cell cycle progression and/or mitosis may be a valid target for AD prevention and/or therapy. This review will summarize the recent developments in AD research: (a) Mitotic re-entry, leading to the "amyloid-beta accumulation cycle," may be a prerequisite for amyloid-beta accumulation and AD pathology development; (b) AD-associated pathogens can cause cell cycle errors; (c) thirteen among 37 human AD genetic risk genes may be functionally involved in the cell cycle and/or mitosis; and (d) preclinical AD mouse models treated with CDK inhibitor showed improvements in cognitive/behavioral symptoms. If the "amyloid-beta accumulation cycle is an AD drug target" concept is proven, repurposing of cancer drugs may emerge as a new, fast-track approach for AD management in the clinic setting.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Adam S. Asch
- Stephenson Cancer CenterDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Daniel J. J. Carr
- Department of OphthalmologyUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| |
Collapse
|
49
|
Ruppert MC, Greuel A, Tahmasian M, Schwartz F, Stürmer S, Maier F, Hammes J, Tittgemeyer M, Timmermann L, van Eimeren T, Drzezga A, Eggers C. Network degeneration in Parkinson’s disease: multimodal imaging of nigro-striato-cortical dysfunction. Brain 2020; 143:944-959. [DOI: 10.1093/brain/awaa019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
The spreading hypothesis of neurodegeneration assumes an expansion of neural pathologies along existing neural pathways. Multimodal neuroimaging studies have demonstrated distinct topographic patterns of cerebral pathologies in neurodegeneration. For Parkinson’s disease the hypothesis so far rests largely on histopathological evidence of α-synuclein spreading in a characteristic pattern and progressive nigrostriatal dopamine depletion. Functional consequences of nigrostriatal dysfunction on cortical activity remain to be elucidated. Our goal was to investigate multimodal imaging correlates of degenerative processes in Parkinson’s disease by assessing dopamine depletion and its potential effect on striatocortical connectivity networks and cortical metabolism in relation to parkinsonian symptoms. We combined 18F-DOPA-PET, 18F-fluorodeoxyglucose (FDG)-PET and resting state functional MRI to multimodally characterize network alterations in Parkinson’s disease. Forty-two patients with mild-to-moderate stage Parkinson’s disease and 14 age-matched healthy control subjects underwent a multimodal imaging protocol and comprehensive clinical examination. A voxel-wise group comparison of 18F-DOPA uptake identified the exact location and extent of putaminal dopamine depletion in patients. Resulting clusters were defined as seeds for a seed-to-voxel functional connectivity analysis. 18F-FDG metabolism was compared between groups at a whole-brain level and uptake values were extracted from regions with reduced putaminal connectivity. To unravel associations between dopaminergic activity, striatocortical connectivity, glucose metabolism and symptom severity, correlations between normalized uptake values, seed-to-cluster β-values and clinical parameters were tested while controlling for age and dopaminergic medication. Aside from cortical hypometabolism, 18F-FDG-PET data for the first time revealed a hypometabolic midbrain cluster in patients with Parkinson’s disease that comprised caudal parts of the bilateral substantia nigra pars compacta. Putaminal dopamine synthesis capacity was significantly reduced in the bilateral posterior putamen and correlated with ipsilateral nigral 18F-FDG uptake. Resting state functional MRI data indicated significantly reduced functional connectivity between the dopamine depleted putaminal seed and cortical areas primarily belonging to the sensorimotor network in patients with Parkinson’s disease. In the inferior parietal cortex, hypoconnectivity in patients was significantly correlated with lower metabolism (left P = 0.021, right P = 0.018). Of note, unilateral network alterations quantified with different modalities corresponded with contralateral motor impairments. In conclusion, our results support the hypothesis that degeneration of nigrostriatal fibres functionally impairs distinct striatocortical connections, disturbing the efficient interplay between motor processing areas and impairing motor control in patients with Parkinson’s disease. The present study is the first to reveal trimodal evidence for network-dependent degeneration in Parkinson’s disease by outlining the impact of functional nigrostriatal pathway impairment on striatocortical functional connectivity networks and cortical metabolism.
Collapse
Affiliation(s)
- Marina C Ruppert
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Germany
| | - Masoud Tahmasian
- Institue of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Frank Schwartz
- Department of Neurology, Hospital of the Brothers of Mercy, Trier, Germany
| | - Sophie Stürmer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Franziska Maier
- Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Thilo van Eimeren
- Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| |
Collapse
|
50
|
Affiliation(s)
- Frank Jessen
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|