1
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
2
|
Thwarting Alzheimer's Disease through Healthy Lifestyle Habits: Hope for the Future. Neurol Int 2023; 15:162-187. [PMID: 36810468 PMCID: PMC9944470 DOI: 10.3390/neurolint15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that slowly disintegrates memory and thinking skills. Age is known to be the major risk factor in AD, but there are several nonmodifiable and modifiable causes. The nonmodifiable risk factors such as family history, high cholesterol, head injuries, gender, pollution, and genetic aberrations are reported to expediate disease progression. The modifiable risk factors of AD that may help prevent or delay the onset of AD in liable people, which this review focuses on, includes lifestyle, diet, substance use, lack of physical and mental activity, social life, sleep, among other causes. We also discuss how mitigating underlying conditions such as hearing loss and cardiovascular complications could be beneficial in preventing cognitive decline. As the current medications can only treat the manifestations of AD and not the underlying process, healthy lifestyle choices associated with modifiable factors is the best alternative strategy to combat the disease.
Collapse
|
3
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
4
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Ayenigbara IO. Preventive Measures against the Development of Dementia in Old Age. Korean J Fam Med 2022; 43:157-167. [PMID: 35610962 PMCID: PMC9136504 DOI: 10.4082/kjfm.21.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2022] [Indexed: 11/03/2022] Open
Abstract
Dementia is a neurological condition characterized by numerous types of central nervous system diseases, which gradually deteriorates an individual’s reasoning, rational thinking, and judgment abilities. As a serious public health concern that currently affects more than 50 million older adults, dementia is one of the most significant causes of incapacity, disability, and dependency among older adults. As new cases are expected to increase exponentially in the next three decades, dementia, which is not a normal feature of healthy aging despite the fact that it generally affects older adults disproportionately, requires enormous management and care efforts due to its associated socioeconomic, psychological, and physical burdens that involve the patient, their caregivers, guardians, family members, and society at large. Presently, there is no cure for dementia; however, this condition could be prevented. This narrative review aimed to provide a broad overview of studies detailing the alternative lifestyle modification-centered preventive measures against dementia. A comprehensive search of key databases to find articles related to this topic revealed that participating in regular physical activities, healthy eating and dieting, avoiding all forms of smoking, avoiding air pollutants, halting or reducing alcohol consumption, exercising the mind and being socially dynamic, getting enough rest and establishing good sleeping habits, infection prevention, stress prevention, avoidance of injuries, preventing the effects of social isolation and lockdowns, continuing education, and depression prevention are protective measures against the development of dementia.
Collapse
Affiliation(s)
- Israel Oluwasegun Ayenigbara
- School and Community Health Education Unit, Department of Health Education, University of Ibadan, Ibadan, Nigeria
- *Corresponding Author: Israel Oluwasegun Ayenigbara Tel: +234-8139177538, Fax: +234-809-810-3043, E-mail:
| |
Collapse
|
6
|
Chen M, Hu C, Dong H, Yan H, Wu P. A history of cigarette smoking is associated with faster functional decline and reduction of entorhinal cortex volume in mild cognitive impairment. Aging (Albany NY) 2021; 13:6205-6213. [PMID: 33578392 PMCID: PMC7950256 DOI: 10.18632/aging.202646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
Little is known about the longitudinal association of cigarette smoking with Alzheimer's Disease (AD) related markers in subjects with mild cognitive impairment (MCI). In this study, we aimed to examine the effect of a history of cigarette smoking on change in global cognition, verbal memory, functional performance, hippocampal volume, entorhinal cortex volume, brain glucose metabolism, and CSF AD pathologies over time in MCI subjects. At baseline, there were 870 subjects with MCI, including 618 non-smokers (no history of smoking) and 252 smokers (any lifetime history of smoking). Linear mixed models were fitted for each outcome with adjustment of several covariates. The major findings were: (1) Among older people with MCI, smokers showed faster decline in functional performance compared to non-smokers; (2) Smokers demonstrated steeper decline in entorhinal cortex volume than non-smokers; (3) A history of cigarette smoking was not associated with change in CSF Aβ42, t-tau or p-tau levels over time in MCI subjects. In conclusion, we found that a history of cigarette smoking was associated with faster decline in functional performance and entorhinal cortex volume over time at the prodromal stage of dementia.
Collapse
Affiliation(s)
- Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chaoming Hu
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Haoru Dong
- The First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hanhan Yan
- Department of Respiratory Medicine, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | | |
Collapse
|
7
|
Hay M, Barnes C, Huentelman M, Brinton R, Ryan L. Hypertension and Age-Related Cognitive Impairment: Common Risk Factors and a Role for Precision Aging. Curr Hypertens Rep 2020; 22:80. [PMID: 32880739 PMCID: PMC7467861 DOI: 10.1007/s11906-020-01090-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of Review Precision Aging® is a novel concept that we have recently employed to describe how the model of precision medicine can be used to understand and define the multivariate risks that drive age-related cognitive impairment (ARCI). Hypertension and cardiovascular disease are key risk factors for both brain function and cognitive aging. In this review, we will discuss the common mechanisms underlying the risk factors for both hypertension and ARCI and how the convergence of these mechanisms may be amplified in an individual to drive changes in brain health and accelerate cognitive decline. Recent Findings Currently, our cognitive health span does not match our life span. Age-related cognitive impairment and preventing and treating ARCI will require an in-depth understanding of the interrelated risk factors, including individual genetic profiles, that affect brain health and brain aging. Hypertension and cardiovascular disease are important risk factors for ARCI. And, many of the risk factors for developing hypertension, such as diabetes, smoking, stress, viral infection, and age, are shared with the development of ARCI. We must first understand the mechanisms common to the converging risk factors in hypertension and ARCI and then design person-specific therapies to optimize individual brain health. Summary The understanding of the convergence of shared risk factors between hypertension and ARCI is required to develop individualized interventions to optimize brain health across the life span. We will conclude with a discussion of possible steps that may be taken to decrease ARCI and optimize an individual’s cognitive life span.
Collapse
Affiliation(s)
- Meredith Hay
- Department of Physiology, University of Arizona, 1501 N Campbell Rd, Room 4103, Tucson, AZ, 85724, USA.
- Psychology Department, University of Arizona, Tucson, AZ, USA.
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.
| | - Carol Barnes
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Matt Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Neurogenomics Division, TGen, Phoenix, AZ, USA
| | - Roberta Brinton
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Center for Innovative Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Lee Ryan
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Ahn S, Mathiason MA, Salisbury D, Yu F. Factors Predicting the Onset of Amnestic Mild Cognitive Impairment or Alzheimer's Dementia in Persons With Subjective Cognitive Decline. J Gerontol Nurs 2020; 46:28-36. [PMID: 32936925 PMCID: PMC7503215 DOI: 10.3928/00989134-20200619-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
The objective of the current retrospective cohort study was to identify vascular and/or neuropsychiatric risk factors predicting clinical progression in persons with subjective cognitive decline (SCD). Information on 1,525 persons with SCD (mean age = 73.8 [SD = 8.1] years) was obtained from the National Alzheimer's Coordinating Center. Clinical progression occurred from SCD to either amnestic mild cognitive impairment or Alzheimer's dementia over an average of 4.7 (SD = 2.9) years. Stepwise Cox regression was used. Compared to obesity (hazard ratio [HR] = 0.59) in the univariate unadjusted model, obesity (HR = 0.64), current smoking (HR = 2.02), and depressive symptoms (HR = 1.35) were significant after adjusting for covariates in the univariate model. In the multivariate adjusted model, obesity (HR = 0.64), current smoking (HR = 2.04), and depressive symptoms (HR = 1.36) remained significant predictors. Interventions should be designed to minimize transition by managing smoking and depressive symptoms. Further research is required for associations between obesity and clinical progression to test the hypothesis of obesity paradox. [Journal of Gerontological Nursing, 46(8), 28-36.].
Collapse
|
9
|
Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol 2020; 138:111245. [PMID: 32145355 PMCID: PMC7089837 DOI: 10.1016/j.fct.2020.111245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Filipe Marques Gonçalves
- Biochemistry Graduate Program, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, United States
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Manhattan, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
10
|
Short-term E-cigarette toxicity effects on brain cognitive memory functions and inflammatory responses in mice. Toxicol Res 2020; 36:267-273. [PMID: 32685431 DOI: 10.1007/s43188-019-00031-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/05/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure to cigarette smoke (CS) is associated with an increased risk of several neurological diseases such as stroke, Alzheimer's disease, and dementia. At present, commercialization of E-cigarettes (ECs) is increasing, and they are advertised as a less harmful nicotine-delivery system. There are, however, limited studies regarding the neurotoxicity effects of ECs on the brain, which remains a subject of debate. In the present study, we aimed to evaluate the in vivo effects of short-term EC vapor exposure on the brain and compare them with the effects of cigarette smoke (CS). BALB/c mice were exposed to air, CS, and EC for 14 days. We then assessed the inflammatory responses, oxidative stress, and cognitive functions of the mice by using maze tests. Cognitive spatial tests showed that the mice exposed to CS and ECs had delayed time in finding food rewards. EC exposure demonstrated no improvement in spatial memory learning to find the food reward on the next day. This implies that CS and EC exposure possibly causes damage to the olfactory system. Notably, EC exposure potentially causes abnormalities in mice memory functions. Histological staining of the cerebral cortex of mice brain in the EC-exposed group demonstrated inflammatory responses such as necrosis and cytoplasm vacuolization. Immunohistochemical staining revealed high expression of proinflammatory cytokine TNF-α in both the EC- and CS-exposed groups. Hence, we conclude that ECs share similar toxicity profiles as CS, which potentially negatively impact brain function.
Collapse
|
11
|
Fan R, Zhao L, Ding BJ, Xiao R, Ma WW. The association of blood non-esterified fatty acid, saturated fatty acids, and polyunsaturated fatty acids levels with mild cognitive impairment in Chinese population aged 35-64 years: a cross-sectional study. Nutr Neurosci 2019; 24:148-160. [PMID: 31079572 DOI: 10.1080/1028415x.2019.1610606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to explore the correlation between blood profiles and cognitive functions or mild cognitive impairment (MCI) in the Chinese population aged 35-64 years old. METHODS A cross-sectional study was performed, which recruited 675 Chinese adults aged 35-64 years old from Beijing, China. Their cognitive performance was assessed with Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), the serum lipids levels were measured by hexokinase method and colorimetric assay, and the plasma fatty acids profiles were analyzed by fast gas chromatography. RESULTS Among the 675 participants, 84 (12.4%) had MCI. Age, years of education, saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) were associated with MMSE scores (all P < 0.05). Age, years of education, smoking, drinking, non-esterified fatty acids (NEFAs), SFAs, MUFAs, n-3 polyunsaturated fatty acids (n-3 PUFAs) and n-6/n-3 PUFAs were associated with MoCA scores (all P < 0.05). Increased age (P = 0.002) and smoking (P = 0.028) were positively associated with the prevalence of MCI, while educational level (P = 0.005) and alcohol drinking (P = 0.003) both were negatively correlated to the prevalence of MCI. Elevated serum NEFAs (P = 0.032), high plasma SFAs (P = 0.023), and excessive polyunsaturated fatty acids (PUFAs) levels (P = 0.033) were significantly associated with increased frequency of MCI. CONCLUSION In the Chinese population aged 35-64 years, advanced age and cigarette smoking were risk factors of MCI, whereas higher educational level and alcohol drinking were protective factors for MCI. Excessive serum or plasma levels of NEFAs, SFAs and PUFAs were associated with an increased risk of MCI.
Collapse
Affiliation(s)
- Rong Fan
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bing-Jie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Wei-Wei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Conklin DJ, Schick S, Blaha MJ, Carll A, DeFilippis A, Ganz P, Hall ME, Hamburg N, O'Toole T, Reynolds L, Srivastava S, Bhatnagar A. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am J Physiol Heart Circ Physiol 2019; 316:H801-H827. [PMID: 30707616 PMCID: PMC6483019 DOI: 10.1152/ajpheart.00591.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Although substantial evidence shows that smoking is positively and robustly associated with cardiovascular disease (CVD), the CVD risk associated with the use of new and emerging tobacco products, such as electronic cigarettes, hookah, and heat-not-burn products, remains unclear. This uncertainty stems from lack of knowledge on how the use of these products affects cardiovascular health. Cardiovascular injury associated with the use of new tobacco products could be evaluated by measuring changes in biomarkers of cardiovascular harm that are sensitive to the use of combustible cigarettes. Such cardiovascular injury could be indexed at several levels. Preclinical changes contributing to the pathogenesis of disease could be monitored by measuring changes in systemic inflammation and oxidative stress, organ-specific dysfunctions could be gauged by measuring endothelial function (flow-mediated dilation), platelet aggregation, and arterial stiffness, and organ-specific injury could be evaluated by measuring endothelial microparticles and platelet-leukocyte aggregates. Classical risk factors, such as blood pressure, circulating lipoproteins, and insulin resistance, provide robust estimates of risk, and subclinical disease progression could be followed by measuring coronary artery Ca2+ and carotid intima-media thickness. Given that several of these biomarkers are well-established predictors of major cardiovascular events, the association of these biomarkers with the use of new and emerging tobacco products could be indicative of both individual and population-level CVD risk associated with the use of these products. Differential effects of tobacco products (conventional vs. new and emerging products) on different indexes of cardiovascular injury could also provide insights into mechanisms by which they induce cardiovascular harm.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Suzaynn Schick
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Heart Disease, Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Alex Carll
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Andrew DeFilippis
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Naomi Hamburg
- Department of Medicine/Cardiovascular Medicine, School of Medicine, Boston University , Boston, Massachusetts
| | - Tim O'Toole
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Lindsay Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Sanjay Srivastava
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| |
Collapse
|
14
|
Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers. Clin Chim Acta 2019; 491:85-90. [DOI: 10.1016/j.cca.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
15
|
Multi-angles of smoking and mild cognitive impairment: is the association mediated by sleep duration? Neurol Sci 2019; 40:1019-1027. [PMID: 30778881 DOI: 10.1007/s10072-019-03750-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
Although the association between cigarette smoking and risk of mild cognitive impairment (MCI) is controversial, most recent studies have shown that this influence is negative. However, it is unknown how multiple factors of smoking affect MCI, and the mechanisms of different smoking factors are not yet clarified. This study will examine the impact of various angles of smoking on MCI and the potential mediating effects of sleep duration on smoking MCI association in the elderly. In the case group, 109 elderly people who met the inclusion criteria were selected, and 123 were selected in the control group. Participant characteristics include sleep duration and a detailed lifetime history of smoking. After adjusting the relevant covariates, higher odds of MCI occurrence were found in ex-smokers/current smokers; moderate/heavy smokers; smokers for 30-44, 45-59 and more than 60 years; smokers with cumulative smoking duration of 30-44 or more than 60 years and smokers with cumulative dose smoking intensity of 200-399 or 400-599 cigarettes monthly. Elderly subjects who had quit smoking for 21 years or longer were found to have lower odds of MCI occurrence. The indirect effects of smoking on MCI via sleep duration were statistically significant, as the ratio of indirect effect to total effect ranged from 0.14 to 0.29. Smoking affects cognitive function through multi-angles of smoking and influences the cognitive function partly via the duration of sleep.
Collapse
|
16
|
Durazzo TC, Meyerhoff DJ, Yoder KK. Cigarette smoking is associated with cortical thinning in anterior frontal regions, insula and regions showing atrophy in early Alzheimer's Disease. Drug Alcohol Depend 2018; 192:277-284. [PMID: 30300802 PMCID: PMC6602071 DOI: 10.1016/j.drugalcdep.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Magnetic resonance imaging studies of cigarette smoking-related effects on human brain structure primarily focused on cortical volumes. Much less is known about the effects of smoking on cortical thickness. Smokers and Non-smokers were compared on regional cortical thickness. We predicted smokers would demonstrate greater age-related thinning localized to anterior frontal regions that serve as nodes for the executive, salience, and emotional regulation networks (ESER regions) and those demonstrating significant atrophy in early Alzheimer's Disease (AD regions). METHODS Non-smokers (n = 41) and smokers (n = 41), 22-70 years of age, completed a 4 T MRI study. Regional cortical thickness was quantitated via FreeSurfer. In smokers, associations between smoking severity, decision-making, impulsivity, and regional cortical thickness were examined. RESULTS Smokers demonstrated cortical thinning in the medial and lateral OFC, insula, entorhinal, fusiform, middle temporal, and Composite AD regions. In Smokers, greater pack-years were associated with thinner lateral OFC, middle temporal, inferior parietal, fusiform, precuneus, and Composite AD regions. In Smokers, poorer decision-making/greater risk taking was related to thinner cortices in caudal ACC, rostral middle frontal and superior frontal gyri, and Composite ESER. Higher self-reported impulsivity was associated with thinner rostral and caudal ACC. CONCLUSIONS This study provides additional evidence that cigarette smoking is associated with thinner cortices in regions implicated in the development and maintenance of substance use disorders and in regions demonstrating significant atrophy in early AD. The novel structure-function relationships in Smokers further our understanding of the neurobiological substrates potentially underlying the neuropsychological abnormalities documented in smokers.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Mental Illness Research and Education Clinical Centers and Sierra-Pacific, War Related Illness and Injury Study Center, VA Palo Alto Health Care System, 301 Miranda Ave., Palo Alto, CA 94304, USA.
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA; Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, 4150 Clement St., 114M, San Francisco, CA 94121, USA
| | - Karmen K Yoder
- Indiana University Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd., Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
LI K, WEI S, LIU Z, HU L, LIN J, TAN S, MAI Y, PENG W, MAI H, HOU Q, TU G. The Prevalence of Alzheimer's Disease in China: A Systematic Review and Meta-analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1615-1626. [PMID: 30581776 PMCID: PMC6294855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several studies have investigated the prevalence of Alzheimer's disease (AD) among the general population in several parts of China. However, the results have been inconsistent. This meta-analysis was conducted to estimate the overall prevalence of AD between 2007 and 2017 in China. METHODS English and Chinese electronic databases were searched with a date range from Nov 2007 to Nov 2017 and the reference lists of the included studies were screened as well. Cross-sectional studies addressing the prevalence of AD among the general Chinese population were retrieved irrespective of the age, location or sex of the participants. Study quality was assessed using the recommended checklist of STROBE. RESULTS Overall, 184058 subjects and 7445 patients with AD were included from 17 studies in this meta-analysis. The overall prevalence of AD in China was calculated to be 0.04(95% CI:0.04-0.05). The prevalence was higher in older age groups, among females, and in the rural areas of the country, with an increasing trend in recent years. CONCLUSION AD is a common problem among those in the Chinese population older than 65 yr. Furthermore, an increasing trend of the disease over the past 10 years is indicative of a critical public health problem in China in the near future. Further evidence based on a national survey is needed to estimate the exact prevalence of the disease in the country.
Collapse
Affiliation(s)
- Kanglan LI
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shouchao WEI
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Zhou LIU
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China,Corresponding Author:
| | - Li HU
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Jiajing LIN
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Shiting TAN
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Yingren MAI
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Wanjuan PENG
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Hui MAI
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi HOU
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Guifeng TU
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Durazzo TC, Meyerhoff DJ, Yoder KK, Murray DE. Cigarette smoking is associated with amplified age-related volume loss in subcortical brain regions. Drug Alcohol Depend 2017; 177. [PMID: 28622625 PMCID: PMC6602081 DOI: 10.1016/j.drugalcdep.2017.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Magnetic resonance imaging studies of cigarette smoking-related effects on human brain structure have primarily employed voxel-based morphometry, and the most consistently reported finding was smaller volumes or lower density in anterior frontal regions and the insula. Much less is known about the effects of smoking on subcortical regions. We compared smokers and non-smokers on regional subcortical volumes, and predicted that smokers demonstrate greater age-related volume loss across subcortical regions than non-smokers. METHODS Non-smokers (n=43) and smokers (n=40), 22-70 years of age, completed a 4T MRI study. Bilateral total subcortical lobar white matter (WM) and subcortical nuclei volumes were quantitated via FreeSurfer. In smokers, associations between smoking severity measures and subcortical volumes were examined. RESULTS Smokers demonstrated greater age-related volume loss than non-smokers in the bilateral subcortical lobar WM, thalamus, and cerebellar cortex, as well as in the corpus callosum and subdivisions. In smokers, higher pack-years were associated with smaller volumes of the bilateral amygdala, nucleus accumbens, total corpus callosum and subcortical WM. CONCLUSIONS Results provide novel evidence that chronic smoking in adults is associated with accelerated age-related volume loss in subcortical WM and GM nuclei. Greater cigarette quantity/exposure was related to smaller volumes in regions that also showed greater age-related volume loss in smokers. Findings suggest smoking adversely affected the structural integrity of subcortical brain regions with increasing age and exposure. The greater age-related volume loss in smokers may have implications for cortical-subcortical structural and/or functional connectivity, and response to available smoking cessation interventions.
Collapse
Affiliation(s)
- Timothy C. Durazzo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, United States,Mental Illness Research and Education Clinical Centers and Sierra-Pacific War Related Illness and Injury Study Center, VA Palo Alto Health Care System, United States,Corresponding author at: War Related Illness and Injury Study Centers, Mental Illness Research and Education Clinical Centers (151Y), VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94304, United States., , (T.C. Durazzo)
| | - Dieter J. Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States,Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, United States
| | - Karmen K. Yoder
- Indiana University Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, United States
| | - Donna E. Murray
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States,Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, United States
| |
Collapse
|
19
|
Won H, Abdul MZ, Mat Ludin AF, Omar MA, Razali R, Shahar S. The cut-off values of anthropometric variables for predicting mild cognitive impairment in Malaysian older adults: a large population based cross-sectional study. Clin Interv Aging 2017; 12:275-282. [PMID: 28223785 PMCID: PMC5304972 DOI: 10.2147/cia.s118942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Older adults are at risk of mild cognitive impairment (MCI), and simple anthropometric measurements can be used to screen for this condition. Thus, the aim of this study was to explore the cut-off values of body mass index (BMI) and waist circumference (WC) for predicting the risk of MCI in older Malaysian adults. Methods A total of 2,240 Malaysian older adults aged ≥60 years were recruited using multistage random sampling in a population based cross-sectional study. Receiver operating characteristic (ROC) curve was used to determine the cut-off values of BMI and WC with optimum sensitivity and specificity for the detection of MCI. Age, gender, years of education, smoking habit, alcohol consumption, depression, and medical conditions were used as confounding factors in this analysis. Results A BMI cut-off value of 26 kg/m2 (area under the receiver operating characteristic curve [AUC] 0.725; sensitivity 90.5%; specificity 38.8%) was appropriate in identifying the risk of getting MCI in both men and women. The optimum WC cut-offs for likelihood of MCI were 90 cm (AUC 0.745; sensitivity 78.0%; specificity 59.8%) for men and 82 cm (AUC 0.714; sensitivity 84.3%; specificity 49.7%) for women. The optimum calf circumference (CC) cut-off values for identifying MCI were 29 cm (AUC 0.731; sensitivity 72.6%; specificity 61.1%) for men and 26 cm (AUC 0.598; sensitivity 79.1%; specificity 45.3%) for women. Conclusion The cut-off values could be advocated and used as part of the screening of MCI among older Malaysian adults. There is a need to further determine the predictive values of these cut-off points on outcomes through longitudinal study design.
Collapse
Affiliation(s)
- Huiloo Won
- Nutrition Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| | - Manaf Zahara Abdul
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| | - Arimi Fitri Mat Ludin
- Biomedical Science Program, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| | - Mohd Azahadi Omar
- Centre for Burden of Disease Research, Institute for Public Health, Ministry of Health Malaysia
| | - Rosdinom Razali
- Department of Psychiatry, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| |
Collapse
|
20
|
Calderón-Garcidueñas L. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything! J Alzheimers Dis 2016; 54:109-12. [PMID: 27447427 DOI: 10.3233/jad-160510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative.
Collapse
|