1
|
Hansson O, Kumar A, Janelidze S, Stomrud E, Insel PS, Blennow K, Zetterberg H, Fauman E, Hedman ÅK, Nagle MW, Whelan CD, Baird D, Mälarstig A, Mattsson‐Carlgren N. The genetic regulation of protein expression in cerebrospinal fluid. EMBO Mol Med 2023; 15:e16359. [PMID: 36504281 PMCID: PMC9832827 DOI: 10.15252/emmm.202216359] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Studies of the genetic regulation of cerebrospinal fluid (CSF) proteins may reveal pathways for treatment of neurological diseases. 398 proteins in CSF were measured in 1,591 participants from the BioFINDER study. Protein quantitative trait loci (pQTL) were identified as associations between genetic variants and proteins, with 176 pQTLs for 145 CSF proteins (P < 1.25 × 10-10 , 117 cis-pQTLs and 59 trans-pQTLs). Ventricular volume (measured with brain magnetic resonance imaging) was a confounder for several pQTLs. pQTLs for CSF and plasma proteins were overall correlated, but CSF-specific pQTLs were also observed. Mendelian randomization analyses suggested causal roles for several proteins, for example, ApoE, CD33, and GRN in Alzheimer's disease, MMP-10 in preclinical Alzheimer's disease, SIGLEC9 in amyotrophic lateral sclerosis, and CD38, GPNMB, and ADAM15 in Parkinson's disease. CSF levels of GRN, MMP-10, and GPNMB were altered in Alzheimer's disease, preclinical Alzheimer's disease, and Parkinson's disease, respectively. These findings point to pathways to be explored for novel therapies. The novel finding that ventricular volume confounded pQTLs has implications for design of future studies of the genetic regulation of the CSF proteome.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, Lund UniversityLundSweden
| | - Atul Kumar
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, Lund UniversityLundSweden
| | - Philip S Insel
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Department of Psychiatry and Behavioral SciencesUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Eric Fauman
- Internal Medicine Research UnitPfizer Worldwide Research, Development and MedicalCambridgeMAUSA
| | - Åsa K Hedman
- Pfizer Worldwide Research, Development and MedicalStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Michael W Nagle
- Neurogenomics, Genetics‐Guided Dementia DiscoveryEisai, IncCambridgeMAUSA
| | | | - Denis Baird
- Department of Neurology, Skåne University HospitalLund UniversityLundSweden
| | - Anders Mälarstig
- Pfizer Worldwide Research, Development and MedicalStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Department of Neurology, Skåne University HospitalLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| |
Collapse
|
2
|
Lidén S, Farahmand D, Laurell K. Ventricular volume in relation to lumbar CSF levels of amyloid-β 1–42, tau and phosphorylated tau in iNPH, is there a dilution effect? Fluids Barriers CNS 2022; 19:59. [PMID: 35843939 PMCID: PMC9288679 DOI: 10.1186/s12987-022-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Levels of the biomarkers amyloid-β 1–42 (Aβ42), tau and phosphorylated tau (p-tau) are decreased in the cerebrospinal fluid (CSF) of patients with idiopathic normal pressure hydrocephalus (iNPH). The mechanism behind this is unknown, but one potential explanation is dilution by excessive CSF volumes. The aim of this study was to investigate the presence of a dilution effect, by studying the relationship between ventricular volume (VV) and the levels of the CSF biomarkers.
Methods
In this cross-sectional observational study, preoperative magnetic resonance imaging (MRI) and lumbar CSF was acquired from 136 patients with a median age of 76 years, 89 men and 47 females, selected for surgical treatment for iNPH. The CSF volume of the lateral and third ventricles was segmented on MRI and related to preoperative concentrations of Aβ42, tau and p-tau.
Results
In the total sample VV (Median 140.7 mL) correlated weakly (rs = − 0.17) with Aβ42 (Median 534 pg/mL), but not with tau (Median 216 pg/mL) nor p-tau (Median 31 pg/mL). In a subgroup analysis, the correlation between VV and Aβ42 was only present in the male group (rs = − 0.22, p = 0.038). Further, Aβ42 correlated positively with tau (rs = 0.30, p = 0.004) and p-tau (rs = 0.26, p = 0.012) in males but not in females.
Conclusions
The findings did not support a major dilution effect in iNPH, at least not in females. The only result in favor for dilution was a weak negative correlation between VV and Aβ42 but not with the other lumbar CSF biomarkers. The different results between males and females suggest that future investigations of the CSF pattern in iNPH would gain from sex-based subgroup analysis.
Collapse
|
3
|
de Mélo Silva Júnior ML, Diniz PRB, de Souza Vilanova MV, Basto GPT, Valença MM. Brain ventricles, CSF and cognition: a narrative review. Psychogeriatrics 2022; 22:544-552. [PMID: 35488797 DOI: 10.1111/psyg.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The brain ventricles are structures that have been related to cognition since antiquity. They are essential components in the development and maintenance of brain functions. The aging process runs with the enlargement of ventricles and is related to a less selective blood-cerebrospinal fluid barrier and then a more toxic cerebrospinal fluid environment. The study of brain ventricles as a biological marker of aging is promissing because they are structures easily identified in neuroimaging studies, present good inter-rater reliability, and measures of them can identify brain atrophy earlier than cortical structures. The ventricular system also plays roles in the development of dementia, since dysfunction in the clearance of beta-amyloid protein is a key mechanism in sporadic Alzheimer's disease. The morphometric and volumetric studies of the brain ventricles can help to distinguish between healthy elderly and persons with mild cognitive impairment (MCI) and dementia. Brain ventricle data may contribute to the appropriate allocation of individuals in groups at higher risk for MCI-dementia progression in clinical trials and to measuring therapeutic responses in these studies, as well as providing differential diagnosis, such as normal pressure hydrocephalus. Here, we reviewed the pathophysiology of healthy aging and cognitive decline, focusing on the role of the choroid plexus and brain ventricles in this process.
Collapse
Affiliation(s)
- Mário Luciano de Mélo Silva Júnior
- Medical School, Universidade Federal de Pernambuco, Recife, Brazil.,Medical School, Centro Universitário Maurício de Nassau, Recife, Brazil.,Neurology Unit, Hospital da Restauração, Recife, Brazil
| | | | | | | | | |
Collapse
|
4
|
van Waalwijk van Doorn LJC, Ghafoorian M, van Leijsen EMC, Claassen JAHR, Arighi A, Bozzali M, Cannas J, Cavedo E, Eusebi P, Farotti L, Fenoglio C, Fortea J, Frisoni GB, Galimberti D, Greco V, Herukka SK, Liu Y, Lleó A, de Mendonça A, Nobili FM, Parnetti L, Picco A, Pikkarainen M, Salvadori N, Scarpini E, Soininen H, Tarducci R, Urbani A, Vilaplana E, Meulenbroek O, Platel B, Verbeek MM, Kuiperij HB. White Matter Hyperintensities Are No Major Confounder for Alzheimer's Disease Cerebrospinal Fluid Biomarkers. J Alzheimers Dis 2021; 79:163-175. [PMID: 33252070 PMCID: PMC7902951 DOI: 10.3233/jad-200496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: The cerebrospinal fluid (CSF) biomarkers amyloid-β 1–42 (Aβ42), total and phosphorylated tau (t-tau, p-tau) are increasingly used to assist in the clinical diagnosis of Alzheimer’s disease (AD). However, CSF biomarker levels can be affected by confounding factors. Objective: To investigate the association of white matter hyperintensities (WMHs) present in the brain with AD CSF biomarker levels. Methods: We included CSF biomarker and magnetic resonance imaging (MRI) data of 172 subjects (52 controls, 72 mild cognitive impairment (MCI), and 48 AD patients) from 9 European Memory Clinics. A computer aided detection system for standardized automated segmentation of WMHs was used on MRI scans to determine WMH volumes. Association of WMH volume with AD CSF biomarkers was determined using linear regression analysis. Results: A small, negative association of CSF Aβ42, but not p-tau and t-tau, levels with WMH volume was observed in the AD (r2 = 0.084, p = 0.046), but not the MCI and control groups, which was slightly increased when including the distance of WMHs to the ventricles in the analysis (r2 = 0.105, p = 0.025). Three global patterns of WMH distribution, either with 1) a low, 2) a peak close to the ventricles, or 3) a high, broadly-distributed WMH volume could be observed in brains of subjects in each diagnostic group. Conclusion: Despite an association of WMH volume with CSF Aβ42 levels in AD patients, the occurrence of WMHs is not accompanied by excess release of cellular proteins in the CSF, suggesting that WMHs are no major confounder for AD CSF biomarker assessment.
Collapse
Affiliation(s)
- Linda J C van Waalwijk van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mohsen Ghafoorian
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther M C van Leijsen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatrics, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Marco Bozzali
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jorge Cannas
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Enrica Cavedo
- Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Qynapse, Paris, France
| | - Paolo Eusebi
- Section of Neurology, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Lucia Farotti
- Section of Neurology, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | | | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Giovanni B Frisoni
- Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Center, Milan, Italy
| | - Viviana Greco
- Fondazione Policlinica Universitario "A. Gemelli" -IRCCS, Rome, Italy.,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica, Rome, Italy
| | - Sanna-Kaisa Herukka
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Yawu Liu
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Flavio M Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucilla Parnetti
- Section of Neurology, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Agnese Picco
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Maria Pikkarainen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Nicola Salvadori
- Section of Neurology, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Center, Milan, Italy
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Roberto Tarducci
- Section of Neurology, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Andrea Urbani
- Fondazione Policlinica Universitario "A. Gemelli" -IRCCS, Rome, Italy.,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica, Rome, Italy
| | - Eduard Vilaplana
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olga Meulenbroek
- Department of Geriatrics, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram Platel
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Altered Expression of Long Non-coding RNAs in Peripheral Blood Mononuclear Cells of Patients with Alzheimer’s Disease. Mol Neurobiol 2020; 57:5352-5361. [DOI: 10.1007/s12035-020-02106-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
|
6
|
Tadayon E, Pascual-Leone A, Press D, Santarnecchi E. Choroid plexus volume is associated with levels of CSF proteins: relevance for Alzheimer's and Parkinson's disease. Neurobiol Aging 2020; 89:108-117. [PMID: 32107064 DOI: 10.1016/j.neurobiolaging.2020.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
The choroid plexus (ChP) is a major source of cerebrospinal fluid (CSF) production, with a direct and indirect role in protein clearance, and pathogenesis of Alzheimer's disease (AD). Here, we tested the link between the ChP volume and levels of CSF proteins in 2 data sets of (i) healthy controls, mild cognitive impairment (MCI), and AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 509), and (ii) healthy controls and Parkinson's disease (PD) patients from the Parkinson's Progression Markers Initiative (N = 302). All patients had baseline CSF proteins (amyloid-β, total and phosphorylated-tau and α-synuclein (only in Parkinson's Progression Markers Initiative)). ChP was automatically segmented on 3T structural T1-weighted MRIs. We found negative associations between ChP volume and CSF proteins, which were stronger in healthy controls, early-MCI patients, and PD patients compared with late-MCI and AD patients. Further grouping of patients of ADNI dataset into amyloid-positive and amyloid-negative based on their florbetapir (AV45) PET imaging showed that the association between ChP volume and CSF proteins (t/p-tau) was lower in amyloid-positive group. Our findings support the possible role of ChP in the clearance of CSF proteins, provide evidence for ChP dysfunction in AD, and suggest the need to account for the ChP volume in future studies of CSF-based biomarkers.
Collapse
Affiliation(s)
- Ehsan Tadayon
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Guttmann Institut, Universitat Autonoma, Barcelona, Spain
| | - Daniel Press
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
7
|
Sathe G, Na CH, Renuse S, Madugundu AK, Albert M, Moghekar A, Pandey A. Quantitative Proteomic Profiling of Cerebrospinal Fluid to Identify Candidate Biomarkers for Alzheimer's Disease. Proteomics Clin Appl 2019; 13:e1800105. [PMID: 30578620 PMCID: PMC6639119 DOI: 10.1002/prca.201800105] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study is to identify the potential cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease and to evaluate these markers on independent CSF samples using parallel reaction monitoring (PRM) assays. EXPERIMENTAL DESIGN High-Resolution mass spectrometry and tandem mass tag (TMT) multiplexing technology are employed to identify potential biomarkers for Alzheimer's disease. Some of the identified potential biomarkers are validated using PRM assays. RESULTS A total of 2327 proteins are identified in the CSF of which 139 are observed to be significantly altered in the CSF of AD patients. The proteins altered in AD includes a number of known AD marker such as MAPT, NPTX2, VGF, GFAP, and NCAM1 as well as novel biomarkers such as PKM and YWHAG. These findings are validated in a separate set of CSF specimens from AD dementia patients and controls. NPTX2, in combination with PKM or YWHAG, leads to the best results with AUCs of 0.935 and 0.933, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The proteins that are found to be altered in the CSF of patients with AD could be used for monitoring disease progression and therapeutic response and perhaps also for early detection once they are validated in larger studies.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
8
|
Malva JO, Amado A, Rodrigues A, Mota-Pinto A, Cardoso AF, Teixeira AM, Todo-Bom A, Devesa A, Ambrósio AF, Cunha AL, Gomes B, Dantas C, Abreu C, Santana I, Bousquet J, Apóstolo J, Santos L, Meneses de Almeida L, Illario M, Veríssimo R, Rodrigues V, Veríssimo MT. The Quadruple Helix-Based Innovation Model of Reference Sites for Active and Healthy Ageing in Europe: The Ageing@Coimbra Case Study. Front Med (Lausanne) 2018; 5:132. [PMID: 29868588 PMCID: PMC5952223 DOI: 10.3389/fmed.2018.00132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/19/2018] [Indexed: 11/16/2022] Open
Abstract
Challenges posed by demographic changes and population aging are key priorities for the Horizon 2020 Program of the European Commission. Aligned with the vision of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA), the development, exchange, and large-scale adoption of innovative good practices is a key element of the responses required to ensure all European citizens remain as active and healthy as possible as they age. Urged by the need of developing scalable disruptive innovation across Europe, the European Commission and the EIP on AHA created the Reference Sites; local coalition of partners that develop good practices to support AHA. Ageing@Coimbra is an example of how this can be achieved at a regional level. The consortium comprises over 70 institutions that develop innovative practices to support AHA in Portugal. Ageing@Coimbra partners support a regional network of stakeholders that build a holistic ecosystem in health and social care, taking into consideration the specificities of the territories, living environments and cultural resources (2,243,934 inhabitants, 530,423 aged 65 or plus live in the Centre Region of Portugal). Good practices in reducing the burden of brain diseases that affect cognition and memory impairment in older people and tackling social isolation in urban and rural areas are among the top priorities of Ageing@Coimbra. Profiting from the collaborative work of academia, business companies, civil society, and authorities, the quadruple helix of Ageing@Coimbra supports: early diagnosis of frailty and disease; care and cure; and active, assisted, and independent living. This paper describes, as a Community Case Study, the creation of a Reference Site of the EIP on AHA, Ageing@Coimbra, and its impact in Portugal. This Reference Site can motivate other regions to develop innovative formulas to federate stakeholders and networks, building consortia at regional level. This growing movement, across Europe, is inspired by the quadruple helix concept and by the replication of innovative good practices; creating new Reference Sites for the benefit of Citizens.
Collapse
Affiliation(s)
- João O Malva
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), and CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Alda Amado
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Instituto de Segurança Social, Centro Distrital de Coimbra, Coimbra, Portugal
| | - Alexandra Rodrigues
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Comissão de Coordenação e Desenvolvimento Regional do Centro, Coimbra, Portugal
| | - Anabela Mota-Pinto
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
| | - Ana F Cardoso
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Centre for Evidence Based Practice, Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra, Coimbra, Portugal
| | - Ana M Teixeira
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Ana Todo-Bom
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal.,University of Coimbra Hospital, CHUC, Coimbra, Portugal
| | - António Devesa
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Municipality of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), and CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - António L Cunha
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Pedro Nunes Institute, Laboratory of Automatics and Systems, Coimbra, Portugal
| | - Bárbara Gomes
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), and CNC.IBILI, University of Coimbra, Coimbra, Portugal.,King's College London, Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, London, United Kingdom
| | - Carina Dantas
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Caritas Coimbra, Coimbra, Portugal
| | - Cidalina Abreu
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Centre for Evidence Based Practice, Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,University of Coimbra Hospital, CHUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jean Bousquet
- Contre les Maladies Chroniques pour un VIeilissement Active (MACVIA) en France en EIP on AHA Reference Site, Montpellier, France
| | - João Apóstolo
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Centre for Evidence Based Practice, Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra, Coimbra, Portugal
| | - Lúcia Santos
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Portuguese Pharmaceutical Society - Center Region Branch, Coimbra, Portugal
| | - Lúcio Meneses de Almeida
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Regional Health Authority, ARS Centro, Coimbra, Portugal
| | - Maddalena Illario
- Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET), Naples, Italy
| | | | - Vitor Rodrigues
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Manuel T Veríssimo
- Ageing@Coimbra, EIP on AHA Reference Site, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), and CNC.IBILI, University of Coimbra, Coimbra, Portugal.,University of Coimbra Hospital, CHUC, Coimbra, Portugal
| |
Collapse
|
9
|
Todd KL, Brighton T, Norton ES, Schick S, Elkins W, Pletnikova O, Fortinsky RH, Troncoso JC, Molfese PJ, Resnick SM, Conover JC. Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired Brain. Front Aging Neurosci 2018; 9:445. [PMID: 29379433 PMCID: PMC5771258 DOI: 10.3389/fnagi.2017.00445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022] Open
Abstract
Ventriculomegaly (expansion of the brain’s fluid-filled ventricles), a condition commonly found in the aging brain, results in areas of gliosis where the ependymal cells are replaced with dense astrocytic patches. Loss of ependymal cells would compromise trans-ependymal bulk flow mechanisms required for clearance of proteins and metabolites from the brain parenchyma. However, little is known about the interplay between age-related ventricle expansion, the decline in ependymal integrity, altered periventricular fluid homeostasis, abnormal protein accumulation and cognitive impairment. In collaboration with the Baltimore Longitudinal Study of Aging (BLSA) and Alzheimer’s Disease Neuroimaging Initiative (ADNI), we analyzed longitudinal structural magnetic resonance imaging (MRI) and subject-matched fluid-attenuated inversion recovery (FLAIR) MRI and periventricular biospecimens to map spatiotemporally the progression of ventricle expansion and associated periventricular edema and loss of transependymal exchange functions in healthy aging individuals and those with varying degrees of cognitive impairment. We found that the trajectory of ventricle expansion and periventricular edema progression correlated with degree of cognitive impairment in both speed and severity, and confirmed that areas of expansion showed ventricle surface gliosis accompanied by edema and periventricular accumulation of protein aggregates, suggesting impaired clearance mechanisms in these regions. These findings reveal pathophysiological outcomes associated with normal brain aging and cognitive impairment, and indicate that a multifactorial analysis is best suited to predict and monitor cognitive decline.
Collapse
Affiliation(s)
- Krysti L Todd
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Tessa Brighton
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Emily S Norton
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Samuel Schick
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Wendy Elkins
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Richard H Fortinsky
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Peter J Molfese
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Joanne C Conover
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
10
|
Schirinzi T, Di Lazzaro G, Sancesario GM, Colona VL, Scaricamazza E, Mercuri NB, Martorana A, Sancesario G. Levels of amyloid-beta-42 and CSF pressure are directly related in patients with Alzheimer's disease. J Neural Transm (Vienna) 2017; 124:1621-1625. [PMID: 28866757 DOI: 10.1007/s00702-017-1786-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Experimental data suggest that the cerebrospinal fluid (CSF) dynamic is involved in the clearance of beta-amyloid, a key event in the pathogenesis of Alzheimer's disease (AD). At this regard no evidence still exists in vivo. In this study we explored the relationships between CSF pressure and AD pathology, as measured with CSF core biomarkers. We enrolled 16 patients with probable AD and 21 controls, collecting demographics, clinical data, CSF opening pressure and CSF levels of beta-amyloid-42 fragment (Aβ42), total-tau (t-tau), phosphorylated-tau-181 (p-tau), albumin and albumin ratio. Differences between the groups were calculated with non-parametric tests, while correlations among all parameters were separately calculated with Spearman's test in each group. The groups significantly differed in biomarkers' concentration with lower Aβ42, and higher t-tau and p-tau in AD patients. Moreover, CSF pressure was significantly lower in AD group (11.0 ± 2.8 vs. 13.3 ± 3.0 mmHg, p < 0.05) and directly correlated with Aβ42 levels (R = 0.512; p < 0.05), but not with other biomarkers or parameters. No significant correlations emerged for biomarkers in control group. AD patients exhibit low CSF pressure whose values are directly and selectively related to CSF Aβ42 levels. This interesting correlation may confirm in vivo the association between CSF dynamic and beta-amyloid metabolism occurring in AD.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.
| | - Giulia Di Lazzaro
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | | - Vito Luigi Colona
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Eugenia Scaricamazza
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Martorana
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giuseppe Sancesario
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|