1
|
Zhang Z, Wang M, Lu T, Shi Y, Xie C, Ren Q, Wang Z. Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients. Brain Commun 2025; 7:fcaf033. [PMID: 39963290 PMCID: PMC11831076 DOI: 10.1093/braincomms/fcaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
The amnestic mild cognitive impairment progression to probable Alzheimer's disease is a continuous phenomenon. Here we conduct a cohort study and apply machine learning to generate a model of predicting episodic memory development for individual amnestic mild cognitive impairment patient that incorporates whole-brain functional connectivity. Fifty amnestic mild cognitive impairment patients completed baseline and 3-year follow-up visits including episodic memory assessments (e.g. Rey Auditory Verbal Learning Test Delayed Recall) and resting-state functional MRI scanning. Using a multivariate analytical method known as relevance vector regression, we found that the baseline whole-brain functional connectivity features failed to predict the baseline Rey Auditory Verbal Learning Test Delayed Recall scores (r = 0.17, P = 0.082). Nonetheless, the baseline whole-brain functional connectivity pattern could predict the longitudinal Rey Auditory Verbal Learning Test Delayed Recall score with statistically significant accuracy (r = 0.50, P < 0.001). The connectivity that contributed most to the prediction (i.e. the top 1% connectivity) included within-default mode connections, within-limbic connections and the connections between default mode and limbic systems. More importantly, these connections with the highest absolute contribution weight mainly displayed long anatomical distances (i.e. Euclidean distance >75 mm). These 'neural fingerprints' may be appropriate biomarkers for amnestic mild cognitive impairment patients to optimize individual patient management and longitudinal evaluation in a timely fashion.
Collapse
Affiliation(s)
- Zhengsheng Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mengxue Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tong Lu
- Department of Radiology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yachen Shi
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Reas ET, Triebswetter C, Banks SJ, McEvoy LK. Effects of APOE2 and APOE4 on brain microstructure in older adults: modification by age, sex, and cognitive status. Alzheimers Res Ther 2024; 16:7. [PMID: 38212861 PMCID: PMC10782616 DOI: 10.1186/s13195-023-01380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND APOE4 is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), whereas APOE2 confers protection. However, effects of APOE on neurodegeneration in cognitively intact individuals, and how these associations evolve with cognitive decline, are unclear. Furthermore, few studies have evaluated whether effects of APOE on neurodegenerative changes are modified by other AD key risk factors including age and sex. METHODS Participants included older adults (57% women; 77 ± 7 years) from the Rancho Bernardo Study of Health Aging and the University of California San Diego Alzheimer's Disease Research Center, including 192 cognitively normal (CN) individuals and 33 with mild cognitive impairment. Participants underwent diffusion MRI, and multicompartment restriction spectrum imaging (RSI) metrics were computed in white matter, gray matter, and subcortical regions of interest. Participants were classified as APOE4 carriers, APOE2 carriers, and APOE3 homozygotes. Analysis of covariance among CN (adjusting for age, sex, and scanner) assessed differences in brain microstructure by APOE, as well as interactions between APOE and sex. Analyses across all participants examined interactions between APOE4 and cognitive status. Linear regressions assessed APOE by age interactions. RESULTS Among CN, APOE4 carriers showed lower entorhinal cortex neurite density than non-carriers, whereas APOE2 carriers showed lower cingulum neurite density than non-carriers. Differences in entorhinal microstructure by APOE4 and in entorhinal and cingulum microstructure by APOE2 were present for women only. Age correlated with lower entorhinal restricted isotropic diffusion among APOE4 non-carriers, whereas age correlated with lower putamen restricted isotropic diffusion among APOE4 carriers. Differences in microstructure between cognitively normal and impaired participants were stronger for APOE4-carriers in medial temporal regions, thalamus, and global gray matter, but stronger for non-carriers in caudate. CONCLUSIONS The entorhinal cortex may be an early target of neurodegenerative changes associated with APOE4 in presymptomatic individuals, whereas APOE2 may support beneficial white matter and entorhinal microstructure, with potential sex differences that warrant further investigation. APOE modifies microstructural patterns associated with aging and cognitive impairment, which may advance the development of biomarkers to distinguish microstructural changes characteristic of normal brain aging, APOE-dependent pathways, and non-AD etiologies.
Collapse
Affiliation(s)
- Emilie T Reas
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA.
| | - Curtis Triebswetter
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA
| | - Linda K McEvoy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| |
Collapse
|
3
|
Hari E, Kizilates-Evin G, Kurt E, Bayram A, Ulasoglu-Yildiz C, Gurvit H, Demiralp T. Functional and structural connectivity in the Papez circuit in different stages of Alzheimer's disease. Clin Neurophysiol 2023; 153:33-45. [PMID: 37451080 DOI: 10.1016/j.clinph.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a progressive neurodegenerative continuum with memory impairment. We aimed to examine the detailed functional (FC) and structural connectivity (SC) pattern of the Papez circuit, known as the memory circuit, along the AD. METHODS MRI data of 15 patients diagnosed with AD dementia (ADD), 15 patients with the amnestic mild cognitive impairment (MCI), and 15 patients with subjective cognitive impairment were analyzed. The FC analyses were performed between main nodes of the Papez circuit, and the SC was quantified as fractional anisotropy (FA) of the main white matter pathways of the Papez circuit. RESULTS The FC between the retrosplenial (RSC) and parahippocampal cortices (PHC) was the earliest affected FC, while a manifest SC change in the ventral cingulum and fornix was observed in the later ADD stage. The RSC-PHC FC and the ventral cingulum FA efficiently predicted the memory performance of the non-demented participants. CONCLUSIONS Our findings revealed the importance of the Papez circuit as target regions along the AD. SIGNIFICANCE The ventral cingulum connecting the RSC and PHC, a critical overlap area between the Papez circuit and the default mode network, seems to be a target region associated with the earliest objective memory findings in AD.
Collapse
Affiliation(s)
- Emre Hari
- Graduate School of Health Sciences, Istanbul University, 34216 Istanbul, Turkey; Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Gozde Kizilates-Evin
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Cigdem Ulasoglu-Yildiz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey.
| | - Hakan Gurvit
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey; Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
| | - Tamer Demiralp
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093 Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
| |
Collapse
|
4
|
Liu Y, Liu D, Liu M, Li K, Shi Q, Wang C, Pan Z, Zhou L. The microstructural abnormalities of cingulum was related to patients with mild cognitive impairment: a diffusion kurtosis imaging study. Neurol Sci 2023; 44:171-180. [PMID: 36169754 PMCID: PMC9816220 DOI: 10.1007/s10072-022-06408-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Our study aimed to investigate the correlations between microstructural changes of cingulum and patients with mild cognitive impairment (MCI) by diffusion kurtosis imaging (DKI) technique. METHOD A total of 104 patients with cerebral small vessel diseases (cSVD) were retrospectively enrolled in this study. According to Montreal Cognitive Assessment Scale (MoCA) scores, these patients were divided into MCI group (n = 59) and non-MCI group (n = 45). The general clinical data was collected and analyzed. The regions of interests (ROIs) were selected for investigation in cingulum. The values of DKI parameters were measured in each ROI and compared between the two groups, the correlations between DKI parameters and MoCA scores were examined. RESULTS Compared to non-MCI group, MCI patients had more severe white matter hyperintensities (WMHs) (P = 0.038) and lower MoCA scores (P < 0.01). MCI patients showed significantly decreased fractional anisotropy (FA), axial kurtosis (AK), mean kurtosis (MK), radial kurtosis (RK), and kurtosis fractional anisotropy (KFA) in the left cingulum in the cingulated cortex (CgC) region (all P < 0.0125). In the left CgC region, FA, AK, MK, RK, and KFA were positively correlated with MoCA scores (r = 0.348, 0.409, 0.310, 0.441, 0.422, all P < 0.001). Meanwhile, FA, AK, MK, RK, and KFA were also positively correlated with MoCA scores (r = 0.338, 0.352, 0.289, 0.380, 0.370, all P < 0.001) in the right CgC region. CONCLUSION DKI technique could be used to explore the microstructural changes of cingulum in MCI patients and DKI-derived parameters might be feasible to evaluate MCI patients.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Dongtao Liu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| | - Mingyong Liu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| | - Kun Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qinglei Shi
- MR Scientific Marketing, Diagnosis Imaging, Siemens Healthineers China, Beijing, China
| | - Chenlong Wang
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Zhenyu Pan
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| |
Collapse
|
5
|
Liu W, Liu L, Cheng X, Ge H, Hu G, Xue C, Qi W, Xu W, Chen S, Gao R, Rao J, Chen J. Functional Integrity of Executive Control Network Contributed to Retained Executive Abilities in Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:710172. [PMID: 34899264 PMCID: PMC8664557 DOI: 10.3389/fnagi.2021.710172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) is considered to be a transitional state between normal aging and Alzheimer's dementia (AD). Recent studies have indicated that executive function (EF) declines during MCI. However, only a limited number of studies have investigated the neural basis of EF deficits in MCI. Herein, we investigate the changes of regional brain spontaneous activity and functional connectivity (FC) of the executive control network (ECN) between high EF and low EF groups. Methods: According to EF composite score (ADNI-EF) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we divided MCI into two groups, including the MCI-highEF group and MCI-lowEF group. Resting-state functional MRI was utilized to investigate the fractional amplitude of low-frequency fluctuation (fALFF) and ECN functional connectivity across 23 healthy controls (HC), 11 MCI-highEF, and 14 MCI-lowEF participants. Moreover, a partial correlation analysis was carried out to examine the relationship between altered fALFF or connectivity of the ECN and the ADNI-EF. Results: Compared to HC, the MCI-highEF participants demonstrated increased fALFF in the left superior temporal gyrus (STG), as well as decreased fALFF in the right precentral gyrus, right postcentral gyrus, and left middle frontal gyrus (MFG). The MCI-lowEF participants demonstrated increased fALFF in the cerebellar vermis and decreased fALFF in the left MFG. Additionally, compared to HC, the MCI-highEF participants indicated no significant difference in connectivity of the ECN. Furthermore, the MCI-lowEF participants showed increased ECN FC in the left cuneus and left MFG, as well as decreased ECN functional connectivity in the right parahippocampal gyrus (PHG). Notably, the altered fALFF in the left MFG was positively correlated to ADNI-EF, while the altered fALFF in cerebellar vermis is negatively correlated with ADNI-EF across the two MCI groups and the HC group. Altered ECN functional connectivity in the right PHG is negatively correlated to ADNI-EF, while altered ECN functional connectivity in the left cuneus is negatively correlated to ADNI-EF across the three groups. Conclusions: Our current study demonstrates the presence of different patterns of regional brain spontaneous activity and ECN FC in the MCI-highEF group and MCI-lowEF group. Furthermore, the ECN FC of the MCI-highEF group was not disrupted, which may contribute to retained EF in MCI.
Collapse
Affiliation(s)
- Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Cheng
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Run Gao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Wang Z, Zhang Z, Xie C, Shu H, Liu D, Zhang Z. Identification of the Neural Circuit Underlying Episodic Memory Deficit in Amnestic Mild Cognitive Impairment via Machine Learning on Gray Matter Volume. J Alzheimers Dis 2021; 84:959-964. [PMID: 34602473 DOI: 10.3233/jad-210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on whole-brain gray matter volume (GMV), we used relevance vector regression to predict the Rey's Auditory Verbal Learning Test Delayed Recall (AVLT-DR) scores of individual amnestic mild cognitive impairment (aMCI) patient. The whole-brain GMV pattern could significantly predict the AVLT-DR scores (r = 0.54, p < 0.001). The most important GMV features mainly involved default-mode (e.g., posterior cingulate gyrus, angular gyrus, and middle temporal gyrus) and limbic systems (e.g., hippocampus and parahippocampal gyrus). Therefore, our results provide evidence supporting the idea that the episodic memory deficit in aMCI patients is associated with disruption of the default-mode and limbic systems.
Collapse
Affiliation(s)
- Zan Wang
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Zhengsheng Zhang
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Chunming Xie
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Hao Shu
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Duan Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| |
Collapse
|
7
|
The Relations Between Physical Activity Level, Executive Function, and White Matter Microstructure in Older Adults. J Phys Act Health 2021; 18:1286-1298. [PMID: 34433700 DOI: 10.1123/jpah.2021-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/23/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
The population of older adults is increasing, indicating a need to examine factors that may prevent or mitigate age-related cognitive decline. The current study examined whether microstructural white matter characteristics mediated the relation between physical activity and executive function in older adults without any self-reported psychiatric and neurological disorders or cognitive impairment (N = 43, mean age = 73 y). Physical activity was measured by average intensity and number of steps via accelerometry. Diffusion tensor imaging was used to examine microstructural white matter characteristics, and neuropsychological testing was used to examine executive functioning. Parallel mediation models were analyzed using microstructural white matter regions of interest as mediators of the association between physical activity and executive function. Results indicated that average steps was significantly related to executive function (β = 0.0003, t = 2.829, P = .007), while moderate to vigorous physical activity was not (β = 0.0007, t = 1.772, P = .08). White matter metrics did not mediate any associations. This suggests that microstructural white matter characteristics alone may not be the mechanism by which physical activity impacts executive function in aging.
Collapse
|
8
|
Wang Z, Yuan Y, Jiang Y, You J, Zhang Z. Identification of specific neural circuit underlying the key cognitive deficit of remitted late-onset depression: A multi-modal MRI and machine learning study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110192. [PMID: 33285264 DOI: 10.1016/j.pnpbp.2020.110192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 01/21/2023]
Abstract
Neuropsychological impairment is a key feature of late-onset depression (LOD), with deficits observed across multiple cognitive domains. And this neuropsychological impairment can persist even after the remission of depressive symptoms. However, none of previous studies have explored the pattern of cognitive deficit in remitted LOD (rLOD), and investigated the specific neural circuit underlying the key cognitive deficit of LOD. 40 rLOD patients and 36 controls underwent comprehensive neuropsychological assessments and magnetic resonance imaging (MRI) scans. The influence of executive function or information processing speed deficit on other cognitive domains was first investigated. We then applied a multivariate machine learning technique known as relevance vector regression to evaluate the potential of multiple-modal MRI (i.e., integrating whole-brain grey-matter [GM] volume and white-matter [WM] tract features) for making accurate predictions about the key cognitive deficit for individual rLOD patient. We revealed that the information processing speed appears to represent a key cognitive deficit in rLOD. Further the machine learning model identified a wide range of GM regions and WM tracts that significantly contributed to the prediction of individual performance on information processing speed (r = 0.50, P < 0.001). The GM regions mainly located in the frontal-subcortical and limbic systems; and the WM tracts mainly located in the frontal-limbic pathway, including the anterior corona radiata, fornix, posterior cingulate bundle, and uncinate fasciculus. This present study provide strongly evidence supporting the concept of rLOD that the core aspect of the cognitive deficits (i.e., information processing speed) is associated with disruption of the frontal-subcortical-limbic pathway.
Collapse
Affiliation(s)
- Zan Wang
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China.
| | - Yonggui Yuan
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Ying Jiang
- Department of Neurology, the 962nd Hospital of the PLA Joint Logistic Support Force, Harbin 150080, China
| | - Jiayong You
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Zhijun Zhang
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China.
| |
Collapse
|
9
|
Li X, Xia J, Ma C, Chen K, Xu K, Zhang J, Chen Y, Li H, Wei D, Zhang Z. Accelerating Structural Degeneration in Temporal Regions and Their Effects on Cognition in Aging of MCI Patients. Cereb Cortex 2021; 30:326-338. [PMID: 31169867 DOI: 10.1093/cercor/bhz090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Age is the major risk factor for Alzheimer's disease (AD) and for mild cognitive impairment (MCI). However, there is limited evidence about MCI-specific aging-related simultaneous changes of the brain structure and their impact on cognition. We analyzed the brain imaging data from 269 subjects (97 MCI patients and 172 cognitively normal [CN] elderly) using voxel-based morphometry and tract-based spatial statistics procedures to explore the special structural pattern during aging. We found that the patients with MCI showed accelerated age-related reductions in gray matter volume in the left planum temporale, thalamus, and posterior cingulate gyrus. The similar age×group interaction effect was found in the fractional anisotropy of the bilateral parahippocampal cingulum white matter tract, which connects the temporal regions. Importantly, the age-related temporal gray matter and white matter alterations were more significantly related to performance in memory and attention tasks in MCI patients. The accelerated degeneration patterns in the brain structure provide evidence for different neural mechanisms underlying aging in MCI patients. Temporal structural degeneration may serve as a potential imaging marker for distinguishing the progression of the preclinical AD stage from normal aging.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Jianan Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Chao Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China.,School of Electrical and Information Engineering, Tianjin University, Tianjin, P. R. China
| | - Kewei Chen
- BABRI Centre, Beijing Normal University, Beijing, P. R. China.,Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Kai Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China.,Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing, P. R. China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - He Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China.,Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing, P. R. China
| | - Dongfeng Wei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China.,Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing, P. R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
10
|
Pelekanos V, Premereur E, Mitchell DJ, Chakraborty S, Mason S, Lee ACH, Mitchell AS. Corticocortical and Thalamocortical Changes in Functional Connectivity and White Matter Structural Integrity after Reward-Guided Learning of Visuospatial Discriminations in Rhesus Monkeys. J Neurosci 2020; 40:7887-7901. [PMID: 32900835 PMCID: PMC7548693 DOI: 10.1523/jneurosci.0364-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.
Collapse
Affiliation(s)
- Vassilis Pelekanos
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Subhojit Chakraborty
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| |
Collapse
|
11
|
Impaired Parahippocampal Gyrus-Orbitofrontal Cortex Circuit Associated with Visuospatial Memory Deficit as a Potential Biomarker and Interventional Approach for Alzheimer Disease. Neurosci Bull 2020; 36:831-844. [PMID: 32350798 DOI: 10.1007/s12264-020-00498-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
The parahippocampal gyrus-orbitofrontal cortex (PHG-OFC) circuit in humans is homologous to the postrhinal cortex (POR)-ventral lateral orbitofrontal cortex (vlOFC) circuit in rodents. Both are associated with visuospatial malfunctions in Alzheimer's disease (AD). However, the underlying mechanisms remain to be elucidated. In this study, we explored the relationship between an impaired POR-vlOFC circuit and visuospatial memory deficits through retrograde tracing and in vivo local field potential recordings in 5XFAD mice, and investigated alterations of the PHG-OFC circuit by multi-domain magnetic resonance imaging (MRI) in patients on the AD spectrum. We demonstrated that an impaired glutamatergic POR-vlOFC circuit resulted in deficient visuospatial memory in 5XFAD mice. Moreover, MRI measurements of the PHG-OFC circuit had an accuracy of 77.33% for the classification of amnestic mild cognitive impairment converters versus non-converters. Thus, the PHG-OFC circuit explains the neuroanatomical basis of visuospatial memory deficits in AD, thereby providing a potential predictor for AD progression and a promising interventional approach for AD.
Collapse
|
12
|
Bouts MJRJ, van der Grond J, Vernooij MW, Koini M, Schouten TM, de Vos F, Feis RA, Cremers LGM, Lechner A, Schmidt R, de Rooij M, Niessen WJ, Ikram MA, Rombouts SARB. Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification. Hum Brain Mapp 2019; 40:2711-2722. [PMID: 30803110 PMCID: PMC6563478 DOI: 10.1002/hbm.24554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 01/18/2023] Open
Abstract
Early and accurate mild cognitive impairment (MCI) detection within a heterogeneous, nonclinical population is needed to improve care for persons at risk of developing dementia. Magnetic resonance imaging (MRI)-based classification may aid early diagnosis of MCI, but has only been applied within clinical cohorts. We aimed to determine the generalizability of MRI-based classification probability scores to detect MCI on an individual basis within a general population. To determine classification probability scores, an AD, mild-AD, and moderate-AD detection model were created with anatomical and diffusion MRI measures calculated from a clinical Alzheimer's Disease (AD) cohort and subsequently applied to a population-based cohort with 48 MCI and 617 normal aging subjects. Each model's ability to detect MCI was quantified using area under the receiver operating characteristic curve (AUC) and compared with an MCI detection model trained and applied to the population-based cohort. The AD-model and mild-AD identified MCI from controls better than chance level (AUC = 0.600, p = 0.025; AUC = 0.619, p = 0.008). In contrast, the moderate-AD-model was not able to separate MCI from normal aging (AUC = 0.567, p = 0.147). The MCI-model was able to separate MCI from controls better than chance (p = 0.014) with mean AUC values comparable with the AD-model (AUC = 0.611, p = 1.0). Within our population-based cohort, classification models detected MCI better than chance. Nevertheless, classification performance rates were moderate and may be insufficient to facilitate robust MRI-based MCI detection on an individual basis. Our data indicate that multiparametric MRI-based classification algorithms, that are effective in clinical cohorts, may not straightforwardly translate to applications in a general population.
Collapse
Affiliation(s)
- Mark J. R. J. Bouts
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | | | - Meike W. Vernooij
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamthe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Marisa Koini
- Department of NeurologyMedical University of GrazAustria
| | - Tijn M. Schouten
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Frank de Vos
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Rogier A. Feis
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Lotte G. M. Cremers
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamthe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Anita Lechner
- Department of NeurologyMedical University of GrazAustria
| | | | - Mark de Rooij
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Wiro J. Niessen
- Department of Radiology and Nuclear MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
- Department of Medical InformaticsErasmus MC University Medical CenterRotterdamthe Netherlands
- Faculty of Applied SciencesDelft University of TechnologyDelftthe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamthe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
- Department of NeurologyErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Serge A. R. B. Rombouts
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| |
Collapse
|
13
|
Bathelt J, Johnson A, Zhang M, Astle DE. The cingulum as a marker of individual differences in neurocognitive development. Sci Rep 2019; 9:2281. [PMID: 30783161 PMCID: PMC6381161 DOI: 10.1038/s41598-019-38894-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/11/2019] [Indexed: 01/21/2023] Open
Abstract
The canonical approach to exploring brain-behaviour relationships is to group individuals according to a phenotype of interest, and then explore the neural correlates of this grouping. A limitation of this approach is that multiple aetiological pathways could result in a similar phenotype, so the role of any one brain mechanism may be substantially underestimated. Building on advances in network analysis, we used a data-driven community-clustering algorithm to identify robust subgroups based on white-matter microstructure in childhood and adolescence (total N = 313, mean age: 11.24 years). The algorithm indicated the presence of two equal-size groups that show a critical difference in fractional anisotropy (FA) of the left and right cingulum. Applying the brain-based grouping in independent samples, we find that these different 'brain types' had profoundly different cognitive abilities with higher performance in the higher FA group. Further, a connectomics analysis indicated reduced structural connectivity in the low FA subgroup that was strongly related to reduced functional activation of the default mode network. These results provide a proof-of-concept that bottom-up brain-based groupings can be identified that relate to cognitive performance. This provides a first demonstration of a complimentary approach for investigating individual differences in brain structure and function, particularly for neurodevelopmental disorders where researchers are often faced with phenotypes that are difficult to define at the cognitive or behavioural level.
Collapse
Affiliation(s)
- Joe Bathelt
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.
| | - Amy Johnson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Mengya Zhang
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Duncan E Astle
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Zhu L, Shu H, Liu D, Guo Q, Wang Z, Zhang Z. Apolipoprotein E ε4 Specifically Modulates the Hippocampus Functional Connectivity Network in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2018; 10:289. [PMID: 30319395 PMCID: PMC6170627 DOI: 10.3389/fnagi.2018.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
The presence of both apolipoprotein E (APOE) ε4 allele and amnestic mild cognitive impairment (aMCI) are considered to be risk factors for Alzheimer’s disease (AD). Numerous neuroimaging studies have suggested that the modulation of APOE ε4 affects intrinsic functional brain networks, both in healthy populations and in AD patients. However, it remains largely unclear whether and how ε4 allele modulates the brain’s functional network architecture in subjects with aMCI. Using resting-state functional magnetic resonance imaging (fMRI) and graph-theory approaches-functional connectivity strength (FCS), we investigate the topological organization of the whole-brain functional network in 28 aMCI ε4 carriers and 38 aMCI ε3ε3 carriers. In the present study, we first observe that ε4-related FCS increases in the right hippocampus/parahippocampal gyrus (HIP/PHG). Subsequent seed-based resting-state functional connectivity (RSFC) analysis revealed that, compared with the ε3ε3 carriers, the ε4 carriers had lower or higher RSFCs between the right HIP/PHG seed and the bilateral medial prefrontal cortex (MPFC) or the occipital cortex, respectively. Further correlation analyses have revealed that the FCS values in the right HIP/PHG and lower HIP/PHG-RSFCs with the bilateral MPFC were significantly correlated with the impairment of episodic memory and executive function in the aMCI ε4 carriers. Importantly, the logistic regression analysis showed that the HIP/PHG-RSFC with the bilateral MPFC predicted aMCI-conversion to AD. These findings suggest that the APOE ε4 allele may modulate the large-scale brain network in aMCI subjects, facilitating our understanding of how the entire assembly of the brain network reorganizes in response to APOE variants in aMCI. Further longitudinal studies need to be conducted, in order to examine whether these network measures could serve as primary predictors of conversion from aMCI ε4 carriers to AD.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Duan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev 2018; 92:104-127. [PMID: 29753752 PMCID: PMC6090091 DOI: 10.1016/j.neubiorev.2018.05.008] [Citation(s) in RCA: 462] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
The cingulum bundle is a prominent white matter tract that interconnects frontal, parietal, and medial temporal sites, while also linking subcortical nuclei to the cingulate gyrus. Despite its apparent continuity, the cingulum's composition continually changes as fibres join and leave the bundle. To help understand its complex structure, this review begins with detailed, comparative descriptions of the multiple connections comprising the cingulum bundle. Next, the impact of cingulum bundle damage in rats, monkeys, and humans is analysed. Despite causing extensive anatomical disconnections, cingulum bundle lesions typically produce only mild deficits, highlighting the importance of parallel pathways and the distributed nature of its various functions. Meanwhile, non-invasive imaging implicates the cingulum bundle in executive control, emotion, pain (dorsal cingulum), and episodic memory (parahippocampal cingulum), while clinical studies reveal cingulum abnormalities in numerous conditions, including schizophrenia, depression, post-traumatic stress disorder, obsessive compulsive disorder, autism spectrum disorder, Mild Cognitive Impairment, and Alzheimer's disease. Understanding the seemingly diverse contributions of the cingulum will require better ways of isolating pathways within this highly complex tract.
Collapse
Affiliation(s)
- Emma J Bubb
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
16
|
Chakraborty S, Ouhaz Z, Mason S, Mitchell AS. Macaque parvocellular mediodorsal thalamus: dissociable contributions to learning and adaptive decision-making. Eur J Neurosci 2018; 49:1041-1054. [PMID: 30022540 PMCID: PMC6519510 DOI: 10.1111/ejn.14078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Distributed brain networks govern adaptive decision‐making, new learning and rapid updating of information. However, the functional contribution of the rhesus macaque monkey parvocellular nucleus of the mediodorsal thalamus (MDpc) in these key higher cognitive processes remains unknown. This study investigated the impact of MDpc damage in cognition. Preoperatively, animals were trained on an object‐in‐place scene discrimination task that assesses rapid learning of novel information within each session. Bilateral neurotoxic (NMDA and ibotenic acid) MDpc lesions did not impair new learning unless the monkey had also sustained damage to the magnocellular division of the MD (MDmc). Contralateral unilateral MDpc and MDmc damage also impaired new learning, while selective unilateral MDmc damage produced new learning deficits that eventually resolved with repeated testing. In contrast, during food reward (satiety) devaluation, monkeys with either bilateral MDpc damage or combined MDpc and MDmc damage showed attenuated food reward preferences compared to unoperated control monkeys; the selective unilateral MDmc damage left performance intact. Our preliminary results demonstrate selective dissociable roles for the two adjacent nuclei of the primate MD, namely, MDpc, as part of a frontal cortical network, and the MDmc, as part of a frontal‐temporal cortical network, in learning, memory and the cognitive control of behavioural choices after changes in reward value. Moreover, the functional cognitive deficits produced after differing MD damage show that the different subdivisions of the MD thalamus support distributed neural networks to rapidly and fluidly incorporate task‐relevant information, in order to optimise the animals’ ability to receive rewards.
Collapse
Affiliation(s)
- Subhojit Chakraborty
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Zakaria Ouhaz
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| |
Collapse
|
17
|
Zheng W, Yao Z, Xie Y, Fan J, Hu B. Identification of Alzheimer's Disease and Mild Cognitive Impairment Using Networks Constructed Based on Multiple Morphological Brain Features. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:887-897. [PMID: 30077576 DOI: 10.1016/j.bpsc.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023]
Abstract
Structural brain markers are important for characterizing the pathology of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Here, we constructed a multifeature-based network (MFN) for each individual using a sparse linear regression performed on six types of morphological features to promote the structure-based autodiagnosis. The categorization performance of the MFN was evaluated in 165 normal control subjects, 221 patients with MCI, and 142 patients with AD. We achieved 96.42% and 96.37% accuracy, respectively, in distinguishing the patients with AD and MCI from the normal control subjects, and reasonable discrimination of the two disease cohorts (70.52%) and prediction of the MCI to AD progression (65.61%). The performance was further improved by combining the properties of the MFN with the morphological features. Our results demonstrate the effectiveness of the MFN in combination with morphological features obtained from single imaging modality, serving as robust biomarkers in the diagnosis of AD and MCI.
Collapse
Affiliation(s)
- Weihao Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yuanwei Xie
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jin Fan
- Department of Psychology, Queens College, City University of New York, Queens; Department of Neuroscience, Queens College, City University of New York, Queens; Department of Psychiatry, Icahn School of Medicine at Mont Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mont Sinai, New York, New York.
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China; Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China.
| |
Collapse
|
18
|
Ghazi Sherbaf F, Mohajer B, Ashraf-Ganjouei A, Mojtahed Zadeh M, Javinani A, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Serum Insulin-Like Growth Factor-1 in Parkinson's Disease; Study of Cerebrospinal Fluid Biomarkers and White Matter Microstructure. Front Endocrinol (Lausanne) 2018; 9:608. [PMID: 30450079 PMCID: PMC6224341 DOI: 10.3389/fendo.2018.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Growing evidence shows that impaired signaling of Insulin-like Growth Factor-1 (IGF-1) is associated with neurodegenerative disorders, such as Parkinson's disease (PD). However, there is still controversy regarding its proinflammatory or neuroprotective function. In an attempt to elucidate the contribution of IGF-1 in PD, we aimed to discover the relation between serum IGF-1 levels in drug-naïve early PD patients and cerebrospinal fluid (CSF) biomarkers as well as microstructural changes in brain white matter. Methods: The association between quartiles of serum IGF-1 levels and CSF biomarkers (α-synuclein, dopamine, amyloid-β1-42, total tau, and phosphorylated tau) was investigated using adjusted regression models in 404 drug-naïve early PD patients with only mild motor manifestations and 188 age- and sex-matched healthy controls (HC) enrolled in the Parkinson's Progression Markers Initiative (PPMI). By using region of interest analysis and connectometry approach, we tracked the white matter microstructural integrity and diffusivity patterns in a subgroup of study participants with available diffusion MRI data to investigate the association between subcomponents of neural pathways with serum IGF-1 levels. Results: PD patients had higher levels of IGF-1 compared to HC, although not statistically significant (mean difference: 3.60, P = 0.44). However, after adjustment for possible confounders and correction for False Discovery Rate (FDR), IGF-1 was negatively correlated with CSF α-synuclein, total and phosphorylated tau levels only in PD subjects. The imaging analysis proved a significant negative correlation (FDR corrected P-value = 0.013) between continuous levels of serum IGF-1 in patients with PD and the connectivity, but not integrity, in following fibers while controlling for age, sex, body mass index, depressive symptoms, education years, cognitive status and disease duration: middle cerebellar peduncle, cingulum, genu and splenium of the corpus callosum. No significant association was found between brain white matter microstructral measures or CSF markers of healthy controls and levels of IGF-1. Conclusion: Altered connectivity in specific white matter structures, mainly involved in cognitive and motor deterioration, in association with higher serum IGF-1 levels might propose IGF-1 as a potential associate of worse outcome in response to higher burden of α-synucleinopathy and tauopathy in PD.
Collapse
Affiliation(s)
| | - Bahram Mohajer
- Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Javinani
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
- *Correspondence: Mehdi Shirin Shandiz
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Mohammad Hadi Aarabi
| |
Collapse
|
19
|
Yu J, Lam CLM, Lee TMC. White matter microstructural abnormalities in amnestic mild cognitive impairment: A meta-analysis of whole-brain and ROI-based studies. Neurosci Biobehav Rev 2017; 83:405-416. [PMID: 29092777 DOI: 10.1016/j.neubiorev.2017.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022]
Abstract
Studies that examined white matter (WM) alterations in amnestic mild cognitive impairment (aMCI) abound. This timely meta-analysis aims to synthesize the results of these studies. Seventy-seven studies (totalNaMCI=1844) were included. Fourteen region-of-interest-based (ROI-based) (k≥8;NaMCI≥284 per ROI) and two activation likelihood estimation (ALE) meta-analyses (fractional anisotropy [FA]: k=15;NaMCI=463; mean diffusivity [MD]: k=8;NaMCI=193) were carried out. Among the many significant ROI-related findings, reliable FA and MD alterations in the fornix, uncinate fasciculus, and parahippocampal cingulum were observed in aMCI. Larger effects were observed in MD relative to FA. The ALE meta-analysis revealed a significant FA decrease among aMCI subjects in the posterior corona radiata. These results provide robust evidence of the presence of WM abnormalities in aMCI. Our findings also highlight the importance of carrying out both ROI-based and whole-brain-based research to obtain a complete picture of WM microstructural alterations associated with the condition..
Collapse
Affiliation(s)
- Junhong Yu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Jiang H, He NY, Sun YH, Jian FF, Bian LG, Shen JK, Yan FH, Pan SJ, Sun QF. Altered gray and white matter microstructure in Cushing’s disease: A diffusional kurtosis imaging study. Brain Res 2017; 1665:80-87. [DOI: 10.1016/j.brainres.2017.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/03/2023]
|