1
|
Sobral AF, Cunha A, Silva V, Gil-Martins E, Silva R, Barbosa DJ. Unveiling the Therapeutic Potential of Folate-Dependent One-Carbon Metabolism in Cancer and Neurodegeneration. Int J Mol Sci 2024; 25:9339. [PMID: 39273288 PMCID: PMC11395277 DOI: 10.3390/ijms25179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Andrea Cunha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
2
|
Antón-Fernández A, Cuadros R, Peinado-Cahuchola R, Hernández F, Avila J. Role of folate receptor α in the partial rejuvenation of dentate gyrus cells: Improvement of cognitive function in 21-month-old aged mice. Sci Rep 2024; 14:6915. [PMID: 38519576 PMCID: PMC10960019 DOI: 10.1038/s41598-024-57095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Neuronal aging may be, in part, related to a change in DNA methylation. Thus, methyl donors, like folate and methionine, may play a role in cognitive changes associated to neuronal aging. To test the role of these metabolites, we performed stereotaxic microinjection of these molecules into the dentate gyrus (DG) of aged mice (an average age of 21 month). Folate, but not S-Adenosyl-Methionine (SAM), enhances cognition in aged mice. In the presence of folate, we observed partial rejuvenation of DG cells, characterized by the expression of juvenile genes or reorganization of extracellular matrix. Here, we have also tried to identify the mechanism independent of DNA methylation, that involve folate effects on cognition. Our analyses indicated that folate binds to folate receptor α (FRα) and, upon folate binding, FRα is transported to cell nucleus, where it is acting as transcription factor for expressing genes like SOX2 or GluN2B. In this work, we report that a FRα binding peptide also replicates the folate effect on cognition, in aged mice. Our data suggest that such effect is not sex-dependent. Thus, we propose the use of this peptide to improve cognition since it lacks of folate-mediated side effects. The use of synthetic FRα binding peptides emerge as a future strategy for the study of brain rejuvenation.
Collapse
Affiliation(s)
- A Antón-Fernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - R Cuadros
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - R Peinado-Cahuchola
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - F Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Avila J. Delaying Brain Aging or Decreasing Tau Levels as Strategies to Prevent Alzheimer's Disease: In Memoriam of Mark A. Smith. J Alzheimers Dis 2024; 100:S265-S270. [PMID: 39058443 DOI: 10.3233/jad-240500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging is the main risk for neurodegenerative disorders like Alzheimer's disease. In this short review, I will comment on how delaying brain aging through the addition of Yamanaka Factors or small compounds that bind to the folate receptor alpha, which promote the expression of the Yamanaka Factors or by the decrease tau levels in brain cells from older subjects could serve as strategies to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
4
|
Ahmad S, Ahmed SB, Khan A, Wasim M, Tabassum S, Haider S, Ahmed F, Batool Z, Khaliq S, Rafiq H, Tikmani P, Gilani AUH. Natural remedies for Alzheimer's disease: A systematic review of randomized controlled trials. Metab Brain Dis 2023; 38:17-44. [PMID: 35960461 DOI: 10.1007/s11011-022-01063-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is the common type of dementia and is currently incurable. Existing FDA-approved AD drugs may not be effective for everyone, they cannot cure the disease nor stop its progression and their effects diminish over time. Therefore, the present review aimed to explore the role of natural alternatives in the treatment of AD. A systematic search was conducted using Ovid MEDLINE, CINAHL, Cochrane and PubMed databases and reference lists up to November 30, 2021. Only randomized control trials were included and appraised using the National Institute of Health framework. Data analysis showed that herbs like Gingko Biloba, Melissa Officinalis, Salvia officinalis, Ginseng and saffron alone or in combination with curcumin, low-fat diet, NuAD-Trail, and soy lecithin showed significant positive effects on AD. Moreover, combination of natural and pharmaceuticals has far better effects than only allopathic treatment. Thus, different herbal remedies in combination with FDA approved drugs are effective and more promising in treatment of AD.
Collapse
Affiliation(s)
- Saara Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Saad Bilal Ahmed
- Department of Geriatrics, Monash University, Melbourne, Australia
| | - Asra Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhammad Wasim
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Saiqa Tabassum
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Department of Biosciences, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Saida Haider
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Fatima Ahmed
- Department of Ophthalmology, Liaquat National Hospital, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Federal Urdu University of Science and Technology, Karachi, Pakistan
| | - Hamna Rafiq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Prashant Tikmani
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Anwar-Ul-Hassan Gilani
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
5
|
García-Alberca JM, Gris E, de la Guía P, Mendoza S, de la Rica ML. Efficacy of Souvenaid® Combined with Acetylcholinesterase Inhibitors in the Treatment of Mild Alzheimer's Disease. J Alzheimers Dis 2023; 91:1459-1469. [PMID: 36641676 PMCID: PMC9986693 DOI: 10.3233/jad-221003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Souvenaid® is a medical food that contains nutrients that can help synapse synthesis in Alzheimer's disease (AD). The potential effectiveness of combination therapy of Souvenaid with cholinesterase inhibitors (AChEI) is currently not well-known. OBJECTIVE To look into the effect of combination therapy with Souvenaid plus AChEI in people with mild AD in the real-world. METHODS We carried out a retrospective analysis in mild AD patients attending a memory clinic. Three groups were studied according to the treatment they received: Souvenaid alone (n = 66), AChEI alone (n = 84), and Souvenaid+AChEI (n = 70). Treatment effects were evaluated at baseline, 6 and 12 months. Cognitive functioning was assessed by Mini-Mental State Examination (MMSE), Rey Auditory Verbal Learning Test (RAVLT), Symbol Digit Modalities Test (SDMT), Boston Naming Test (BNT), Trail Making Test (TMT/A-B), Phonemic and Semantic Verbal Fluency Test (PVFT/SVFT); neuropsychiatric symptoms were evaluated by the Neuropsychiatric Inventory (NPI); functional capacity was assessed by the Bayer Activities Daily Living Scale (BAYER-S). A Mixed Model for Repeated Measures analysis was carried out to evaluate changes in outcome scores. RESULTS After 12 months Souvenaid+AChEI showed significant improvement in MMSE (p < 0.001), RAVLT (p < 0.0001), SVFT (p = 0.002), PVFT (p = 0.007), TMTA (p = 0.039), TMTB (p = 0.001), and NPI (p < 0.0001) compared to AChEI alone. CONCLUSION Souvenaid showed cognitive and behavioral benefits in mild AD patients. These effects increased when Souvenaid and AChEI were used in combination. This study can serve as a model for the design of prospective controlled trials that help to support the combined use of Souvenaid and antidementia drugs in AD.
Collapse
Affiliation(s)
- José María García-Alberca
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Esther Gris
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Paz de la Guía
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - Silvia Mendoza
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| | - María López de la Rica
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), Málaga, Spain
| |
Collapse
|
6
|
Elmaleh DR, Downey MA, Kundakovic L, Wilkinson JE, Neeman Z, Segal E. New Approaches to Profile the Microbiome for Treatment of Neurodegenerative Disease. J Alzheimers Dis 2021; 82:1373-1401. [PMID: 34219718 DOI: 10.3233/jad-210198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive neurodegenerative diseases represent some of the largest growing treatment challenges for public health in modern society. These diseases mainly progress due to aging and are driven by microglial surveillance and activation in response to changes occurring in the aging brain. The lack of efficacious treatment options for Alzheimer's disease (AD), as the focus of this review, and other neurodegenerative disorders has encouraged new approaches to address neuroinflammation for potential treatments. Here we will focus on the increasing evidence that dysbiosis of the gut microbiome is characterized by inflammation that may carry over to the central nervous system and into the brain. Neuroinflammation is the common thread associated with neurodegenerative diseases, but it is yet unknown at what point and how innate immune function turns pathogenic for an individual. This review will address extensive efforts to identify constituents of the gut microbiome and their neuroactive metabolites as a peripheral path to treatment. This approach is still in its infancy in substantive clinical trials and requires thorough human studies to elucidate the metabolic microbiome profile to design appropriate treatment strategies for early stages of neurodegenerative disease. We view that in order to address neurodegenerative mechanisms of the gut, microbiome and metabolite profiles must be determined to pre-screen AD subjects prior to the design of specific, chronic titrations of gut microbiota with low-dose antibiotics. This represents an exciting treatment strategy designed to balance inflammatory microglial involvement in disease progression with an individual's manifestation of AD as influenced by a coercive inflammatory gut.
Collapse
Affiliation(s)
- David R Elmaleh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,AZTherapies, Inc., Boston, MA, USA
| | | | | | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ziv Neeman
- Department of Radiology, Emek Medical Center, Afula, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Melzer TM, Manosso LM, Yau SY, Gil-Mohapel J, Brocardo PS. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int J Mol Sci 2021; 22:5026. [PMID: 34068525 PMCID: PMC8126018 DOI: 10.3390/ijms22095026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Consuming a balanced, nutritious diet is important for maintaining health, especially as individuals age. Several studies suggest that consuming a diet rich in antioxidants and anti-inflammatory components such as those found in fruits, nuts, vegetables, and fish may reduce age-related cognitive decline and the risk of developing various neurodegenerative diseases. Numerous studies have been published over the last decade focusing on nutrition and how this impacts health. The main objective of the current article is to review the data linking the role of diet and nutrition with aging and age-related cognitive decline. Specifically, we discuss the roles of micronutrients and macronutrients and provide an overview of how the gut microbiota-gut-brain axis and nutrition impact brain function in general and cognitive processes in particular during aging. We propose that dietary interventions designed to optimize the levels of macro and micronutrients and maximize the functioning of the microbiota-gut-brain axis can be of therapeutic value for improving cognitive functioning, particularly during aging.
Collapse
Affiliation(s)
- Thayza Martins Melzer
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Luana Meller Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, SC, Brazil;
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| |
Collapse
|
8
|
Viñuela F, Barro A. Assessment of a Potential Synergistic Effect of Souvenaid® in Mild Alzheimer's Disease Patients on Treatment with Acetylcholinesterase Inhibitors: An Observational, Non-Interventional Study. J Alzheimers Dis 2021; 80:1377-1382. [PMID: 33682712 PMCID: PMC8150480 DOI: 10.3233/jad-201357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We evaluated the efficacy and safety of Souvenaid (a multinutrient supplement) in patients with mild Alzheimer's disease (AD) in real clinical practice and assessed a potential synergistic effect of acetylcholinesterase (AChE) inhibitors. Clinical Dementia Rating (CDR) scale was evaluated after six months follow-up. Patients were divided into 4 groups according to the treatment they received: Souvenaid + AChE inhibitors (n = 23); only Souvenaid (n = 8); only AChE inhibitors (n = 7); no treatment (n = 16). The Souvenaid + AChE inhibitors and Souvenaid alone groups were associated with significantly lower increases in CDR per month than the AChE inhibitors or no treatment ones. The efficacy of Souvenaid + AChE inhibitors tended to be higher than Souvenaid alone.
Collapse
Affiliation(s)
- Félix Viñuela
- Instituto Neurológico Andaluz, Hospital Victoria Eugenia, Sevilla, Spain.,Unidad Deterioro Cognitivo, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Angeles Barro
- Instituto Neurológico Andaluz, Hospital Victoria Eugenia, Sevilla, Spain.,Unidad Deterioro Cognitivo, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
9
|
Bekdash RA. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031273. [PMID: 33525357 PMCID: PMC7865740 DOI: 10.3390/ijms22031273] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are a major public health problem worldwide with a wide spectrum of symptoms and physiological effects. It has been long reported that the dysregulation of the cholinergic system and the adrenergic system are linked to the etiology of Alzheimer’s disease. Cholinergic neurons are widely distributed in brain regions that play a role in cognitive functions and normal cholinergic signaling related to learning and memory is dependent on acetylcholine. The Locus Coeruleus norepinephrine (LC-NE) is the main noradrenergic nucleus that projects and supplies norepinephrine to different brain regions. Norepinephrine has been shown to be neuroprotective against neurodegeneration and plays a role in behavior and cognition. Cholinergic and adrenergic signaling are dysregulated in Alzheimer’s disease. The degeneration of cholinergic neurons in nucleus basalis of Meynert in the basal forebrain and the degeneration of LC-NE neurons were reported in Alzheimer’s disease. The aim of this review is to describe current literature on the role of the cholinergic system and the adrenergic system (LC-NE) in the pathology of Alzheimer’s disease and potential therapeutic implications.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Update on Treatments for Cognitive Decline in Alzheimer’s Disease. J Nurse Pract 2020. [DOI: 10.1016/j.nurpra.2019.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Bekdash RA. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019; 11:nu11122995. [PMID: 31817768 PMCID: PMC6950346 DOI: 10.3390/nu11122995] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that physical and mental health are influenced by an intricate interaction between genes and environment. Environmental factors have been shown to modulate neuronal gene expression and function by epigenetic mechanisms. Exposure to these factors including nutrients during sensitive periods of life could program brain development and have long-lasting effects on mental health. Studies have shown that early nutritional intervention that includes methyl-donors improves cognitive functions throughout life. Choline is a micronutrient and a methyl donor that is required for normal brain growth and development. It plays a pivotal role in maintaining structural and functional integrity of cellular membranes. It also regulates cholinergic signaling in the brain via the synthesis of acetylcholine. Via its metabolites, it participates in pathways that regulate methylation of genes related to memory and cognitive functions at different stages of development. Choline-related functions have been dysregulated in some neurodegenerative diseases suggesting choline role in influencing mental health across the lifespan.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
12
|
Pesini A, Iglesias E, Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Gaudó P, Jiménez-Salvador I, Andrés-Benito P, Montoya J, Ferrer I, Pesini P, Ruiz-Pesini E. Brain pyrimidine nucleotide synthesis and Alzheimer disease. Aging (Albany NY) 2019; 11:8433-8462. [PMID: 31560653 PMCID: PMC6814620 DOI: 10.18632/aging.102328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/22/2019] [Indexed: 01/12/2023]
Abstract
Many patients suffering late-onset Alzheimer disease show a deficit in respiratory complex IV activity. The de novo pyrimidine biosynthesis pathway connects with the mitochondrial respiratory chain upstream from respiratory complex IV. We hypothesized that these patients would have decreased pyrimidine nucleotide levels. Then, different cell processes for which these compounds are essential, such as neuronal membrane generation and maintenance and synapses production, would be compromised. Using a cell model, we show that inhibiting oxidative phosphorylation function reduces neuronal differentiation. Linking these processes to pyrimidine nucleotides, uridine treatment recovers neuronal differentiation. To unmask the importance of these pathways in Alzheimer disease, we firstly confirm the existence of the de novo pyrimidine biosynthesis pathway in adult human brain. Then, we report altered mRNA levels for genes from both de novo pyrimidine biosynthesis and pyrimidine salvage pathways in brain from patients with Alzheimer disease. Thus, uridine supplementation might be used as a therapy for those Alzheimer disease patients with low respiratory complex IV activity.
Collapse
Affiliation(s)
- Alba Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Paula Gaudó
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Pol Andrés-Benito
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isidro Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Neurociencias, Universidad de Barcelona, Barcelona, Spain
| | | | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Fundación ARAID, Zaragoza, Spain
| |
Collapse
|
13
|
Avallone R, Vitale G, Bertolotti M. Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. Int J Mol Sci 2019; 20:E4256. [PMID: 31480294 PMCID: PMC6747747 DOI: 10.3390/ijms20174256] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023] Open
Abstract
A nutritional approach could be a promising strategy to prevent or slow the progression of neurodegenerative diseases such as Parkinson's and Alzheimer's disease, since there is no effective therapy for these diseases so far. The beneficial effects of omega-3 fatty acids are now well established by a plethora of studies through their involvement in multiple biochemical functions, including synthesis of anti-inflammatory mediators, cell membrane fluidity, intracellular signaling, and gene expression. This systematic review will consider epidemiological studies and clinical trials that assessed the impact of supplementation or dietary intake of omega-3 polyunsaturated fatty acids on neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Indeed, treatment with omega-3 fatty acids, being safe and well tolerated, represents a valuable and biologically plausible tool in the management of neurodegenerative diseases in their early stages.
Collapse
Affiliation(s)
- Rossella Avallone
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy.
| | - Giovanni Vitale
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy
| | - Marco Bertolotti
- Division of Geriatric Medicine, Department of Biomedical, Metabolic and Neural Sciences, and Center for Gerontological Evaluation and Research, Modena and Reggio Emilia University, 41126 Modena, Italy
| |
Collapse
|
14
|
Cummings J, Passmore P, McGuinness B, Mok V, Chen C, Engelborghs S, Woodward M, Manzano S, Garcia-Ribas G, Cappa S, Bertolucci P, Chu LW. Souvenaid in the management of mild cognitive impairment: an expert consensus opinion. ALZHEIMERS RESEARCH & THERAPY 2019; 11:73. [PMID: 31421681 PMCID: PMC6698334 DOI: 10.1186/s13195-019-0528-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Background Mild cognitive impairment (MCI) among an aging global population is a growing challenge for healthcare providers and payers. In many cases, MCI is an ominous portent for dementia. Early and accurate diagnosis of MCI provides a window of opportunity to improve the outcomes using a personalized care plan including lifestyle modifications to reduce the impact of modifiable risk factors (for example, blood pressure control and increased physical activity), cognitive training, dietary advice, and nutritional support. Souvenaid is a once-daily drink containing a mixture of precursors and cofactors (long-chain omega-3 fatty acids, uridine, choline, B vitamins, vitamin C, vitamin E, and selenium), which was developed to support the formation and function of neuronal membranes and synapses. Healthcare providers, patients, and carers require expert advice about the use of Souvenaid. Methods An international panel of experts was convened to review the evidence and to make recommendations about the diagnosis and management of MCI, identification of candidates for Souvenaid, and use of Souvenaid in real-world practice. This article provides a summary of the expert opinions and makes recommendations for clinical practice and future research. Summary of opinion Early diagnosis of MCI requires the use of suitable neuropsychological tests combined with a careful clinical history. A multimodal approach is recommended; dietary and nutritional interventions should be considered alongside individualized lifestyle modifications. Although single-agent nutritional supplements have failed to produce cognitive benefits for patients with MCI, a broader nutritional approach warrants consideration. Evidence from randomized controlled trials suggests that Souvenaid should be considered as an option for some patients with early Alzheimer’s disease (AD), including those with MCI due to AD (prodromal AD). Conclusion Early and accurate diagnosis of MCI provides a window of opportunity to improve the outcomes using a multimodal management approach including lifestyle risk factor modification and consideration of the multinutrient Souvenaid. Electronic supplementary material The online version of this article (10.1186/s13195-019-0528-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, UNLV; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
| | - Peter Passmore
- Centre for Public Health, Institute of Clinical Sciences, Queens University Belfast, Belfast, UK
| | - Bernadette McGuinness
- Centre for Public Health, Institute of Clinical Sciences, Queens University Belfast, Belfast, UK
| | - Vincent Mok
- Therese Pei Fong Chow Research Center for Prevention of Dementia, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher Chen
- Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sebastiaan Engelborghs
- Reference Centre for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium.,Department of Neurology, Centre for Neurosciences, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michael Woodward
- Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | | | | | - Stefano Cappa
- University School for Advanced Studies IUSS, Pavia and IRCCS Istituto Centro, S. Giovanni di Dio, Brescia, Italy
| | - Paulo Bertolucci
- Service of Cognitive and Behavioral Neurology, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Leung-Wing Chu
- Department of Medicine, The University of Hong Kong and Hong Kong Brain Memory Centre, Hong Kong Special Administrative Region, China
| |
Collapse
|
15
|
Rasmussen J. The LipiDiDiet trial: what does it add to the current evidence for Fortasyn Connect in early Alzheimer's disease? Clin Interv Aging 2019; 14:1481-1492. [PMID: 31616139 PMCID: PMC6699494 DOI: 10.2147/cia.s211739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022] Open
Abstract
Nutritional factors can influence the risk of developing Alzheimer’s disease (AD) and its rate of progression, and there is, therefore, increasing interest in nutrition as a modifiable risk factor for the disease. Synaptic loss is an important feature of early AD, and the formation of new synapses is dependent on key nutritional elements that are known to be deficient in patients with AD. The daily medical food, Souvenaid, contains Fortasyn Connect, a multinutrient combination developed to specifically address these deficiencies, comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate, choline, phospholipids, selenium, folic acid, and vitamins B12, B6, C, and E. Although yielding heterogeneous findings, clinical studies of Fortasyn Connect provide preliminary evidence of clinically relevant benefits on cognitive outcomes in prodromal and early AD. The LipiDiDiet trial investigated the effects of Fortasyn Connect on cognition and related measures in prodromal AD, and is the first randomized, controlled, double-blind, multicenter trial study of a non-pharmacological intervention in this setting. The primary efficacy endpoint was change over 24 months in a composite score of cognitive performance using a neuropsychological test battery. Fortasyn Connect had no significant effect on this endpoint, but demonstrated a significant benefit on secondary endpoints, including domains of cognition affected by AD (attention, memory, executive function) and hippocampal atrophy, suggesting a potential benefit on disease progression. Other studies have demonstrated benefits for Fortasyn Connect on nutritional markers and levels of plasma homocysteine. Taken together, current evidence indicates that Fortasyn Connect may show benefit on domains of cognition affected by AD and nutritional measures that influence risk factors for its progression; that it has greater potential for benefit earlier rather than later in the disease; and that it is safe and well tolerated, alone or in combination with AD medications. Further research into its potential role in AD management is therefore warranted.
Collapse
Affiliation(s)
- Jill Rasmussen
- Primary Care Specialist Mental Health in Dementia and Learning Disability, Surrey, UK.,Royal College of General Practitioners Representative for Dementia, London, UK
| |
Collapse
|
16
|
Varikasuvu SR, Prasad V S, Kothapalli J, Manne M. Brain Selenium in Alzheimer's Disease (BRAIN SEAD Study): a Systematic Review and Meta-Analysis. Biol Trace Elem Res 2019; 189:361-369. [PMID: 30171594 DOI: 10.1007/s12011-018-1492-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Oxidative stress has been found to be implicated in the development of Alzheimer's disease (AD). In this meta-analytic review, we compared tissue levels between AD and non-AD brains of selenium, an important biological trace element well known for its vital role in the brain function. We included 14 studies with 40 observations on selenium concentrations in AD and control brains. The effect size as standardized mean difference (SMD) was generated using review manager 5.3. Random-effects meta-analysis indicated a decrease (SMD = - 0.42) in brain tissue selenium levels in AD as compared to non-AD controls. The subgroup meta-analysis demonstrated that the selenium levels were decreased in the temporal, hippocampal, and cortex regions in AD. The funnel plot with Egger's (p = 0.88) and Begg's tests (p = 0.24) detected no significant publication bias. The results of sensitivity analysis indicated that no single study/observation had significantly influenced the overall outcome. This meta-analysis provides consolidated evidence for a significant decrease of selenium status in AD brains compared to controls. In line with the evidence supporting selenium's antioxidant role and the involvement of oxidative stress in AD development, this meta-analysis supports new therapeutic strategies aimed at brain tissue selenium homeostasis in AD.
Collapse
Affiliation(s)
- Seshadri Reddy Varikasuvu
- Faculty of Medicine, Department of Biochemistry, Maheshwara Medical College & Hospital, Hyderabad, Telangana, 502307, India.
| | - Satya Prasad V
- Faculty of Medicine, Department of Anatomy, Maheshwara Medical College & Hospital, Hyderabad, Telangana, 502307, India
| | - Jyothinath Kothapalli
- Faculty of Medicine, Department of Anatomy, Maheshwara Medical College & Hospital, Hyderabad, Telangana, 502307, India
| | - Munikumar Manne
- Biomedical Informatics Center (BMIC), National Institute of Nutrition-Indian Council of Medical Research, Hyderabad, Telangana, India
| |
Collapse
|
17
|
Manzano Palomo MS, Anaya Caravaca B, Balsa Bretón MA, Castrillo SM, Vicente ADLM, Castro Arce E, Alves Prez MT. Mild Cognitive Impairment with a High Risk of Progression to Alzheimer's Disease Dementia (MCI-HR-AD): Effect of Souvenaid ® Treatment on Cognition and 18F-FDG PET Scans. J Alzheimers Dis Rep 2019; 3:95-102. [PMID: 31259306 PMCID: PMC6597964 DOI: 10.3233/adr-190109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Previous studies have shown that Souvenaid (medical food) can have benefits on memory, cognition, and function in early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Objective: Demonstrate that Souvenaid could improve or maintain cognition and has an effect on neurodegeneration biomarkers. Methods: This cohort study was carried out from June 2015 through December 2016 in the Neurology Department, Infanta Cristina Hospital, Madrid, Spain. MCI-HR-AD were recruited using Petersen criteria, neuropsychology (NPS), and 18F-FDG PET scans to confirm the high risk of progression to dementia with one year of follow-up. Age, sex, vascular risk factors (VRF), and NPS values (Barcelona brief version) were analyzed. 18F-FDG PET scans were analyzed as a visual procedure. The study was approved by the Research Committee of ICH. Statistical analysis was made with SPSS 22.0 version. Results: Subjects included 43 MCI patients (58.5% women; mean age 69.78±7.89): 17 receiving Souvenaid® treatment (ST), 24 receiving no treatment (WT) and 2 who withdrew. No differences were seen in VRF, only hypercholesterolemia, and were less prevalent in the ST group (p = 0.002). The rate of progression to dementia was 48.8% (no differences between groups, p = 0.654). A second round of 18F-FDG PET scans showed a significance worsening of glucose metabolism in WT (p = 0.001) versus ST, in which it was low (p = 0.050). For NPS testing, there was a significant worsening in memory performance in the WT group (p = 0.011) and a stabilization in ST (p = 0.083), as well as in executive functions and attention (worsening in WT, p = 0.014). For the Subjective Changing Scale (SCS), caregivers indicated a stabilization/improvement in ST (p = 0.017). Conclusion: Souvenaid had a significant effect on several cognitive domains, and on SCS in patients with MCI-HR-AD. Its intervention had an impact on preservation on 18F-FDG PET scans.
Collapse
Affiliation(s)
- Maria Sagrario Manzano Palomo
- Department of Neurology, Infanta Leonor Hospital, Madrid, Spain.,Behavioral Neurology and Dementia Group of the Spanish Society of Neurology, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Craenen K, Verslegers M, Baatout S, Abderrafi Benotmane M. An appraisal of folates as key factors in cognition and ageing-related diseases. Crit Rev Food Sci Nutr 2019; 60:722-739. [PMID: 30729795 DOI: 10.1080/10408398.2018.1549017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Folic acid (FA) is often consumed as a food supplement and can be found in fortified staple foods in various western countries. Even though FA supplementation during pregnancy is known to prevent severe congenital anomalies in the developing child (e.g., neural tube defects), much less is known about its influence on cognition and neurological functioning. In this review, we address the advances in this field and situate how folate intake during pregnancy, postnatal life, adulthood and in the elderly affects cognition. In addition, an association between folate status and ageing, dementia and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis is discussed. While its role in the incidence and severity of these diseases is becoming apparent, the underlying action of folates and related metabolites remains elusive. Finally, the potential of FA as a nutraceutical has been proposed, although the efficacy will highly depend on the interplay with other micronutrients, the disease stage and the duration of supplementation. Hence, the lack of consistent data urges for more animal studies and (pre)clinical trials in humans to ascertain a potential beneficial role for folates in the treatment or amelioration of cognitive decline and ageing-related disorders.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium.,Biology Department, Research Group Neural Circuit Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | | |
Collapse
|
19
|
Abstract
A key message from the review of cognitive dysfunction in psychiatry published by Millan et al (2012) was not just that cognitive skills are often compromised in patients with psychiatric disorders, but that deficits in specific domains are common to a number of conditions. The review also highlighted that the magnitude of the observed deficits varied across disorders. A helpful element of the Millan et al study was the inclusion of a table in which the authors sought to convey the domains of cognition and a categorization of the magnitude of the observed deficits.In previous articles, we have considered best practice for the assessment of cognition. In these contributions, we have argued not for the use of specific tests, but instead for measures that meet acceptable standards of reliability, validity, and sensitivity. In the course of our discussions, we have included reference to test validity in the context of considering whether selected measures index appropriate domains of cognition. In this article, we begin with a brief discussion of the requirements for good test selection, especially with respect to issues of sensitivity, reliability, and validity. Thereafter the focus of this article is on the issue of domain validity. We will critically review the specification of the cognitive domains proposed by Millan et al, as well as those selected by authors of meta-analyses characterizing cognitive deficits in major depressive disorders. This focus is solely to make the discussion tractable, though we propose that the issues raised will be applicable across all psychiatric and neurological disorders.
Collapse
|
20
|
Sabbagh MN, Hendrix S, Harrison JE. FDA position statement "Early Alzheimer's disease: Developing drugs for treatment, Guidance for Industry". ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:13-19. [PMID: 31650002 PMCID: PMC6804505 DOI: 10.1016/j.trci.2018.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite billions of dollars invested in clinical trials to develop novel therapeutics for Alzheimer's disease, no approved treatments have been developed in the past 15 years. In that span, new classes of drugs have been developed and tested, including monoclonal antibodies, γ-secretase modulators, γ-secretase inhibitors, BACE inhibitors, RAGE inhibitors, nicotinic agonists, 5HT6 antagonists, and others. The one constant for all of these clinical trials programs is the use of the ADAS-cog as the primary scale to determine efficacy. The question that needs to be considered is whether it is the target engagement of the drug or the clinical trial measure testing the efficacy. The FDA put out a new position statement in 2018 informing the field on possible considerations for demonstrating efficacy to open the path for approval. Here, we propose and comment on a variety of approaches that are alternatives to the ADAS for FDA-specified stage 3 and 4 Alzheimer's disease. These novel outcomes are being validated in current clinical trials and could be used as efficacy measures moving forward.
Collapse
Affiliation(s)
- Marwan N Sabbagh
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | - John E Harrison
- Principal Consultant at Metis Cognition Ltd, Kilmington, UK.,Associate Professor at the Alzheimer Center, VUmc, Amsterdam, The Netherlands.,Visiting Professor Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London
| |
Collapse
|
21
|
Solfrizzi V, Agosti P, Lozupone M, Custodero C, Schilardi A, Valiani V, Santamato A, Sardone R, Dibello V, Di Lena L, Stallone R, Ranieri M, Bellomo A, Greco A, Daniele A, Seripa D, Sabbà C, Logroscino G, Panza F. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: A systematic review. Neurosci Biobehav Rev 2018; 95:480-498. [PMID: 30395922 DOI: 10.1016/j.neubiorev.2018.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
There have been a large number of observational studies on the impact of nutrition on neuroprotection, however, there was a lack of evidence from randomized clinical trials (RCTs). In the present systematic review, from the 32 included RCTs published in the last four years (2014-2017) in patients aged 60 years and older with different late-life cognitive disorders, nutritional intervention through medical food/nutraceutical supplementation and multidomain approach improved magnetic resonance imaging findings and other cognitive-related biomarkers, but without clear effect on cognition in mild Alzheimer's disease (AD) and mild cognitive impairment (MCI). Antioxidant-rich foods (nuts, grapes, cherries) and fatty acid supplementation, mainly n-3 polyunsaturated fatty acids (PUFA), improved specific cognitive domains and cognitive-related outcomes in MCI, mild-to-moderate dementia, and AD. Antioxidant vitamin and trace element supplementations improved only cognitive-related outcomes and biomarkers, high-dose B vitamin supplementation in AD and MCI patients improved cognitive outcomes in the subjects with a high baseline plasma n-3 PUFA, while folic acid supplementation had positive impact on specific cognitive domains in those with high homocysteine.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy.
| | - Pasquale Agosti
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Custodero
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Schilardi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Vincenzo Valiani
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Santamato
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Vittorio Dibello
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luca Di Lena
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Roberta Stallone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Maurizio Ranieri
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Carlo Sabbà
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.
| |
Collapse
|
22
|
Harrison JE. Cognition comes of age: comments on the new FDA draft guidance for early Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:61. [PMID: 29958538 PMCID: PMC6026341 DOI: 10.1186/s13195-018-0386-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background The FDA have recently published draft guidance for the development of treatments for early Alzheimer’s disease. Key features of this guidance are the advocacy of sensitive cognitive measures and a taxonomy of disease severity. Whilst desirable patterns of cognitive-functional improvement are included, specific measures, and the magnitude of required effects, are not described. Main section We describe key elements of the guidance content, especially with regard targeting key cognitive domains and the means by which they might be efficiently indexed in the disease stages included in the guidance. We discuss also the opportunities to assess cognitive performance in ‘Stage 2’ and ‘Stage 3’ patients, as well as the possibilities for effectively assessing function in the latter category. In this section we review candidate cognitive assessments that we judge are capable of delivering on the guidance specification for sensitive neuropsychological measures. This includes detailed consideration of the ADCS-PACC and Catch-Cog initiatives. With respect to the magnitude of effects, we propose that standardised effect sizes of 0.3 represent a reasonable level of efficacy based on the observation that already marketed drugs on average deliver this level of improvement. Conclusions We propose the use of cognitive measures in stage 2 patients to index the cognitive skills known to be compromised early in the Alzheimer’s disease process. We recommend extending the traditional interest in episodic memory to include sensitive, reliable and valid measures of attention, working memory and aspects of executive function. We propose a focus on these additional cognitive abilities based on evidence that performance on tests of these domains is moderately well related to functional skills.
Collapse
Affiliation(s)
- John E Harrison
- Metis Cognition Ltd., Kilmington Common, Wiltshire, BA12 6QY, UK. .,Alzheimer Center, Amsterdam, The Netherlands. .,IoPPN, King's College London, London, UK.
| |
Collapse
|
23
|
Shan G, Banks S, Miller JB, Ritter A, Bernick C, Lombardo J, Cummings JL. Statistical advances in clinical trials and clinical research. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:366-371. [PMID: 30175231 PMCID: PMC6118095 DOI: 10.1016/j.trci.2018.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction New treatments for neurodegenerative disease are urgently needed, and clinical trial methods are an essential component of new drug development. Although a parallel-group study design for neurological disorder clinical trials is commonly used to test the effectiveness of a new treatment as compared to placebo, it does not efficiently use information from the on-going study to increase the success rate of a trial or to stop a trial earlier when the new treatment is indeed ineffective. Methods We review some recent advances in designs for clinical trials, including futility designs and adaptive designs. Results Futility designs and noninferiority designs are used to test the nonsuperiority and the noninferiority of a new treatment, respectively. We provide some guidance on using these two designs and analyzing data from these studies properly. Adaptive designs are increasingly used in clinical trials to improve the flexibility and efficiency of trials with the potential to reduce resources, time, and costs. We review some typical adaptive designs and new statistical methods to handle the statistical challenges from adaptive designs. Discussion Statistical advances in clinical trial designs may be helpful to shorten study length and benefit more patients being treated with a better treatment during the discovery of new therapies for neurological disorders. Advancing statistical underpinnings of neuroscience research is a critical aspect of the core activities supported by the Center of Biomedical Research Excellence award supporting the Center for Neurodegeneration and Translational Neuroscience.
Collapse
Affiliation(s)
- Guogen Shan
- Epidemiology and Biostatistics Program, Department of Environmental and Occupational Health School of Community Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Sarah Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Justin B Miller
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Joseph Lombardo
- National Supercomputing Institute, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | |
Collapse
|
24
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
25
|
Soininen H, Solomon A, Visser PJ, Hendrix SB, Blennow K, Kivipelto M, Hartmann T. 24-month intervention with a specific multinutrient in people with prodromal Alzheimer's disease (LipiDiDiet): a randomised, double-blind, controlled trial. Lancet Neurol 2017; 16:965-975. [PMID: 29097166 PMCID: PMC5697936 DOI: 10.1016/s1474-4422(17)30332-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 01/31/2023]
Abstract
Background Nutrition is an important modifiable risk factor in Alzheimer's disease. Previous trials of the multinutrient Fortasyn Connect showed benefits in mild Alzheimer's disease dementia. LipiDiDiet investigated the effects of Fortasyn Connect on cognition and related measures in prodromal Alzheimer's disease. Here, we report the 24-month results of the trial. Methods LipiDiDiet was a 24-month randomised, controlled, double-blind, parallel-group, multicentre trial (11 sites in Finland, Germany, the Netherlands, and Sweden), with optional 12-month double-blind extensions. The trial enrolled individuals with prodromal Alzheimer's disease, defined according to the International Working Group (IWG)-1 criteria. Participants were randomly assigned (1:1) to active product (125 mL once-a-day drink containing Fortasyn Connect) or control product. Randomisation was computer-generated centrally in blocks of four, stratified by site. All study personnel and participants were masked to treatment assignment. The primary endpoint was change in a neuropsychological test battery (NTB) score. Analysis was by modified intention to treat. Safety analyses included all participants who consumed at least one study product dose. This trial is registered with the Dutch Trial Register, number NTR1705. Findings Between April 20, 2009, and July 3, 2013, 311 of 382 participants screened were randomly assigned to the active group (n=153) or control group (n=158). Mean change in NTB primary endpoint was −0·028 (SD 0·453) in the active group and −0·108 (0·528) in the control group; estimated mean treatment difference was 0·098 (95% CI −0·041 to 0·237; p=0·166). The decline in the control group was less than the prestudy estimate of −0·4 during 24 months. 66 (21%) participants dropped out of the study. Serious adverse events occurred in 34 (22%) participants in the active group and 30 (19%) in control group (p=0·487), none of which were regarded as related to the study intervention. Interpretation The intervention had no significant effect on the NTB primary endpoint over 2 years in prodromal Alzheimer's disease. However, cognitive decline in this population was much lower than expected, rendering the primary endpoint inadequately powered. Group differences on secondary endpoints of disease progression measuring cognition and function and hippocampal atrophy were observed. Further study of nutritional approaches with larger sample sizes, longer duration, or a primary endpoint more sensitive in this pre-dementia population, is needed. Funding European Commission 7th Framework Programme.
Collapse
Affiliation(s)
- Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Neurocenter, Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Alina Solomon
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden; Clinical Trials Unit, Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, University of Maastricht, Maastricht, Netherlands; Department of Neurology, Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden; Clinical Trials Unit, Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Tobias Hartmann
- German Institute for Dementia Prevention (DIDP), Medical Faculty, and Department of Experimental Neurology, Saarland University, Homburg, Germany
| | | |
Collapse
|
26
|
van Wijk N, Slot RER, Duits FH, Strik M, Biesheuvel E, Sijben JWC, Blankenstein MA, Bierau J, van der Flier WM, Scheltens P, Teunissen CE. Nutrients required for phospholipid synthesis are lower in blood and cerebrospinal fluid in mild cognitive impairment and Alzheimer's disease dementia. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 8:139-146. [PMID: 28653034 PMCID: PMC5476966 DOI: 10.1016/j.dadm.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Synaptic membrane formation depends on nutrients that fuel metabolic pathways for the synthesis of constituent phospholipids. Consequently, insufficient availability of such nutrients may restrict membrane formation and contribute to synaptic dysfunction in Alzheimer's disease (AD). We assessed whether blood and cerebrospinal fluid (CSF) concentrations of nutrients related to phospholipid synthesis differ among patients with AD, mild cognitive impairment (MCI), and control subjects. METHODS Concentrations of uridine, choline, folate, homocysteine, and other related metabolites were analyzed in paired blood and CSF samples from subjects selected from the Amsterdam Dementia Cohort with AD (n = 150; age, 66 ± 7 years; 37% female), MCI (n = 148; age, 66 ± 8 years; 37% female), and control subjects (n = 148; age, 59 ± 8 years; 38% female). RESULTS Age- and gender-adjusted analysis of variance revealed different concentrations of circulating uridine, choline, and folate and CSF uridine, folate, and homocysteine (all P < .05) among the three diagnostic groups. Post hoc pairwise comparison showed that subjects with AD had lower CSF uridine, plasma choline and higher CSF homocysteine concentrations, whereas subjects with MCI had lower plasma and CSF uridine, serum and CSF folate, and higher CSF homocysteine concentrations compared with control subjects (all P < .05), with differences ranging from -11 to +22%. DISCUSSION AD and MCI patients have lower levels of nutrients involved in phospholipid synthesis. The current observations warrant exploration of the application of nutritional strategies in the early stages of AD.
Collapse
Affiliation(s)
- Nick van Wijk
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Rosalinde E R Slot
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Flora H Duits
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marieke Strik
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Egbert Biesheuvel
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - John W C Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Marinus A Blankenstein
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht UMC+, Maastricht, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Perez-Pardo P, de Jong EM, Broersen LM, van Wijk N, Attali A, Garssen J, Kraneveld AD. Promising Effects of Neurorestorative Diets on Motor, Cognitive, and Gastrointestinal Dysfunction after Symptom Development in a Mouse Model of Parkinson's Disease. Front Aging Neurosci 2017; 9:57. [PMID: 28373840 PMCID: PMC5357625 DOI: 10.3389/fnagi.2017.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/27/2017] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic nigrostriatal neurons, with reductions in the function and amount of dopaminergic synapses. Therefore, synapse loss and membrane-related pathology provide relevant targets for interventions in PD. We previously showed the beneficial preventive effects of a dietary intervention containing uridine and DHA, two precursors for membrane synthesis, in the intrastriatal rotenone model for PD. Here, we examined the therapeutic potential of the same dietary intervention on motor, cognitive, and gastrointestinal symptoms. In addition, we tested the effects of an extended nutritional formula based on the same precursors plus other nutrients that increase membrane phospholipid synthesis as well as prebiotic fibers. C57BL/6J mice received a unilateral rotenone injection in the striatum. Dietary interventions started 28 days after surgery, when motor-symptoms had developed. Readout parameters included behavioral tasks measuring motor function and spatial memory as well as intestinal function and histological examination of brain and gut to assess PD-like pathology. Our results show that rotenone-induced motor and non-motor problems were partially alleviated by the therapeutic dietary interventions providing uridine and DHA. The extended nutritional intervention containing both precursors and other nutrients that increase phospholipid synthesis as well as prebiotic fibers was more effective in normalizing rotenone-induced motor and non-motor abnormalities. The latter diet also restored striatal DAT levels, indicating its neurorestorative properties. This is the first study demonstrating beneficial effects of specific dietary interventions, given after full development of symptoms, on a broad spectrum of motor and non-motor symptoms in a mouse model for PD.
Collapse
Affiliation(s)
- Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University Utrecht, Netherlands
| | - Esther M de Jong
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University Utrecht, Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht UniversityUtrecht, Netherlands; Nutricia ResearchUtrecht, Netherlands
| | | | | | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht UniversityUtrecht, Netherlands; Nutricia ResearchUtrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University Utrecht, Netherlands
| |
Collapse
|