1
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2024:S0962-8924(24)00185-5. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
2
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
3
|
Ren J, Xiang B, Xueling L, Han X, Yang Z, Zhang M, Zhang Y. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer's disease. Heliyon 2024; 10:e36470. [PMID: 39281517 PMCID: PMC11401100 DOI: 10.1016/j.heliyon.2024.e36470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aβ accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.
Collapse
Affiliation(s)
- Jiale Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Xueling
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mixia Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Strope TA, Wilkins HM. The reciprocal relationship between amyloid precursor protein and mitochondrial function. J Neurochem 2024; 168:2275-2284. [PMID: 39022868 DOI: 10.1111/jnc.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Amyloid precursor protein (APP), secretase enzymes, and amyloid beta (Aβ) have been extensively studied in the context of Alzheimer's disease (AD). Despite this, the function of these proteins and their metabolism is not understood. APP, secretase enzymes, and APP processing products (Aβ and C-terminal fragments) localize to endosomes, mitochondria, endoplasmic reticulum (ER), and mitochondrial/ER contact sites. Studies implicate significant relationships between APP, secretase enzyme function, APP metabolism, and mitochondrial function. Mitochondrial dysfunction is a key pathological hallmark of AD and is intricately linked to proteostasis. Here, we review studies examining potential functions of APP, secretase enzymes, and APP metabolites in the context of mitochondrial function and bioenergetics. We discuss implications and limitations of studies and highlight knowledge gaps that remain in the field.
Collapse
Affiliation(s)
- Taylor A Strope
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2024:10.1038/s41401-024-01359-9. [PMID: 39117969 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li Y, Dai Y, Lin L, Lv J, Liu Y, Zhang C. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic targets for aging-associated diseases. Ageing Res Rev 2024; 98:102320. [PMID: 38719161 DOI: 10.1016/j.arr.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiagao Lv
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Bretou M, Sannerud R, Escamilla-Ayala A, Leroy T, Vrancx C, Van Acker ZP, Perdok A, Vermeire W, Vorsters I, Van Keymolen S, Maxson M, Pavie B, Wierda K, Eskelinen EL, Annaert W. Accumulation of APP C-terminal fragments causes endolysosomal dysfunction through the dysregulation of late endosome to lysosome-ER contact sites. Dev Cell 2024; 59:1571-1592.e9. [PMID: 38626765 DOI: 10.1016/j.devcel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/18/2024]
Abstract
Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.
Collapse
Affiliation(s)
- Marine Bretou
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Tom Leroy
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sophie Van Keymolen
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michelle Maxson
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Benjamin Pavie
- VIB-BioImaging Core, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Eysert F, Kinoshita PF, Lagarde J, Lacas-Gervais S, Xicota L, Dorothée G, Bottlaender M, Checler F, Potier MC, Sarazin M, Chami M. Mitochondrial alterations in fibroblasts from sporadic Alzheimer's disease (AD) patients correlate with AD-related clinical hallmarks. Acta Neuropathol Commun 2024; 12:90. [PMID: 38851733 PMCID: PMC11161956 DOI: 10.1186/s40478-024-01807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
Mitochondrial dysfunctions are key features of Alzheimer's disease (AD). The occurrence of these disturbances in the peripheral cells of AD patients and their potential correlation with disease progression are underinvestigated. We studied mitochondrial structure, function and mitophagy in fibroblasts from healthy volunteers and AD patients at the prodromal (AD-MCI) or demented (AD-D) stages. We carried out correlation studies with clinical cognitive scores, namely, (i) Mini-Mental State Examination (MMSE) and (ii) Dementia Rating-Scale Sum of Boxes (CDR-SOB), and with (iii) amyloid beta (Aβ) plaque burden (PiB-PET imaging) and (iv) the accumulation of peripheral amyloid precursor protein C-terminal fragments (APP-CTFs). We revealed alterations in mitochondrial structure as well as specific mitochondrial dysfunction signatures in AD-MCI and AD-D fibroblasts and revealed that defective mitophagy and autophagy are linked to impaired lysosomal activity in AD-D fibroblasts. We reported significant correlations of a subset of these dysfunctions with cognitive decline, AD-related clinical hallmarks and peripheral APP-CTFs accumulation. This study emphasizes the potential use of peripheral cells for investigating AD pathophysiology.
Collapse
Affiliation(s)
- Fanny Eysert
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Paula-Fernanda Kinoshita
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Université Paris-Saclay, 91401, Orsay, France
| | - Sandra Lacas-Gervais
- Centre Commun de Microscopie Appliquée, Université de Nice Côte d'Azur, 06108, Nice, France
| | - Laura Xicota
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France
- ICM Research Center, CNRS UMR 7225, Paris, France
| | - Guillaume Dorothée
- Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Sorbonne Université, 75012, Paris, France
| | - Michel Bottlaender
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Université Paris-Saclay, 91401, Orsay, France
- UNIACT, Neurospin, Joliot Institute, CEA, Université Paris-Saclay, 91140, Gif sur Yvette, France
| | - Frédéric Checler
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Marie-Claude Potier
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France
- ICM Research Center, CNRS UMR 7225, Paris, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Université Paris-Saclay, 91401, Orsay, France
| | - Mounia Chami
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
9
|
Vaillant-Beuchot L, Eysert F, Duval B, Kinoshita PF, Pardossi-Piquard R, Bauer C, Eddarkaoui S, Buée L, Checler F, Chami M. The amyloid precursor protein and its derived fragments concomitantly contribute to the alterations of mitochondrial transport machinery in Alzheimer's disease. Cell Death Dis 2024; 15:367. [PMID: 38806484 PMCID: PMC11133367 DOI: 10.1038/s41419-024-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aβ) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before. We report herein a change of the expression of mitochondrial transport proteins (SNPH and Miro1), motor adapters (TRANK1 and TRAK2), and components of the dynein and kinesin motors (i.e., IC1,2 and Kif5 (A, B, C) isoforms) by endogenous APP and by overexpression of APP carrying the familial Swedish mutation (APPswe). We show that APP-CTFs and Aβ concomitantly regulate the expression of a set of transport proteins as demonstrated in APPswe cells treated with β- and γ-secretase inhibitors and in cells Knock-down for presenilin 1 and 2. We further report the impact of APP-CTFs on the expression of transport proteins in AAV-injected C99 mice brains. Our data also indicate that both Aβ oligomers (Aβo) and APP-CTFs impair the colocalization of mitochondria and transport proteins. This has been demonstrated in differentiated SH-SY5Y naive cells treated with Aβo and in differentiated SH-SY5Y and murine primary neurons expressing APPswe and treated with the γ-secretase inhibitor. Importantly, we uncover that the expression of a set of transport proteins is modulated in a disease-dependent manner in 3xTgAD mice and in human sporadic AD brains. This study highlights molecular mechanisms underlying mitochondrial transport defects in AD that likely contribute to mitophagy failure and disease progression.
Collapse
Affiliation(s)
- Loan Vaillant-Beuchot
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Fanny Eysert
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Blandine Duval
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Paula Fernanda Kinoshita
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
- Instituto de Ciências Biomédicas Department of Pharmacology, Universidade de São Paulo, São Paulo, Brazil
| | - Raphaëlle Pardossi-Piquard
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Charlotte Bauer
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, 59045, Lille, France
- Inserm UMR-S 1172, Laboratory of excellence DistALZ, 'Alzheimer and Tauopathies', Bâtiment Biserte, rue Polonovski, 59045, Lille, Cedex, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, 59045, Lille, France
- Inserm UMR-S 1172, Laboratory of excellence DistALZ, 'Alzheimer and Tauopathies', Bâtiment Biserte, rue Polonovski, 59045, Lille, Cedex, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of excellence DistALZ, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
10
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
11
|
Kulkarni PG, Mohire VM, Waghmare PP, Banerjee T. Interplay of mitochondria-associated membrane proteins and autophagy: Implications in neurodegeneration. Mitochondrion 2024; 76:101874. [PMID: 38514017 DOI: 10.1016/j.mito.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007 India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
12
|
Delfino G, Briand JB, Oullier T, Nienkemper L, Greig J, Véziers J, Neunlist M, Derkinderen P, Paillusson S. Characterization of mitochondria-associated ER membranes in the enteric nervous system under physiological and pathological conditions. Am J Physiol Gastrointest Liver Physiol 2024; 326:G330-G343. [PMID: 38226933 PMCID: PMC11211041 DOI: 10.1152/ajpgi.00224.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Alterations in endoplasmic reticulum (ER)-mitochondria associations and in mitochondria-associated ER membrane (MAM) behavior have been reported in the brain in several neurodegenerative diseases. Despite the emerging role of the gut-brain axis in neurodegenerative disorders, the biology of MAM in the enteric nervous system (ENS) has not previously been studied. Therefore, we set out to characterize the MAM in the distal colon of wild-type C57BL/6J mice and senescence-accelerated mouse prone 8 (SAMP8), a mouse model of age-related neurodegeneration. We showed for the first time that MAMs are widely present in enteric neurons and that their association is altered in SAMP8 mice. We then examined the functions of MAMs in a primary culture model of enteric neurons and showed that calcium homeostasis was altered in SAMP8 mice when compared with control animals. These findings provide the first detailed characterization of MAMs in the ENS under physiological conditions and during age-associated neurodegeneration. Further investigation of MAM modifications in the ENS in disease may provide valuable information about the possible role of enteric MAMs in neurodegenerative diseases.NEW & NOTEWORTHY Our work shows for the first time the presence of contacts between endoplasmic reticulum and mitochondria in the enteric neurons and that the dynamic of these contacts is affected in these cells from an age-related neurodegeneration mouse model. It provides new insights into the potential role of enteric mitochondria-associated endoplasmic reticulum membrane in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giada Delfino
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Jean Baptiste Briand
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Thibauld Oullier
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Léa Nienkemper
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Jenny Greig
- INSERM, Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Joëlle Véziers
- INSERM, Regenerative Medicine and Skeleton, Nantes Université, Oniris, Univ Angers, RMeS, Nantes, France
| | - Michel Neunlist
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Pascal Derkinderen
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Sébastien Paillusson
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| |
Collapse
|
13
|
Raju RP, Cai L, Tyagi A, Pugazhenthi S. Interactions of Cellular Energetic Gene Clusters in the Alzheimer's Mouse Brain. Mol Neurobiol 2024; 61:476-486. [PMID: 37632678 PMCID: PMC10843700 DOI: 10.1007/s12035-023-03551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/30/2023] [Indexed: 08/28/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the aging population. The pathological characteristics include extracellular senile plaques and intracellular neurofibrillary tangles. In addition, mitochondrial dysfunction, oxidative stress, and neuroinflammation contribute to AD pathogenesis. In this study, we sought to determine the crosstalk between different pathways in the brain of 5XFAD mice, a mouse model for amyloid pathology, by RNA-seq analysis. We observed significant changes in the expression of genes (1288 genes; adj p value < 0.05; log2-fold > 1 and < 1) related to pathways including oxidation-reduction, oxidative phosphorylation, innate immune response, ribosomal protein synthesis, and ubiquitin proteosome system. The most striking feature was the downregulation of genes related to oxidation-reduction process with changes in the expression of a large number of mitochondrial genes. We also observed an upregulation of several immune response genes. Gene interaction network of oxidation-reduction related genes further confirmed a tight cluster of mitochondrial genes. Furthermore, gene interaction analysis of all the 1288 genes showed at least three distinct interaction clusters, with the predominant one relating to cellular energetics. In summary, we identified 1288 genes distinctly different in the 5XFAD brain compared to the WT brain and found cellular energetics to be the most distinct gene cluster in the AD mouse brain.
Collapse
Affiliation(s)
| | - Lun Cai
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Alpna Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Jia K, Tian J, Wang T, Guo L, Xuan Z, Swerdlow RH, Du H. Mitochondria-sequestered Aβ renders synaptic mitochondria vulnerable in the elderly with a risk of Alzheimer disease. JCI Insight 2023; 8:e174290. [PMID: 37991017 PMCID: PMC10721326 DOI: 10.1172/jci.insight.174290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
Mitochondria are critical for neurophysiology, and mitochondrial dysfunction constitutes a characteristic pathology in both brain aging and Alzheimer disease (AD). Whether mitochondrial deficiency in brain aging and AD is mechanistically linked, however, remains controversial. We report a correlation between intrasynaptosomal amyloid β 42 (Aβ42) and synaptic mitochondrial bioenergetics inefficiency in both aging and amnestic mild cognitive impairment, a transitional stage between normal aging and AD. Experiments using a mouse model expressing nonmutant humanized Aβ (humanized Aβ-knockin [hAβ-KI] mice) confirmed the association of increased intramitochondrial sequestration of Aβ42 with exacerbated synaptic mitochondrial dysfunction in an aging factor- and AD risk-bearing context. Also, in comparison with global cerebral Aβ, intramitochondrial Aβ was relatively preserved from activated microglial phagocytosis in aged hAβ-KI mice. The most parsimonious interpretation of our results is that aging-related mitochondrial Aβ sequestration renders synaptic mitochondrial dysfunction in the transitional stage between normal aging and AD. Mitochondrial dysfunction in both brain aging and the prodromal stage of AD may follow a continuous transition in response to escalated intraneuronal, especially intramitochondrial Aβ, accumulation. Moreover, our findings further implicate a pivotal role of mitochondria in harboring early amyloidosis during the conversion from normal to pathological aging.
Collapse
Affiliation(s)
- Kun Jia
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA
| | - Russell H. Swerdlow
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
16
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
17
|
Upadhyay A, Chhangani D, Rao NR, Kofler J, Vassar R, Rincon-Limas DE, Savas JN. Amyloid fibril proteomics of AD brains reveals modifiers of aggregation and toxicity. Mol Neurodegener 2023; 18:61. [PMID: 37710351 PMCID: PMC10503190 DOI: 10.1186/s13024-023-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The accumulation of amyloid beta (Aβ) peptides in fibrils is prerequisite for Alzheimer's disease (AD). Our understanding of the proteins that promote Aβ fibril formation and mediate neurotoxicity has been limited due to technical challenges in isolating pure amyloid fibrils from brain extracts. METHODS To investigate how amyloid fibrils form and cause neurotoxicity in AD brain, we developed a robust biochemical strategy. We benchmarked the success of our purifications using electron microscopy, amyloid dyes, and a large panel of Aβ immunoassays. Tandem mass-spectrometry based proteomic analysis workflows provided quantitative measures of the amyloid fibril proteome. These methods allowed us to compare amyloid fibril composition from human AD brains, three amyloid mouse models, transgenic Aβ42 flies, and Aβ42 seeded cultured neurons. RESULTS Amyloid fibrils are primarily composed by Aβ42 and unexpectedly harbor Aβ38 but generally lack Aβ40 peptides. Multidimensional quantitative proteomics allowed us to redefine the fibril proteome by identifying 20 new amyloid-associated proteins. Notably, we confirmed 57 previously reported plaque-associated proteins. We validated a panel of these proteins as bona fide amyloid-interacting proteins using antibodies and orthogonal proteomic analysis. One metal-binding chaperone metallothionein-3 is tightly associated with amyloid fibrils and modulates fibril formation in vitro. Lastly, we used a transgenic Aβ42 fly model to test if knock down or over-expression of fibril-interacting gene homologues modifies neurotoxicity. Here, we could functionally validate 20 genes as modifiers of Aβ42 toxicity in vivo. CONCLUSIONS These discoveries and subsequent confirmation indicate that fibril-associated proteins play a key role in amyloid formation and AD pathology.
Collapse
Affiliation(s)
- Arun Upadhyay
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32611, USA
| | - Nalini R Rao
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Julia Kofler
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32611, USA
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
Sammeta SS, Banarase TA, Rahangdale SR, Wankhede NL, Aglawe MM, Taksande BG, Mangrulkar SV, Upaganlawar AB, Koppula S, Kopalli SR, Umekar MJ, Kale MB. Molecular understanding of ER-MT communication dysfunction during neurodegeneration. Mitochondrion 2023; 72:59-71. [PMID: 37495165 DOI: 10.1016/j.mito.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Biological researchers are seeing organelles in a new light. These cellular entities have been believed to be singular and distinctive structures that performed specialized purposes for a very long time. But in recentpast years, scientists have learned that organelles become dynamic and make physical contact. Additionally, Biological processes are regulated by organelles interactions and its alteration play an important role in cell malfunctioning and several pathologies, including neurodegenerative diseases. Mitochondrial-ER contact sites (MERCS) have received considerable attention in the domain of cell homeostasis and dysfunction, specifically in the area of neurodegeneration. This is largely due to the significant role of this subcellular compartment in a diverse array of vital cellular functions, including Ca2+ homeostasis, transport, bioenergetics and turnover, mitochondrial dynamics, apoptotic signaling, ER stress, and inflammation. A significant number of disease-associated proteins were found to physically interact with the ER-Mitochondria (ER-MT) interface, causing structural and/or functional alterations in this compartment. In this review, we summarize current knowledge about the structure and functions of the ER-MT contact sites, as well as the possible repercussions of their alteration in notable neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and fronto-temporal dementia. The constraints and complexities in defining the nature and origin of the highlighted defects in ER-MT communication, as well as their concise contribution to the neurodegenerative process, are illustrated in particular. The possibility of using MERCS as a potential drug target to prevent neuronal damage and ultimately neurodegeneration is the topic of our final discussion.
Collapse
Affiliation(s)
- Shivkumar S Sammeta
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Trupti A Banarase
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
19
|
Wang Y, Miao Z, Xu C, Cai Y, Yang Y, Hu Y, Zhao M, Shao Y, Li Z, Chen J, Chen S, Wang L. Pathological convergence of APP and SNCA deficiency in hippocampal degeneration of young rats. Cell Death Dis 2023; 14:325. [PMID: 37179386 PMCID: PMC10183039 DOI: 10.1038/s41419-023-05846-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The common pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD) has been supported by biochemical, genetic and molecular evidence. Mitochondrial dysfunction is considered to be the common pathology in early AD and PD. The physiological regulation of APP and α-synuclein on mitochondria remains unclear, let alone whether they share common regulatory mechanisms affecting the development of neurodegenerative diseases. By studying gene knockout rats, the commonality of physiological APP and α-synuclein in maintaining mitochondrial function through calcium homeostasis regulation was revealed, which was critical in inhibiting hippocampal degeneration in young rats. APP and α-synuclein both control hippocampal mitochondrial calcium intake and outflow. In the mitochondrial calcium influx regulation, APP and α-synuclein are located on the mitochondrial-associated endoplasmic reticulum membrane (MAM) and converge to regulate the IP3R1-Grp75-VDAC2 axis. Mitochondrial calcium outflow is redundantly promoted by both α-synuclein and APP. Loss of APP or SNCA leads to mitochondrial calcium overload, thus enhancing aerobic respiration and ER stress, and ultimately causing excessive apoptosis in the hippocampus and spatial memory impairment in young rats. Based on this study, we believe that the physiological function impairment of APP and SNCA is the early core pathology to induce mitochondrial dysfunction at the early stage of AD and PD, while the IP3R1-Grp75-VDAC2 axis might be the common drug target of these two diseases.
Collapse
Affiliation(s)
- Yajie Wang
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhikang Miao
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chang Xu
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Ying Cai
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuting Yang
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mengna Zhao
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Lianrong Wang
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China.
| |
Collapse
|
20
|
Garcia-Casas P, Rossini M, Filadi R, Pizzo P. Mitochondrial Ca 2+ signaling and Alzheimer's disease: Too much or too little? Cell Calcium 2023; 113:102757. [PMID: 37192560 DOI: 10.1016/j.ceca.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, caused by poorly known pathogenic mechanisms and aggravated by delayed therapeutic intervention, that still lacks an effective cure. However, it is clear that some important neurophysiological processes are altered years before the onset of clinical symptoms, offering the possibility of identifying biological targets useful for implementation of new therapies. Of note, evidence has been provided suggesting that mitochondria, pivotal organelles in sustaining neuronal energy demand and modulating synaptic activity, are dysfunctional in AD samples. In particular, alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegeneration, although the exact outcomes and molecular mechanisms of these defects, as well as their longitudinal progression, are not always clear. Here, we discuss the importance of a correct mitochondrial Ca2+ handling for neuronal physiology and summarize the latest findings on dysfunctional mitochondrial Ca2+ pathways in AD, analysing possible consequences contributing to the neurodegeneration that characterizes the disease.
Collapse
Affiliation(s)
- Paloma Garcia-Casas
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47003 Valladolid, Spain
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Study Centre for Neurodegeneration (CESNE), University of Padova, 35131 Padua, Italy.
| |
Collapse
|
21
|
Banarase TA, Sammeta SS, Wankhede NL, Mangrulkar SV, Rahangdale SR, Aglawe MM, Taksande BG, Upaganlawar AB, Umekar MJ, Kale MB. Mitophagy regulation in aging and neurodegenerative disease. Biophys Rev 2023; 15:239-255. [PMID: 37124925 PMCID: PMC10133433 DOI: 10.1007/s12551-023-01057-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.
Collapse
Affiliation(s)
- Trupti A. Banarase
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shivkumar S. Sammeta
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Nitu L. Wankhede
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shubhada V. Mangrulkar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Sandip R. Rahangdale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Manish M. Aglawe
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Brijesh G. Taksande
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra India 423101
| | - Milind J. Umekar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Mayur B. Kale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| |
Collapse
|
22
|
Lim D, Tapella L, Dematteis G, Genazzani AA, Corazzari M, Verkhratsky A. The endoplasmic reticulum stress and unfolded protein response in Alzheimer's disease: a calcium dyshomeostasis perspective. Ageing Res Rev 2023; 87:101914. [PMID: 36948230 DOI: 10.1016/j.arr.2023.101914] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Protein misfolding is prominent in early cellular pathology of Alzheimer's disease (AD), implicating pathophysiological significance of endoplasmic reticulum stress/unfolded protein response (ER stress/UPR) and highlighting it as a target for drug development. Experimental data from animal AD models and observations on human specimens are, however, inconsistent. ER stress and associated UPR are readily observed in in vitro AD cellular models and in some AD model animals. In the human brain, components and markers of ER stress as well as UPR transducers are observed at Braak stages III-VI associated with severe neuropathology and neuronal death. The picture, however, is further complicated by the brain region- and cell type-specificity of the AD-related pathology. Terms 'disturbed' or 'non-canonical' ER stress/UPR were used to describe the discrepancies between experimental data and the classic ER stress/UPR cascade. Here we discuss possible 'disturbing' or 'interfering' factors which may modify ER stress/UPR in the early AD pathogenesis. We focus on the dysregulation of the ER Ca2+ homeostasis, store-operated Ca2+ entry, and the interaction between the ER and mitochondria. We suggest that a detailed study of the CNS cell type-specific alterations of Ca2+ homeostasis in early AD may deepen our understanding of AD-related dysproteostasis.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Marco Corazzari
- Department of Health Science (DSS), Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale "Amedeo Avogadro"
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Wilkins HM. Interactions between amyloid, amyloid precursor protein, and mitochondria. Biochem Soc Trans 2023; 51:173-182. [PMID: 36688439 PMCID: PMC9987971 DOI: 10.1042/bst20220518] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). Decades of research describe a relationship between mitochondrial function and Aβ production. Amyloid precursor protein (APP), of which Aβ is generated from, is found within mitochondria. Studies suggest Aβ can be generated in mitochondria and imported into mitochondria. APP and Aβ alter mitochondrial function, while mitochondrial function alters Aβ production from APP. The role these interactions contribute to AD pathology and progression are unknown. Here, we discuss prior research, the rigor of those studies, and the critical knowledge gaps of relationships between APP, Aβ, and mitochondria.
Collapse
Affiliation(s)
- Heather M. Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, U.S.A
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
24
|
Strope TA, Wilkins HM. Amyloid precursor protein and mitochondria. Curr Opin Neurobiol 2023; 78:102651. [PMID: 36462447 PMCID: PMC9845182 DOI: 10.1016/j.conb.2022.102651] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
Amyloid Precursor Protein (APP) processing to amyloid beta (Aβ) is a major hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis postulates that Aβ accumulation and aggregation causes AD, however many therapeutics targeting Aβ have failed recently. Decades of research describe metabolic deficits in AD. Mitochondrial dysfunction is observed in AD subjects within the brain and systemically. APP and γ-secretase are localized to mitochondria. APP can be processed within mitochondria and its localization to mitochondria affects function. Here we discuss the evidence showing APP and γ-secretase localize to mitochondria. We also discuss the implications for the function of APP and its cleavage products in regulating mitochondrial function.
Collapse
Affiliation(s)
- Taylor A Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA. https://twitter.com/OneDayDrTay
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
25
|
Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Mol Psychiatry 2023; 28:202-216. [PMID: 35665766 PMCID: PMC9812780 DOI: 10.1038/s41380-022-01631-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunctions are central players in Alzheimer's disease (AD). In addition, impairments in mitophagy, the process of selective mitochondrial degradation by autophagy leading to a gradual accumulation of defective mitochondria, have also been reported to occur in AD. We provide an updated overview of the recent discoveries and advancements on mitophagic molecular dysfunctions in AD-derived fluids and cells as well as in AD brains. We discuss studies using AD cellular and animal models that have unraveled the contribution of relevant AD-related proteins (Tau, Aβ, APP-derived fragments and APOE) in mitophagy failure. In accordance with the important role of impaired mitophagy in AD, we report on various therapeutic strategies aiming at stimulating mitophagy in AD and we summarize the benefits of these potential therapeutic strategies in human clinical trials.
Collapse
|
26
|
Li Z, Cao Y, Pei H, Ma L, Yang Y, Li H. The contribution of mitochondria-associated endoplasmic reticulum membranes (MAMs) dysfunction in Alzheimer's disease and the potential countermeasure. Front Neurosci 2023; 17:1158204. [PMID: 36960176 PMCID: PMC10027904 DOI: 10.3389/fnins.2023.1158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. There are many studies targeting extracellular deposits of amyloid β-peptide (Aβ) and intracellular neurofibrillary tangles (NFTs), however, there are no effective treatments to halt the progression. Mitochondria-associated endoplasmic reticulum membranes (MAMs) have long been found to be associated with various pathogenesis hypotheses of AD, such as Aβ deposition, mitochondrial dysfunction, and calcium homeostasis. However, there is a lack of literature summarizing recent advances in the mechanism and treatment studies. Accordingly, this article reviews the latest research involving the roles of MAM structure and tethering proteins in the pathogenesis of AD and summarizes potential strategies targeting MAMs to dissect treatment perspectives for AD.
Collapse
Affiliation(s)
- Zehui Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yang Yang,
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Hao Li,
| |
Collapse
|
27
|
Zhang X, Wang X, Shivashankar GV, Uhler C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease. Nat Commun 2022; 13:7480. [PMID: 36463283 PMCID: PMC9719477 DOI: 10.1038/s41467-022-35233-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Tissue development and disease lead to changes in cellular organization, nuclear morphology, and gene expression, which can be jointly measured by spatial transcriptomic technologies. However, methods for jointly analyzing the different spatial data modalities in 3D are still lacking. We present a computational framework to integrate Spatial Transcriptomic data using over-parameterized graph-based Autoencoders with Chromatin Imaging data (STACI) to identify molecular and functional alterations in tissues. STACI incorporates multiple modalities in a single representation for downstream tasks, enables the prediction of spatial transcriptomic data from nuclear images in unseen tissue sections, and provides built-in batch correction of gene expression and tissue morphology through over-parameterization. We apply STACI to analyze the spatio-temporal progression of Alzheimer's disease and identify the associated nuclear morphometric and coupled gene expression features. Collectively, we demonstrate the importance of characterizing disease progression by integrating multiple data modalities and its potential for the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Xinyi Zhang
- Massachusetts Institute of Technology, Cambridge, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Xiao Wang
- Massachusetts Institute of Technology, Cambridge, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - G V Shivashankar
- ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | - Caroline Uhler
- Massachusetts Institute of Technology, Cambridge, USA.
- Broad Institute of MIT and Harvard, Cambridge, USA.
| |
Collapse
|
28
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
29
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
30
|
Shang Y, Sun X, Chen X, Wang Q, Wang EJ, Miller E, Xu R, Pieper AA, Qi X. A CHCHD6-APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathol 2022; 144:911-938. [PMID: 36104602 PMCID: PMC9547808 DOI: 10.1007/s00401-022-02499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
The mechanistic relationship between amyloid-beta precursor protein (APP) processing and mitochondrial dysfunction in Alzheimer's disease (AD) has long eluded the field. Here, we report that coiled-coil-helix-coiled-coil-helix domain containing 6 (CHCHD6), a core protein of the mammalian mitochondrial contact site and cristae organizing system, mechanistically connects these AD features through a circular feedback loop that lowers CHCHD6 and raises APP processing. In cellular and animal AD models and human AD brains, the APP intracellular domain fragment inhibits CHCHD6 transcription by binding its promoter. CHCHD6 and APP bind and stabilize one another. Reduced CHCHD6 enhances APP accumulation on mitochondria-associated ER membranes and accelerates APP processing, and induces mitochondrial dysfunction and neuronal cholesterol accumulation, promoting amyloid pathology. Compensation for CHCHD6 loss in an AD mouse model reduces AD-associated neuropathology and cognitive impairment. Thus, CHCHD6 connects APP processing and mitochondrial dysfunction in AD. This provides a potential new therapeutic target for patients.
Collapse
Affiliation(s)
- Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoqin Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Evan J Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Beachwood High School, Beachwood, OH, 44122, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
31
|
Hewitt VL, Miller-Fleming L, Twyning MJ, Andreazza S, Mattedi F, Prudent J, Polleux F, Vagnoni A, Whitworth AJ. Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Aβ 42 toxicity. Life Sci Alliance 2022; 5:5/11/e202201531. [PMID: 35831024 PMCID: PMC9279675 DOI: 10.26508/lsa.202201531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid β42 (Aβ42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Leonor Miller-Fleming
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Madeleine J Twyning
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simonetta Andreazza
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Mattedi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Alexander J Whitworth
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Wang Q, Xue H, Yue Y, Hao S, Huang SH, Zhang Z. Role of mitophagy in the neurodegenerative diseases and its pharmacological advances: A review. Front Mol Neurosci 2022; 15:1014251. [PMID: 36267702 PMCID: PMC9578687 DOI: 10.3389/fnmol.2022.1014251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are a class of incurable and debilitating diseases characterized by progressive degeneration and death of cells in the central nervous system. They have multiple underlying mechanisms; however, they all share common degenerative features, such as mitochondrial dysfunction. According to recent studies, neurodegenerative diseases are associated with the accumulation of dysfunctional mitochondria. Selective autophagy of mitochondria, called mitophagy, can specifically degrade excess or dysfunctional mitochondria within cells. In this review, we highlight recent findings on the role of mitophagy in neurodegenerative disorders. Multiple studies were collected, including those related to the importance of mitochondria, the mechanism of mitophagy in protecting mitochondrial health, and canonical and non-canonical pathways in mitophagy. This review elucidated the important function of mitophagy in neurodegenerative diseases, discussed the research progress of mitophagy in neurodegenerative diseases, and summarized the role of mitophagy-related proteins in neurological diseases. In addition, we also highlight pharmacological advances in neurodegeneration.
Collapse
|
34
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Dentoni G, Naia L, Portal B, Leal NS, Nilsson P, Lindskog M, Ankarcrona M. Mitochondrial Alterations in Neurons Derived from the Murine AppNL-F Knock-In Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:565-583. [DOI: 10.3233/jad-220383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease (AD) research has relied on mouse models overexpressing human mutant A βPP; however, newer generation knock-in models allow for physiological expression of amyloid-β protein precursor (AβPP) containing familial AD mutations where murine AβPP is edited with a humanized amyloid-β (Aβ) sequence. The AppNL-F mouse model has shown substantial similarities to AD brains developing late onset cognitive impairment. Objective: In this study, we aimed to characterize mature primary cortical neurons derived from homozygous AppNL-F embryos, especially to identify early mitochondrial alterations in this model. Methods: Primary cultures of AppNL-F neurons kept in culture for 12–15 days were used to measure Aβ levels, secretase activity, mitochondrial functions, mitochondrial-ER contacts, synaptic function, and cell death. Results: We detected higher levels of Aβ42 released from AppNL-F neurons as compared to wild-type neurons. AppNL-F neurons, also displayed an increased Aβ42/Aβ40 ratio, similar to adult AppNL-F mouse brain. Interestingly, we found an upregulation in mitochondrial oxygen consumption with concomitant downregulation in glycolytic reserve. Furthermore, AppNL-F neurons were more susceptible to cell death triggered by mitochondrial electron transport chain inhibition. Juxtaposition between ER and mitochondria was found to be substantially upregulated, which may account for upregulated mitochondrial-derived ATP production. However, anterograde mitochondrial movement was severely impaired in this model along with loss in synaptic vesicle protein and impairment in pre- and post-synaptic function. Conclusion: We show that widespread mitochondrial alterations can be detected in AppNL-F neurons in vitro, where amyloid plaque deposition does not occur, suggesting soluble and oligomeric Aβ-species being responsible for these alterations.
Collapse
Affiliation(s)
- Giacomo Dentoni
- Department of Neurobiology, Karolinska Institutet, Care Science and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Luana Naia
- Department of Neurobiology, Karolinska Institutet, Care Science and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Benjamin Portal
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Nuno Santos Leal
- Department of Neurobiology, Karolinska Institutet, Care Science and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Karolinska Institutet, Care Science and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Karolinska Institutet, Care Science and Society, Division of Neurogeriatrics, Stockholm, Sweden
| |
Collapse
|
36
|
Dentoni G, Castro-Aldrete L, Naia L, Ankarcrona M. The Potential of Small Molecules to Modulate the Mitochondria-Endoplasmic Reticulum Interplay in Alzheimer's Disease. Front Cell Dev Biol 2022; 10:920228. [PMID: 36092728 PMCID: PMC9459385 DOI: 10.3389/fcell.2022.920228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid β-peptide (Aβ) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca2+) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction. Interestingly, all these processes have been associated with the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) signaling hub. We and others have hypothesized that the dysregulated MERCS function may be one of the main pathogenic pathways driving AD pathology. Due to the variety of biological processes overseen at the MERCS, we believe that they constitute unique therapeutic targets to boost the neuronal function and recover neuronal homeostasis. Thus, developing molecules with the capacity to correct and/or modulate the MERCS interplay can unleash unique therapeutic opportunities for AD. The potential pharmacological intervention using MERCS modulators in different models of AD is currently under investigation. Here, we survey small molecules with the potential to modulate MERCS structures and functions and restore neuronal homeostasis in AD. We will focus on recently reported examples and provide an overview of the current challenges and future perspectives to develop MERCS modulators in the context of translational research.
Collapse
Affiliation(s)
| | | | | | - Maria Ankarcrona
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Mitochondria-Associated Endoplasmic Reticulum Membranes: Inextricably Linked with Autophagy Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7086807. [PMID: 36052160 PMCID: PMC9427242 DOI: 10.1155/2022/7086807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023]
Abstract
Mitochondria-associated membranes (MAMs), physical connection sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM), are involved in numerous cellular processes, such as calcium ion transport, lipid metabolism, autophagy, ER stress, mitochondria morphology, and apoptosis. Autophagy is a highly conserved intracellular process in which cellular contents are delivered by double-membrane vesicles, called autophagosomes, to the lysosomes for destruction and recycling. Autophagy, typically triggered by stress, eliminates damaged or redundant protein molecules and organelles to maintain regular cellular activity. Dysfunction of MAMs or autophagy is intimately associated with various diseases, including aging, cardiovascular, infections, cancer, multiple toxic agents, and some genetic disorders. Increasing evidence has shown that MAMs play a significant role in autophagy development and maturation. In our study, we concentrated on two opposing functions of MAMs in autophagy: facilitating the formation of autophagosomes and inhibiting autophagy. We recognized the link between MAMs and autophagy in the occurrence and progression of the diseases and therefore collated and summarized the existing intrinsic molecular mechanisms. Furthermore, we draw attention to several crucial data and open issues in the area that may be helpful for further study.
Collapse
|
38
|
Kim S, Coukos R, Gao F, Krainc D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 2022; 110:2386-2408. [PMID: 35561676 PMCID: PMC9357093 DOI: 10.1016/j.neuron.2022.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The defining evolutionary feature of eukaryotic cells is the emergence of membrane-bound organelles. Compartmentalization allows each organelle to maintain a spatially, physically, and chemically distinct environment, which greatly bolsters individual organelle function. However, the activities of each organelle must be balanced and are interdependent for cellular homeostasis. Therefore, properly regulated interactions between organelles, either physically or functionally, remain critical for overall cellular health and behavior. In particular, neuronal homeostasis depends heavily on the proper regulation of organelle function and cross talk, and deficits in these functions are frequently associated with diseases. In this review, we examine the emerging role of organelle contacts in neurological diseases and discuss how the disruption of contacts contributes to disease pathogenesis. Understanding the molecular mechanisms underlying the formation and regulation of organelle contacts will broaden our knowledge of their role in health and disease, laying the groundwork for the development of new therapies targeting interorganelle cross talk and function.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
Degechisa ST, Dabi YT, Gizaw ST. The mitochondrial associated endoplasmic reticulum membranes: A platform for the pathogenesis of inflammation-mediated metabolic diseases. Immun Inflamm Dis 2022; 10:e647. [PMID: 35759226 PMCID: PMC9168553 DOI: 10.1002/iid3.647] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAM) are specialized subcellular compartments that are shaped by endoplasmic reticulum (ER) subdomains placed side by side to the outer membrane of mitochondria (OMM) being connected by tethering proteins in mammalian cells. Studies showed that MAM has multiple physiological functions. These include regulation of lipid synthesis and transport, Ca2+ transport and signaling, mitochondrial dynamics, apoptosis, autophagy, and formation and activation of an inflammasome. However, alterations of MAM integrity lead to deleterious effects due to an increased generation of mitochondrial reactive oxygen species (ROS) via increased Ca2+ transfer from the ER to mitochondria. This, in turn, causes mitochondrial damage and release of mitochondrial components into the cytosol as damage-associated molecular patterns which rapidly activate MAM-resident Nod-like receptor protein-3 (NLRP3) inflammasome components. This complex induces the release of pro-inflammatory cytokines that initiate low-grade chronic inflammation that subsequently causes the development of metabolic diseases. But, the mechanisms of how MAM is involved in the pathogenesis of these diseases are not exhaustively reviewed. Therefore, this review was aimed to highlight the contribution of MAM to a variety of cellular functions and consider its significance pertaining to the pathogenesis of inflammation-mediated metabolic diseases.
Collapse
Affiliation(s)
- Sisay T. Degechisa
- Department of Medical Biochemistry, School of MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
- Department of Medical Laboratory SciencesCollege of Medicine and Health Sciences, Arba Minch UniversityArba MinchEthiopia
| | - Yosef T. Dabi
- Department of Medical Biochemistry, School of MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
- Department of Medical Laboratory ScienceWollega UniversityNekemteEthiopia
| | - Solomon T. Gizaw
- Department of Medical Biochemistry, School of MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
| |
Collapse
|
40
|
Nikolaeva NS, Yandulova EY, Aleksandrova YR, Starikov AS, Neganova ME. The Role of a Pathological Interaction between β-amyloid and Mitochondria in the Occurrence and Development of Alzheimer's Disease. Acta Naturae 2022; 14:19-34. [PMID: 36348714 PMCID: PMC9611857 DOI: 10.32607/actanaturae.11723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in existence. It is characterized by an impaired cognitive function that is due to a progressive loss of neurons in the brain. Extracellular β-amyloid (Aβ) plaques are the main pathological features of the disease. In addition to abnormal protein aggregation, increased mitochondrial fragmentation, altered expression of the genes involved in mitochondrial biogenesis, disruptions in the ER-mitochondria interaction, and mitophagy are observed. Reactive oxygen species are known to affect Aβ expression and aggregation. In turn, oligomeric and aggregated Aβ cause mitochondrial disorders. In this review, we summarize available knowledge about the pathological effects of Aβ on mitochondria and the potential molecular targets associated with proteinopathy and mitochondrial dysfunction for the pharmacological treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N. S. Nikolaeva
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - E. Yu. Yandulova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - A. S. Starikov
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - M. E. Neganova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| |
Collapse
|
41
|
Mullins R, Kapogiannis D. Alzheimer’s Disease-Related Genes Identified by Linking Spatial Patterns of Pathology and Gene Expression. Front Neurosci 2022; 16:908650. [PMID: 35774552 PMCID: PMC9237461 DOI: 10.3389/fnins.2022.908650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Alzheimer’s Disease (AD) is an age-related neurodegenerative disease with a poorly understood etiology, shown to be partly genetic. Glucose hypometabolism, extracellular Amyloid-beta (Aβ) deposition, and intracellular Tau deposition are cardinal features of AD and display characteristic spatial patterns in the brain. We hypothesize that regional differences in underlying gene expression confer either resistance or susceptibility to AD pathogenic processes and are associated with these spatial patterns. Data-driven methods for the identification of genes involved in AD pathogenesis complement hypothesis-driven approaches that reflect current theories about the disease. Here we present a data driven method for the identification of genes involved in AD pathogenesis based on comparing spatial patterns of normal gene expression to Positron Emission Tomography (PET) images of glucose hypometabolism, Aβ deposition, and Tau deposition. Methods We performed correlations between the cerebral cortex microarray samples from the six cognitively normal (CN) post-mortem Allen Human Brain Atlas (AHBA) specimens and PET FDG-18, AV-45, and AV-1451 tracer images from AD and CN participants in the Alzheimer’s Disease and Neuroimaging Initiative (ADNI) database. Correlation coefficients for each gene by each ADNI subject were then entered into a partial least squares discriminant analysis (PLS-DA) to determine sets that best classified the AD and CN groups. Pathway analysis via BioPlanet 2019 was then used to infer the function of implicated genes. Results We identified distinct sets of genes strongly associated with each PET modality. Pathway analyses implicated novel genes involved in mitochondrial function, and Notch signaling, as well as genes previously associated with AD. Conclusion Using an unbiased approach, we derived sets of genes with expression patterns spatially associated with FDG hypometabolism, Aβ deposition, and Tau deposition in AD. This methodology may complement population-based approaches for identifying the genetic underpinnings of AD.
Collapse
|
42
|
Mitochondrial function and Aβ in Alzheimer's disease postmortem brain. Neurobiol Dis 2022; 171:105781. [PMID: 35667615 DOI: 10.1016/j.nbd.2022.105781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Mitochondrial dysfunction is observed in Alzheimer's disease (AD). However, the relationship between functional mitochondrial deficits and AD pathologies is not well established in human subjects. METHODS Post-mortem human brain tissue from 11 non-demented (ND) and 12 AD subjects was used to examine mitochondrial electron transport chain (ETC) function. Data were analyzed by neuropathology diagnosis and Apolipoprotein E (APOE) genotype. Relationships between AD pathology and mitochondrial function were determined. RESULTS AD subjects had reductions in brain cytochrome oxidase (COX) function and complex II Vmax. APOE ε4 carriers had COX, complex II and III deficits. AD subjects had reduced expression of Complex I-III ETC proteins, no changes were observed in APOE ε4 carriers. No correlation between p-Tau Thr 181 and mitochondrial outcomes was observed, although brains from non-demented subjects demonstrated positive correlations between Aβ concentration and COX Vmax. DISCUSSION These data support a dysregulated relationship between brain mitochondrial function and Aβ pathology in AD.
Collapse
|
43
|
Antman-Passig M, Wong E, Frost GR, Cupo C, Shah J, Agustinus A, Chen Z, Mancinelli C, Kamel M, Li T, Jonas LA, Li YM, Heller DA. Optical Nanosensor for Intracellular and Intracranial Detection of Amyloid-Beta. ACS NANO 2022; 16:7269-7283. [PMID: 35420796 PMCID: PMC9710299 DOI: 10.1021/acsnano.2c00054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid-beta (Aβ) deposition occurs in the early stages of Alzheimer's disease (AD), but the early detection of Aβ is a persistent challenge. Herein, we engineered a near-infrared optical nanosensor capable of detecting Aβ intracellularly in live cells and intracranially in vivo. The sensor is composed of single-walled carbon nanotubes functionalized with Aβ wherein Aβ-Aβ interactions drive the response. We found that the Aβ nanosensors selectively responded to Aβ via solvatochromic modulation of the near-infrared emission of the nanotube. The sensor tracked Aβ accumulation in live cells and, upon intracranial administration in a genetic model of AD, signaled distinct responses in aged mice. This technology enables the interrogation of molecular mechanisms underlying Aβ neurotoxicity in the development of AD in living systems.
Collapse
Affiliation(s)
- Merav Antman-Passig
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Janki Shah
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Albert Agustinus
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Ziyu Chen
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Chiara Mancinelli
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Maikel Kamel
- Sophie Davis School of Biomedical Education, CUNY School of Medicine, New York, New York 10031, United States
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Lauren A Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| |
Collapse
|
44
|
Ring J, Tadic J, Ristic S, Poglitsch M, Bergmann M, Radic N, Mossmann D, Liang Y, Maglione M, Jerkovic A, Hajiraissi R, Hanke M, Küttner V, Wolinski H, Zimmermann A, Domuz Trifunović L, Mikolasch L, Moretti DN, Broeskamp F, Westermayer J, Abraham C, Schauer S, Dammbrueck C, Hofer SJ, Abdellatif M, Grundmeier G, Kroemer G, Braun RJ, Hansen N, Sommer C, Ninkovic M, Seba S, Rockenfeller P, Vögtle F, Dengjel J, Meisinger C, Keller A, Sigrist SJ, Eisenberg T, Madeo F. The HSP40 chaperone Ydj1 drives amyloid beta 42 toxicity. EMBO Mol Med 2022; 14:e13952. [PMID: 35373908 PMCID: PMC9081910 DOI: 10.15252/emmm.202113952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/22/2023] Open
Abstract
Amyloid beta 42 (Abeta42) is the principal trigger of neurodegeneration during Alzheimer's disease (AD). However, the etiology of its noxious cellular effects remains elusive. In a combinatory genetic and proteomic approach using a yeast model to study aspects of intracellular Abeta42 toxicity, we here identify the HSP40 family member Ydj1, the yeast orthologue of human DnaJA1, as a crucial factor in Abeta42-mediated cell death. We demonstrate that Ydj1/DnaJA1 physically interacts with Abeta42 (in yeast and mouse), stabilizes Abeta42 oligomers, and mediates their translocation to mitochondria. Consequently, deletion of YDJ1 strongly reduces co-purification of Abeta42 with mitochondria and prevents Abeta42-induced mitochondria-dependent cell death. Consistently, purified DnaJ chaperone delays Abeta42 fibrillization in vitro, and heterologous expression of human DnaJA1 induces formation of Abeta42 oligomers and their deleterious translocation to mitochondria in vivo. Finally, downregulation of the Ydj1 fly homologue, Droj2, improves stress resistance, mitochondrial morphology, and memory performance in a Drosophila melanogaster AD model. These data reveal an unexpected and detrimental role for specific HSP40s in promoting hallmarks of Abeta42 toxicity.
Collapse
|
45
|
Liu J, Yang J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed Pharmacother 2022; 149:112890. [PMID: 35367757 DOI: 10.1016/j.biopha.2022.112890] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022] Open
Abstract
In eukaryotic cells, organelles could coordinate complex mechanisms of signaling transduction metabolism and gene expression through their functional interactions. The functional domain between ER and mitochondria, called mitochondria-associated membranes (MAM), is closely associated with various physiological functions including intracellular lipid transport, Ca2+ transfer, mitochondria function maintenance, and autophagosome formation. In addition, more evidence suggests that MAM modulate cellular functions in health and disease. Studies have also demonstrated the association of MAM with numerous diseases, including neurodegenerative diseases, cancer, viral infection, obesity, and diabetes. In fact, recent evidence revealed a close relationship of MAM with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. In this view, elucidating the role of MAM in neurodegenerative diseases is particularly important. This review will focus the main tethering protein complexes of MAM and functions of MAM. Besides, the role of MAM in the regulation of neurodegenerative diseases and the potential molecular mechanisms is introduced to provide a new understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jinxuan Liu
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
46
|
Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharmacol 2022; 199:115011. [PMID: 35314166 DOI: 10.1016/j.bcp.2022.115011] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic membrane coupling regions formed by the coupling of the mitochondrial outer membrane and endoplasmic reticulum (ER). MAMs are involved in the mitochondrial dynamics, mitophagy, Ca2+ exchange, and ER stress. A large number of studies indicate that many proteins are involved in the formation of MAMs, including dynamic-related protein 1 (Drp1), DJ-1, PTEN-induced putative kinase 1 (PINK), α-synuclein (α-syn), sigma-1 receptor (S1R), mitofusin-2 (Mfn2), presenilin-1 (PS1), protein kinase R (PKR)-like ER kinase (PERK), Parkin, Cyclophilin D (CypD), glucose-related protein 75 (Grp75), FUN14 domain containing 1 (Fundc1), vesicle-associated membrane-protein-associated protein B (VAPB), phosphofurin acidic cluster sorting protein 2 (PACS-2), ER oxidoreductin 1 (Ero1), and receptor expression-enhancing protein 1 (REEP1). These proteins play an important role in the structure and functions of the MAMs. Abnormalities in these MAM proteins further contribute to the occurrence and development of related diseases, such as neurodegenerative diseases, non-alcoholicfattyliverdisease (NALFD), type 2 diabetes mellitus (T2DM), and diabetic kidney (DN). In this review, we introduce important proteins involved in the structure and the functions of the MAMs. Furthermore, we effectively summarize major insights about these proteins that are involved in the physiopathology of several diseases through the effect on MAMs.
Collapse
|
47
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
48
|
Sidhom E, O’Brien JT, Butcher AJ, Smith HL, Mallucci GR, Underwood BR. Targeting the Unfolded Protein Response as a Disease-Modifying Pathway in Dementia. Int J Mol Sci 2022; 23:2021. [PMID: 35216136 PMCID: PMC8877151 DOI: 10.3390/ijms23042021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Dementia is a global medical and societal challenge; it has devastating personal, social and economic costs, which will increase rapidly as the world's population ages. Despite this, there are no disease-modifying treatments for dementia; current therapy modestly improves symptoms but does not change the outcome. Therefore, new treatments are urgently needed-particularly any that can slow down the disease's progression. Many of the neurodegenerative diseases that lead to dementia are characterised by common pathological responses to abnormal protein production and misfolding in brain cells, raising the possibility of the broad application of therapeutics that target these common processes. The unfolded protein response (UPR) is one such mechanism. The UPR is a highly conserved cellular stress response to abnormal protein folding and is widely dysregulated in neurodegenerative diseases. In this review, we describe the basic machinery of the UPR, as well as the evidence for its overactivation and pathogenicity in dementia, and for the marked neuroprotective effects of its therapeutic manipulation in murine models of these disorders. We discuss drugs identified as potential UPR-modifying therapeutic agents-in particular the licensed antidepressant trazodone-and we review epidemiological and trial data from their use in human populations. Finally, we explore future directions for investigating the potential benefit of using trazodone or similar UPR-modulating compounds for disease modification in patients with dementia.
Collapse
Affiliation(s)
- Emad Sidhom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK; (E.S.); (A.J.B.); (H.L.S.); (G.R.M.)
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Windsor Research Unit, Fulbourn Hospital, Cambridge CB21 5EF, UK
- Gnodde Goldman Sachs Translational Neuroscience Unit, Windsor Research Unit, University of Cambridge, Cambridge CB2 1TN, UK
| | - John T. O’Brien
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Forvie Site, Cambridge CB2 0SZ, UK;
| | - Adrian J. Butcher
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK; (E.S.); (A.J.B.); (H.L.S.); (G.R.M.)
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Heather L. Smith
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK; (E.S.); (A.J.B.); (H.L.S.); (G.R.M.)
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Giovanna R. Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK; (E.S.); (A.J.B.); (H.L.S.); (G.R.M.)
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Benjamin R. Underwood
- Cambridgeshire and Peterborough NHS Foundation Trust, Windsor Research Unit, Fulbourn Hospital, Cambridge CB21 5EF, UK
- Gnodde Goldman Sachs Translational Neuroscience Unit, Windsor Research Unit, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Forvie Site, Cambridge CB2 0SZ, UK;
| |
Collapse
|
49
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
50
|
Rodríguez LR, Lapeña-Luzón T, Benetó N, Beltran-Beltran V, Pallardó FV, Gonzalez-Cabo P, Navarro JA. Therapeutic Strategies Targeting Mitochondrial Calcium Signaling: A New Hope for Neurological Diseases? Antioxidants (Basel) 2022; 11:antiox11010165. [PMID: 35052668 PMCID: PMC8773297 DOI: 10.3390/antiox11010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum-mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich's ataxia, and Charcot-Marie-Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Noelia Benetó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Vicent Beltran-Beltran
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Juan Antonio Navarro
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| |
Collapse
|