1
|
Mateo D, Marquès M, Domingo JL, Torrente M. Influence of gut microbiota on the development of most prevalent neurodegenerative dementias and the potential effect of probiotics in elderly: A scoping review. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32959. [PMID: 37850544 DOI: 10.1002/ajmg.b.32959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Dementia is one of today's greatest public health challenges. Its high socio-economic impact and difficulties in diagnosis and treatment are of increasing concern to an aging world population. In recent years, the study of the relationship between gut microbiota and different neurocognitive disorders has gained a considerable interest. Several studies have reported associations between gut microbiota dysbiosis and some types of dementia. Probiotics have been suggested to restore dysbiosis and to improve neurocognitive symptomatology in these dementias. Based on these previous findings, the available scientific evidence on the gut microbiota in humans affected by the most prevalent dementias, as well as the probiotic trials conducted in these patients in recent years, have been here reviewed. Decreased concentrations of short-chain fatty acids (SCFA) and other bacterial metabolites appear to play a major role in the onset of neurocognitive symptoms in Alzheimer disease (AD) and Parkinson disease dementia (PDD). Increased abundance of proinflammatory taxa could be closely related to the more severe clinical symptoms in both, as well as in Lewy Bodies dementia. Important lack of information was noted in Frontotemporal dementia behavioral variant. Moreover, geographical differences in the composition of the gut microbiota have been reported in AD. Some potential beneficial effects of probiotics in AD and PDD have been reported. However, due to the controversial results further investigations are clearly necessary.
Collapse
Affiliation(s)
- David Mateo
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Margarita Torrente
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Department of Psychology, CRAMC (Research Center for Behaviour Assessment), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Institute Lerin Neurocognitive, Alzheimer and other Neurocognitive Disorders Association, Reus, Catalonia, Spain
| |
Collapse
|
2
|
Chen J, Yu X, Lu X, Wang W, Pan J, Yin Q, Wei B, Zhang H, Wang H. Biosynthesis and Gene Regulation of Rhamnolipid Congeners. Curr Microbiol 2023; 80:302. [PMID: 37493824 DOI: 10.1007/s00284-023-03405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Rhamnolipid congeners have been widely used in agriculture and biomedicine as potent surfactants. They have recently attracted attention due to their diverse and versatile biological functions, which include an important bacterial virulence factor that makes them attractive targets for research into biosynthetic pathways and gene regulation. The intricate gene expression and regulation network controlling their biosynthesis remain to be completely understood. This article summarizes current knowledge about the biosynthesis pathways and regulatory mechanisms of rhamnolipid congeners, that meet the pharmacological needs of human health and agriculture.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| | - Xiaoya Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xingyue Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Wei Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Jiangwei Pan
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Qunjian Yin
- Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Luo JJ, Wallace W, Kusiak JW. A tough trek in the development of an anti-amyloid therapy for Alzheimer's disease: Do we see hope in the distance? J Neurol Sci 2022; 438:120294. [DOI: 10.1016/j.jns.2022.120294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022]
|
4
|
Katsipis G, Tzekaki EE, Tsolaki M, Pantazaki AA. Salivary GFAP as a potential biomarker for diagnosis of mild cognitive impairment and Alzheimer's disease and its correlation with neuroinflammation and apoptosis. J Neuroimmunol 2021; 361:577744. [PMID: 34655990 DOI: 10.1016/j.jneuroim.2021.577744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is the main constituent of the astrocytic cytoskeleton, overexpressed during reactive astrogliosis-a hallmark of Alzheimer's Disease (AD). GFAP and established biomarkers of neurodegeneration, inflammation, and apoptosis have been determined in the saliva of amnestic-single-domain Mild Cognitive Impairment (MCI) (Ν = 20), AD (Ν = 20) patients, and cognitively healthy Controls (Ν = 20). Salivary GFAP levels were found significantly decreased in MCI and AD patients and were proven an excellent biomarker for discriminating Controls from MCI or AD patients. GFAP levels correlate with studied biomarkers and Aβ42, IL-1β, and caspase-8 are its main predictors.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Magda Tsolaki
- First Neurology Department, "AHEPA" University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| |
Collapse
|
5
|
Wagener BM, Hu R, Wu S, Pittet JF, Ding Q, Che P. The Role of Pseudomonas aeruginosa Virulence Factors in Cytoskeletal Dysregulation and Lung Barrier Dysfunction. Toxins (Basel) 2021; 13:776. [PMID: 34822560 PMCID: PMC8625199 DOI: 10.3390/toxins13110776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas (P.) aeruginosa is an opportunistic pathogen that causes serious infections and hospital-acquired pneumonia in immunocompromised patients. P. aeruginosa accounts for up to 20% of all cases of hospital-acquired pneumonia, with an attributable mortality rate of ~30-40%. The poor clinical outcome of P. aeruginosa-induced pneumonia is ascribed to its ability to disrupt lung barrier integrity, leading to the development of lung edema and bacteremia. Airway epithelial and endothelial cells are important architecture blocks that protect the lung from invading pathogens. P. aeruginosa produces a number of virulence factors that can modulate barrier function, directly or indirectly, through exploiting cytoskeleton networks and intercellular junctional complexes in eukaryotic cells. This review summarizes the current knowledge on P. aeruginosa virulence factors, their effects on the regulation of the cytoskeletal network and associated components, and molecular mechanisms regulating barrier function in airway epithelial and endothelial cells. A better understanding of these processes will help to lay the foundation for new therapeutic approaches against P. aeruginosa-induced pneumonia.
Collapse
Affiliation(s)
- Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruihan Hu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Internal Medicine, Guiqian International General Hospital, Guiyang 550024, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Andreadou EG, Katsipis G, Tsolaki M, Pantazaki AA. Involvement and relationship of bacterial lipopolysaccharides and cyclooxygenases levels in Alzheimer's Disease and Mild Cognitive Impairment patients. J Neuroimmunol 2021; 357:577561. [PMID: 34091099 DOI: 10.1016/j.jneuroim.2021.577561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αβ42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.
Collapse
Affiliation(s)
- Eleni G Andreadou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| | - Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Magda Tsolaki
- First Neurology Department, "AHEPA" University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| |
Collapse
|
7
|
Salihoğlu R, Önal-Süzek T. Tissue Microbiome Associated With Human Diseases by Whole Transcriptome Sequencing and 16S Metagenomics. Front Genet 2021; 12:585556. [PMID: 33747035 PMCID: PMC7970108 DOI: 10.3389/fgene.2021.585556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, a substantial number of tissue microbiome studies have been published, mainly due to the recent improvements in the minimization of microbial contamination during whole transcriptome analysis. Another reason for this trend is due to the capability of next-generation sequencing (NGS) to detect microbiome composition even in low biomass samples. Several recent studies demonstrate a significant role for the tissue microbiome in the development and progression of cancer and other diseases. For example, the increase of the abundance of Proteobacteria in tumor tissues of the breast has been revealed by gene expression analysis. The link between human papillomavirus infection and cervical cancer has been known for some time, but the relationship between the microbiome and breast cancer (BC) is more novel. There are also recent attempts to investigate the possible link between the brain microbiome and the cognitive dysfunction caused by neurological diseases. Such studies pointing to the role of the brain microbiome in Huntington’s disease (HD) and Alzheimer’s disease (AD) suggest that microbial colonization is a risk factor. In this review, we aim to summarize the studies that associate the tissue microbiome, rather than gut microbiome, with cancer and other diseases using whole-transcriptome analysis, along with 16S rRNA analysis. After providing several case studies for each relationship, we will discuss the potential role of transcriptome analysis on the broader portrayal of the pathophysiology of the breast, brain, and vaginal microbiome.
Collapse
Affiliation(s)
- Rana Salihoğlu
- Bioinformatics Department, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Tuğba Önal-Süzek
- Bioinformatics Department, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey.,Computer Engineering Department, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
8
|
Tzekaki EE, Geromichalos G, Lavrentiadou SN, Tsantarliotou MP, Pantazaki AA, Papaspyropoulos A. Oleuropein is a natural inhibitor of PAI-1-mediated proliferation in human ER-/PR- breast cancer cells. Breast Cancer Res Treat 2021; 186:305-316. [PMID: 33389400 DOI: 10.1007/s10549-020-06054-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Elevated expression of PAI-1 has been widely linked with adverse outcomes in a variety of human cancers, such as breast, gastric and ovarian cancers, rendering PAI-1 a prognostic biomarker. As a result, several chemical inhibitors are currently being developed against PAI-1; however, the clinical setting where they might confer survival benefits has not yet been elucidated. METHODS RNA sequencing data analysis from the TCGA/GTEx cancer portals (n = 3607 samples). In silico molecular docking analyses to predict functional macromolecule interactions. ER-/PR- (MDA-MB-231) and ER+/PR+ (MCF-7) breast cancer cell lines implemented to assess the effect of oleuropein as a natural inhibitor of PAI-1-mediated oncogenic proliferation. RESULTS We show that high PAI-1 levels inversely correlate with ER and PR expressions in a wide panel of estrogen/progesterone-responsive human malignancies. By implementing an in silico molecular docking analysis, we identify oleuropein, a phenolic component of olive oil, as a potent PAI-1-binding molecule displaying increased affinity compared to the other olive oil constituents. We demonstrate that EVOO or oleuropein treatment alone may act as a natural PAI-1 inhibitor by incrementally destabilising PAI-1 levels selectively in ER-/PR- breast cancer cells, accompanied by downstream caspase activation and cell growth inhibition. In contrast, ER+/PR+ breast cancer cells, where PAI-1 expression is absent or low, do not adequately respond to treatment. CONCLUSIONS Our study demonstrates an inverse correlation between PAI-1 and ESR1/PGR levels, as well as overall patient survival in estrogen/progesterone-responsive human tumours. With a focus on breast cancer, our data identify oleuropein as a natural PAI-1 inhibitor and suggest that oleuropein-mediated PAI-1 destabilisation may confer clinical benefit only in ER-/PR- tumours.
Collapse
Affiliation(s)
- Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Sophia N Lavrentiadou
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria P Tsantarliotou
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Angelos Papaspyropoulos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
9
|
An Iatrogenic Model of Brain Small-Vessel Disease: Post-Radiation Encephalopathy. Int J Mol Sci 2020; 21:ijms21186506. [PMID: 32899565 PMCID: PMC7555594 DOI: 10.3390/ijms21186506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
We studied 114 primitive cerebral neoplasia, that were surgically treated, and underwent radiotherapy (RT), and compared their results to those obtained by 190 patients diagnosed with subcortical vascular dementia (sVAD). Patients with any form of primitive cerebral neoplasia underwent whole-brain radiotherapy. All the tumor patients had regional field partial brain RT, which encompassed each tumor, with an average margin of 2.6 cm from the initial target tumor volume. We observed in our patients who have been exposed to a higher dose of RT (30–65 Gy) a cognitive and behavior decline similar to that observed in sVAD, with the frontal dysexecutive syndrome, apathy, and gait alterations, but with a more rapid onset and with an overwhelming effect. Multiple mechanisms are likely to be involved in radiation-induced cognitive impairment. The active site of RT brain damage is the white matter areas, particularly the internal capsule, basal ganglia, caudate, hippocampus, and subventricular zone. In all cases, radiation damage inside the brain mainly focuses on the cortical–subcortical frontal loops, which integrate and process the flow of information from the cortical areas, where executive functions are “elaborated” and prepared, towards the thalamus, subthalamus, and cerebellum, where they are continuously refined and executed. The active mechanisms that RT drives are similar to those observed in cerebral small vessel disease (SVD), leading to sVAD. The RT’s primary targets, outside the tumor mass, are the blood–brain barrier (BBB), the small vessels, and putative mechanisms that can be taken into account are oxidative stress and neuro-inflammation, strongly associated with the alteration of NMDA receptor subunit composition.
Collapse
|
10
|
Doulberis M, Kotronis G, Gialamprinou D, Polyzos SA, Papaefthymiou A, Katsinelos P, Kountouras J. Alzheimer's disease and gastrointestinal microbiota; impact of Helicobacter pylori infection involvement. Int J Neurosci 2020; 131:289-301. [PMID: 32125206 DOI: 10.1080/00207454.2020.1738432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Alzheimer disease (AD) is a leading cause of global burden with great impact on societies. Although research is working intensively on promising therapy, the problem remains up-to-date. Among the various proposed hypotheses regarding causality and therapy, emerging evidence supports the hypothesis that gastrointestinal microbiota through the so-called 'gut-brain axis' interacts with immune system and brain and shape the balance between homeostasis and disease; the involvement of gastrointestinal microbiota in the pathophysiology of AD is less defined, even though the role of 'gut-brain axis' has been well verified for other neurodegenerative conditions.Methods: We performed a systematic review of PubMed/MEDLINE database from 1st January 1990 to 17th October 2018, to investigate the accessible literature regarding possible association between AD and gastrointestinal microbiota. Inclusion criteria were available full text in English language, original clinical papers implicating AD patients and any sort of gastrointestinal microbiota.Results: Through our query, an initial number of 241 papers has been identified. After removing duplicates and through an additional manual search, twenty-four papers met our inclusion criteria. The great majority of eligible publications supported a possible connection between AD and gastrointestinal microbiota. The most common investigated microorganism was Helicobacter pylori.Conclusion: Our own systematic review, showed a possible association between AD and gastrointestinal microbiota mainly including Helicobacter pylori, and thus further research is required for substantiation of causality as well as for the establishment of promising novel therapies.
Collapse
Affiliation(s)
- Michael Doulberis
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland.,Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece.,First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Georgios Kotronis
- Department of Internal Medicine, General Hospital Agios Pavlos of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Dimitra Gialamprinou
- Department of Pediatrics, Papageorgiou University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Apostolis Papaefthymiou
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
11
|
Moretti R, Caruso P. Small Vessel Disease-Related Dementia: An Invalid Neurovascular Coupling? Int J Mol Sci 2020; 21:E1095. [PMID: 32046035 PMCID: PMC7036993 DOI: 10.3390/ijms21031095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The arteriosclerosis-dependent alteration of brain perfusion is one of the major determinants in small vessel disease, since small vessels have a pivotal role in the brain's autoregulation. Nevertheless, as far as we know, endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia that is related to small vessel disease (SVD), also being defined as subcortical vascular dementia (sVAD), as well as microglia activation, chronic hypoxia and hypoperfusion, vessel-tone dysregulation, altered astrocytes, and pericytes functioning blood-brain barrier disruption. The molecular basis of this pathology remains controversial. The apparent consequence (or a first event, too) is the macroscopic alteration of the neurovascular coupling. Here, we examined the possible mechanisms that lead a healthy aging process towards subcortical dementia. We remarked that SVD and white matter abnormalities related to age could be accelerated and potentiated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors, which are, to the best of our knowledge, mostly unknown. Metabolic demands, active neurovascular coupling, correct glymphatic process, and adequate oxidative and inflammatory responses could be bulwarks in defense of the correct aging process; their impairments lead to a potentially catastrophic and non-reversible condition.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
12
|
Ticinesi A, Nouvenne A, Tana C, Prati B, Meschi T. Gut Microbiota and Microbiota-Related Metabolites as Possible Biomarkers of Cognitive Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:129-154. [PMID: 31493226 DOI: 10.1007/978-3-030-25650-0_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota composition and functionality can influence the pathophysiology of age-related cognitive impairment and dementia, according to a large number of animal studies. The translation of this concept to humans is still uncertain, due to the relatively low number of clinical studies focused on fecal microbiota and large number of environmental factors that influence the microbiota composition. However, the fecal microbiota composition of older patients with dementia is deeply different from that of healthy active controls, conditioning a different metabolic profile. The possible use of fecal microbiota-related parameters and microbiota-derived metabolites as biomarkers of cognitive performance and dementia is critically reviewed in this paper, focusing on the most promising areas of research for the future.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Geriatric Rehabilitation Department, University-Hospital of Parma, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Antonio Nouvenne
- Geriatric Rehabilitation Department, University-Hospital of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Claudio Tana
- Geriatric Rehabilitation Department, University-Hospital of Parma, Parma, Italy
| | - Beatrice Prati
- Geriatric Rehabilitation Department, University-Hospital of Parma, Parma, Italy
| | - Tiziana Meschi
- Geriatric Rehabilitation Department, University-Hospital of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Xu Z, Zhang H, Yu H, Dai Q, Xiong J, Sheng H, Qiu J, Jiang L, Peng J, He X, Xin R, Li D, Zhang K. Allicin inhibits Pseudomonas aeruginosa virulence by suppressing the rhl and pqs quorum-sensing systems. Can J Microbiol 2019; 65:563-574. [PMID: 31009577 DOI: 10.1139/cjm-2019-0055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pseudomonas aeruginosa is a virulent bacterium that secretes a variety of virulence factors that aid in establishing infections in individuals. Allicin, derived from garlic, has been shown to inhibit virulence factor production and biofilm formation in P. aeruginosa. However, the mechanisms underlying the allicin-mediated regulation of P. aeruginosa virulence remain unclear. In this study, we investigated the possible mechanisms underlying allicin-mediated virulence regulation in P. aeruginosa. The results showed that allicin attenuates the production of P. aeruginosa virulence-associated factors, such as elastase, pyocyanin, pyoverdine, and rhamnolipids, by inhibiting the rhl and pqs quorum-sensing systems. Further analysis revealed that the rhl and pqs systems play different roles during the allicin-mediated regulation process. Taken together, these results support the potential use of allicin as a therapeutic agent in controlling P. aeruginosa infection and associated mechanisms.
Collapse
Affiliation(s)
- Zhimin Xu
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Dai
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Jiang
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jin Peng
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Defeng Li
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
|
15
|
Velali E, Pantazaki A, Besis A, Choli-Papadopoulou T, Samara C. Oxidative stress, DNA damage, and mutagenicity induced by the extractable organic matter of airborne particulates on bacterial models. Regul Toxicol Pharmacol 2019; 104:59-73. [PMID: 30872015 DOI: 10.1016/j.yrtph.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/24/2023]
Abstract
The biological activity induced by the extractable organic matter (EOM) of size-segregated airborne Particulate Matter (PM) from two urban sites, urban traffic (UT) and urban background (UB), was assessed by using bacterial assays. The Gram-negative Escherichia coli (E. coli) coliform bacterium was used to measure the intracellular formation of Reactive Oxygen Species (ROS) by employing the Nitroblue tetrazolium (NBT) reduction assay and the lipid peroxidation by malondialdehyde (MDA) measurement. To the best of our knowledge, this is the first study using E. coli for assessing the bioactivity of ambient air in term of oxidative mechanism studies. E. coli BL21 cells were further used for DNA damage assessment by employing the reporter (β-galactosidase) gene expression assay. The bacterial strain S. typhimurium TA100 was used to assess the mutagenic potential of PM by employing the well-known mutation assay (Ames test). Four PM size fractions were assessed for bioactivity, specifically the quasi-ultrafine mode (<0.49 μm), the upper accumulation mode (0.49-0.97 μm), the upper fine mode (0.97-3 μm), and the coarse mode (>3.0 μm). The EOM of each PM sample included three organic fractions of successively increased polarity: the non-polar organic fraction (NPOF), the moderately polar organic fraction (MPOF), and the polar organic fraction (POF). The toxicological endpoints induced by each organic fraction were correlated with the concentrations of various organic chemical components determined in previous studies in an attempt to identify the chemical classes involved.
Collapse
Affiliation(s)
- Ekaterini Velali
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
16
|
Ticinesi A, Tana C, Nouvenne A. The intestinal microbiome and its relevance for functionality in older persons. Curr Opin Clin Nutr Metab Care 2019; 22:4-12. [PMID: 30489399 DOI: 10.1097/mco.0000000000000521] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article summarizes the advances of research on the role of the intestinal microbiota in influencing sarcopenia, frailty, and cognitive dysfunction in older individuals, and thus its relevance for healthy active ageing. RECENT FINDINGS Age-related alterations of intestinal microbiota composition may negatively influence muscle protein synthesis and function by promoting chronic systemic inflammation, insulin resistance, oxidative stress, and reducing nutrient bioavailability. However, this 'gut-muscle axis' hypothesis is not supported by human data to date. Some observational studies have instead demonstrated that, in older individuals, frailty and Alzheimer-type dementia are associated with fecal microbiota dysbiosis, that is, reduced biodiversity and overexpression of pathobionts. The main possible mechanisms of the 'gut-brain axis' in cognitive function modulation include effects on neurotransmission, neuroinflammation, and amyloid deposition. Conversely, longevity in good health may be associated with the maintenance of a fecal microbiota composition similar to that of healthy young adults. However, the role of gut microbiota as an independent modulator of frailty and cognition still remains uncertain, being influenced by several physiological factors, including diet and exercise. SUMMARY The intestinal microbiome composition represents a possible determinant of functional performance in older people, and a promising target for antiaging therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Claudio Tana
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Pretorius L, Kell DB, Pretorius E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Front Neurosci 2018; 12:851. [PMID: 30519157 PMCID: PMC6251002 DOI: 10.3389/fnins.2018.00851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease and other similar dementias are debilitating neurodegenerative disorders whose etiology and pathogenesis remain largely unknown, even after decades of research. With the anticipated increase in prevalence of Alzheimer’s type dementias among the more susceptible aging population, the need for disease-modifying treatments is urgent. While various hypotheses have been put forward over the last few decades, we suggest that Alzheimer’s type dementias are triggered by external environmental factors, co-expressing in individuals with specific genetic susceptibilities. These external stressors are defined in the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis, previously put forward. This hypothesis is consistent with current literature in which serum ferritin levels of individuals diagnosed with Alzheimer’s disease are significantly higher compared those of age- and gender-matched controls. While iron dysregulation contributes to oxidative stress, it also causes microbial reactivation and virulence of the so-called dormant blood (and tissue) microbiome. Dysbiosis (changes in the microbiome) or previous infections can contribute to the dormant blood microbiome (atopobiosis1), and also directly promotes systemic inflammation via the amyloidogenic formation and shedding of potent inflammagens such as lipopolysaccharides. The simultaneous iron dysregulation and microbial aberrations affect the hematological system, promoting fibrin amylodiogenesis, and pathological clotting. Systemic inflammation and oxidative stress can contribute to blood brain barrier permeability and the ensuing neuro-inflammation, characteristic of Alzheimer’s type dementias. While large inter-individual variability exists, especially concerning disease pathogenesis, the IDDM hypothesis acknowledges primary causative factors which can be targeted for early diagnosis and/or for prevention of disease progression.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin Interv Aging 2018; 13:1497-1511. [PMID: 30214170 PMCID: PMC6120508 DOI: 10.2147/cia.s139163] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive frailty, defined as the coexistence of mild cognitive impairment symptoms and physical frailty phenotype in older persons, is increasingly considered the main geriatric condition predisposing to dementia. Recent studies have demonstrated that gut microbiota may be involved in frailty physiopathology by promoting chronic inflammation and anabolic resistance. The contribution of gut microbiota to the development of cognitive impairment and dementia is less defined, even though the concept of "gut-brain axis" has been well demonstrated for other neuropsychiatric disorders. The aim of this systematic review was to summarize the current state-of-the-art literature on the gut microbiota alterations associated with cognitive frailty, mild cognitive impairment and dementia and elucidate the effects of pre- or probiotic administration on cognitive symptom modulation in animal models of aging and human beings. We identified 47 papers with original data (31 from animal studies and 16 from human studies) suitable for inclusion according to our aims. We concluded that several observational and intervention studies performed in animal models of dementia (mainly Alzheimer's disease) support the concept of a gut-brain regulation of cognitive symptoms. Modulation of vagal activity and bacterial synthesis of substances active on host neural metabolism, inflammation and amyloid deposition are the main mechanisms involved in this physiopathologic link. Conversely, there is a substantial lack of human data, both from observational and intervention studies, preventing to formulate any clinical recommendation on this topic. Gut microbiota modulation of cognitive function represents, however, a promising area of research for identifying novel preventive and treatment strategies against dementia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| | - Claudio Tana
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Fulvio Lauretani
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| |
Collapse
|
19
|
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154:204-219. [PMID: 29513402 PMCID: PMC5980185 DOI: 10.1111/imm.12922] [Citation(s) in RCA: 612] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, the leading cause of morbidity and disability, are gaining increased attention as they impose a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders. Despite the different aetiologies, for example, infections, genetic mutations, trauma and protein aggregations, neuronal damage is frequently associated with chronic activation of an innate immune response in the CNS. The growing awareness that the immune system is inextricably involved in shaping the brain during development as well as mediating damage, but also regeneration and repair, has stimulated therapeutic approaches to modulate the immune system in neurodegenerative diseases. Here, we review the current understanding of how astrocytes and microglia, as well as neurons and oligodendrocytes, shape the neuroimmune response during development, and how aberrant responses that arise due to genetic or environmental triggers may predispose the CNS to neurodegenerative diseases. We discuss the known interactions between the peripheral immune system and the brain, and review the current concepts on how immune cells enter and leave the CNS. A better understanding of neuroimmune interactions during development and disease will be key to further manipulating these responses and the development of effective therapies to improve quality of life, and reduce the impact of neuroinflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Jodie Stephenson
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Erik Nutma
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Paul van der Valk
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Sandra Amor
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. RECENT FINDINGS Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.
Collapse
|