1
|
Audronyte E, Sutnikiene V, Pakulaite-Kazliene G, Kaubrys G. Olfactory memory in mild cognitive impairment and Alzheimer's disease. Front Neurol 2023; 14:1165594. [PMID: 37332995 PMCID: PMC10272592 DOI: 10.3389/fneur.2023.1165594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Olfaction is impaired in Alzheimer's disease (AD). However, olfactory memory has rarely been examined. As the pathogenesis of AD remains largely unknown, collecting more data regarding the occurrence and progression of its symptoms would help gain more insight into the disease. Objective To investigate olfactory memory and its relationship with verbal memory and other clinical features in patients with early-stage AD. Methods Three groups of participants were enrolled in this study: patients with mild dementia due to AD (MD-AD, N = 30), patients with mild cognitive impairment due to AD (MCI-AD, N = 30), and cognitively normal older participants (CN, N = 30). All participants underwent cognitive evaluation (Clinical Dementia Rating scale, Mini Mental State Examination, Alzheimer's Disease Assessment Scale-Cognitive Subscale, delayed verbal recall, and verbal fluency tests) and assessment of olfactory immediate and delayed recognition memory. Results Olfactory immediate and delayed recognition memory scores were significantly lower in the MD-AD group than in the MCI-AD and CN groups. The MCI-AD and CN groups did not differ significantly [in both cases, Kruskal-Wallis test, p < 0.05; post hoc analysis revealed significant differences between the MD-AD and MCI-AD groups and between the MD-AD and CN groups (p < 0.05), and no significant difference between the MCI-AD and CN groups (p > 0.05)]. Verbal immediate recall, delayed recall after 5 min, and delayed recall after 30 min scores were significantly worse in the MD-AD and MCI-AD groups than in the CN group. MD-AD and MCI-AD groups did not differ significantly [in all cases Kruskal-Wallis test, p < 0.05; post hoc analysis revealed significant differences between MD-AD and CN groups, and MCI-AD and CN groups (p < 0.05) and no significant difference between MD-AD and MCI-AD groups (p > 0.05)]. Duration of AD symptoms was a strong predictor of both immediate and delayed olfactory recognition memory scores. Conclusion Olfactory memory impairment was observed in patients with AD. The changes progress during the course of the disease. However, unlike verbal memory, olfactory memory is not significantly impaired in the prodromal stage of AD.
Collapse
|
2
|
Takahashi K, Tsuji M, Nakagawasai O, Katsuyama S, Hong L, Miyagawa K, Kurokawa K, Mochida-Saito A, Takeda H, Tadano T. Donepezil prevents olfactory dysfunction and α-synuclein aggregation in the olfactory bulb by enhancing autophagy in zinc sulfate-treated mice. Behav Brain Res 2023; 438:114175. [PMID: 36309244 DOI: 10.1016/j.bbr.2022.114175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease is associated with marked olfactory dysfunction observed in the early stages. Clinical studies reported that acetylcholinesterase inhibitor donepezil (DNP) attenuated this deficit; however, the underlying mechanism remains unclear. Herein, we aimed to examine the effects and underlying mechanisms of DNP on olfactory deficits in zinc sulfate (ZnSO4) nasal-treated mice, which were used as a model of reversible olfactory impairment. We evaluated olfactory function using the buried food finding test and neurogenesis in the subventricular zone (SVZ) using immunohistochemistry. Finally, we measured the expression of doublecortin (DCX), neuronal nuclear antigen (NeuN), olfactory marker protein, tyrosine hydroxylase (TH), tryptophan hydroxylase 2, glutamic acid decarboxylase 67, p-α-synuclein (Ser129), α-synuclein, p-AMPK, p-p70S6 kinase (p70S6K) (Thr389), LC3 Ⅱ/Ⅰ, and p-p62 in the olfactory bulb (OB) by western blotting. On day 7 after treatment, ZnSO4-treated mice exhibited prolonged time to find the buried food, cell proliferation enhancement in the SVZ, increased NeuN, p-α-synuclein (Ser129), and α-synuclein levels, and decreased DCX and TH levels in the OB; except for TH, these changes normalized on day 14 after treatment. Repeated administration of DNP prevented the ZnSO4-induced changes on day 7 after treatment. Moreover, DNP increased p-AMPK and LC3 Ⅱ/Ⅰ, and decreased p-p70S6K and p-p62 (Ser351) levels in the OB, suggesting that DNP enhances autophagy in the OB. These findings indicate that DNP may help prevent olfactory dysfunction by autophagy that reduces α-synuclein aggregation via the AMPK/mTOC1 pathway.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Soh Katsuyama
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, 10281 Komuro, Kitaadachigun Inamachi, Saitama 362-0806, Japan
| | - Lihua Hong
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Takeshi Tadano
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan; Department of Environment and Preventive Medicine, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
3
|
Pozzi FE, Conti E, Appollonio I, Ferrarese C, Tremolizzo L. Predictors of response to acetylcholinesterase inhibitors in dementia: A systematic review. Front Neurosci 2022; 16:998224. [PMID: 36203811 PMCID: PMC9530658 DOI: 10.3389/fnins.2022.998224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background The mainstay of therapy for many neurodegenerative dementias still relies on acetylcholinesterase inhibitors (AChEI); however, there is debate on various aspects of such treatment. A huge body of literature exists on possible predictors of response, but a comprehensive review is lacking. Therefore, our aim is to perform a systematic review of the predictors of response to AChEI in neurodegenerative dementias, providing a categorization and interpretation of the results. Methods We conducted a systematic review of the literature up to December 31st, 2021, searching five different databases and registers, including studies on rivastigmine, donepezil, and galantamine, with clearly defined criteria for the diagnosis of dementia and the response to AChEI therapy. Records were identified through the string: predict * AND respon * AND (acetylcholinesterase inhibitors OR donepezil OR rivastigmine OR galantamine). The results were presented narratively. Results We identified 1,994 records in five different databases; after exclusion of duplicates, title and abstract screening, and full-text retrieval, 122 studies were finally included. Discussion The studies show high heterogeneity in duration, response definition, drug dosage, and diagnostic criteria. Response to AChEI seems associated with correlates of cholinergic deficit (hallucinations, fluctuating cognition, substantia innominate atrophy) and preserved cholinergic neurons (faster alpha on REM sleep EEG, increased anterior frontal and parietal lobe perfusion after donepezil); white matter hyperintensities in the cholinergic pathways have shown inconsistent results. The K-variant of butyrylcholinesterase may correlate with better response in late stages of disease, while the role of polymorphisms in other genes involved in the cholinergic system is controversial. Factors related to drug availability may influence response; in particular, low serum albumin (for donepezil), CYP2D6 variants associated with reduced enzymatic activity and higher drug doses are the most consistent predictors, while AChEI concentration influence on clinical outcomes is debatable. Other predictors of response include faster disease progression, lower serum cholesterol, preserved medial temporal lobes, apathy, absence of concomitant diseases, and absence of antipsychotics. Short-term response may predict subsequent cognitive response, while higher education might correlate with short-term good response (months), and long-term poor response (years). Age, gender, baseline cognitive and functional levels, and APOE relationship with treatment outcome is controversial.
Collapse
Affiliation(s)
| | - Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Ildebrando Appollonio
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
5
|
Devanand DP, Liu X, Chunga RE, Cohen H, Andrews H, Schofield PW, Stern Y, Huey ED, Choi J, Pelton GH. Odor Identification Impairment and Change with Cholinesterase Inhibitor Treatment in Mild Cognitive Impairment. J Alzheimers Dis 2021; 75:845-854. [PMID: 32333591 DOI: 10.3233/jad-200021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Anticholinergic challenge can induce odor identification impairment that indicates Alzheimer's disease (AD) pathology, and short-term change in odor identification impairment with cholinesterase inhibitor (CheI) treatment may predict longer term cognitive outcomes. OBJECTIVE In patients with mild cognitive impairment (MCI) treated prospectively with donepezil, a CheI, for 52 weeks, to determine if 1) acute decline in odor identification ability with anticholinergic challenge can predict cognitive improvement, and 2) change in odor identification over 8 weeks can predict cognitive improvement. METHODS MCI was diagnosed clinically without AD biomarkers. At baseline, the University of Pennsylvania Smell identification Test (UPSIT) was administered before and after an anticholinergic atropine nasal spray challenge. Donepezil was started at 5 mg daily, increased to 10 mg daily if tolerated, and this dose was maintained for 52 weeks. Main outcomes were ADAS-Cog total score and Selective Reminding Test (SRT) total immediate recall score measured at baseline, 26 and 52 weeks. RESULTS In 100 study participants, mean age 70.14 (SD 9.35) years, atropine-induced decrease in UPSIT score at baseline was not associated with change in ADAS-Cog or SRT scores over 52 weeks. Change in UPSIT score from 0 to 8 weeks did not show a significant association with change in the ADAS-Cog or SRT measures over 52 weeks. CONCLUSION These negative findings in a relatively large sample of patients with MCI did not replicate results in much smaller samples. Change in odor identification with anticholinergic challenge, and over 8 weeks, may not be useful predictors of cognitive improvement with CheI in patients with MCI.
Collapse
Affiliation(s)
- D P Devanand
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA.,Department of Neurology and the Taub Institute for Research in Alzheimer's disease at Columbia University Medical Center, New York, NY, USA
| | - Xinhua Liu
- The Mailman School of Public Health at Columbia University Medical Center, New York, NY, USA
| | - Richard E Chunga
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Cohen
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA
| | - Howard Andrews
- The Mailman School of Public Health at Columbia University Medical Center, New York, NY, USA.,Department of Biostatistics, Columbia University, New York, NY, USA
| | - Peter W Schofield
- The University of Newcastle, Newcastle, Australia.,Hunter New England Local Health District, New Lambton, Australia
| | - Yaakov Stern
- Department of Neurology and the Taub Institute for Research in Alzheimer's disease at Columbia University Medical Center, New York, NY, USA
| | - Edward D Huey
- Department of Neurology and the Taub Institute for Research in Alzheimer's disease at Columbia University Medical Center, New York, NY, USA
| | - Jongwoo Choi
- Mental Health Data Science at the New York State Psychiatric Institute, New York, NY, USA.,Department of Biostatistics, Columbia University, New York, NY, USA
| | - Gregory H Pelton
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
6
|
Takahashi K, Tsuji M, Nakagawasai O, Katsuyama S, Miyagawa K, Kurokawa K, Mochida-Saito A, Iwasa M, Iwasa H, Takeda H, Tadano T. Activation of cholinergic system partially rescues olfactory dysfunction-induced learning and memory deficit in mice. Behav Brain Res 2021; 408:113283. [PMID: 33819530 DOI: 10.1016/j.bbr.2021.113283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Deficits in olfaction are associated with neurodegenerative disorders such as Alzheimer's disease. A recent study reported that intranasal zinc sulfate (ZnSO4)-treated mice show olfaction and memory deficits. However, it remains unknown whether olfaction deficit-induced learning and memory impairment is associated with the cholinergic system in the brain. In this study, we evaluated olfactory function by the buried food find test, and learning and memory function by the Y-maze and passive avoidance tests in ZnSO4-treated mice. The expression of choline acetyltransferase (ChAT) protein in the olfactory bulb (OB), prefrontal cortex, hippocampus, and amygdala was assessed by western blotting. Moreover, we observed the effect of the acetylcholinesterase inhibitor physostigmine on ZnSO4-induced learning and memory deficits. We found that intranasal ZnSO4-treated mice exhibited olfactory dysfunction, while this change was recovered on day 14 after treatment. Both short-term and long-term learning and memory were impaired on days 4 and 7 after treatment with ZnSO4, whereas the former, but not the latter, was recovered on day 14 after treatment. A significant correlation was observed between olfactory function and short-term memory, but not long-term memory. Treatment with ZnSO4 decreased the ChAT level in the OB on day 4, and increased and decreased the ChAT levels in the OB and hippocampus on day 7, respectively. Physostigmine improved the ZnSO4-induced deficit in short-term, but not long-term, memory. Taken together, the present results suggest that short-term memory may be closely associated with olfactory function via the cholinergic system.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Soh Katsuyama
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, 10281 Komuro, Kitaadachigun Inamachi, Saitama 362-0806, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Masahiro Iwasa
- Nihon Berm Co., Ltd, 2-14-3 Nagatachou, Chiyoda-ku, Tokyo 100-0014, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co., Ltd, 2-14-3 Nagatachou, Chiyoda-ku, Tokyo 100-0014, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Takeshi Tadano
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan; Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
7
|
Motter JN, Liu X, Qian M, Cohen HR, Devanand DP. Odor identification impairment and cholinesterase inhibitor treatment in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12158. [PMID: 33816753 PMCID: PMC8010480 DOI: 10.1002/dad2.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/01/2023]
Abstract
INTRODUCTION This study evaluated acute change in odor identification following atropine nasal spray challenge, and 8-week change in odor identification ability, as a predictor of long-term improvement in patients with mild to moderate Alzheimer's disease (AD) who received open-label cholinesterase inhibitor treatment. METHODS In patients with clinical AD, the University of Pennsylvania Smell identification Test (UPSIT) was administered before and after an anticholinergic atropine nasal spray challenge. Patients were then treated with donepezil for 52 weeks. RESULTS In 21 study participants, acute atropine-induced decrease in UPSIT was not associated with change in the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) or Selective Reminding Test (SRT). Decline in odor identification performance from baseline to week 8 was indicative of a future decline in cognitive performance over 52 weeks. DISCUSSION Change in odor identification with atropine challenge is not a useful predictor of treatment response to cholinesterase inhibitors. Short-term change in odor identification performance needs further investigation as a potential predictor of cognitive improvement with cholinesterase inhibitor treatment.
Collapse
Affiliation(s)
- Jeffrey N. Motter
- Department of Psychiatry Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric InstituteNew YorkUSA
- Columbia University Irving Medical CenterNew YorkUSA
| | - Xinhua Liu
- Mailman School of Public Health of Columbia UniversityNew YorkUSA
| | - Min Qian
- Mailman School of Public Health of Columbia UniversityNew YorkUSA
| | - Hannah R. Cohen
- Department of Psychiatry Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric InstituteNew YorkUSA
| | - Davangere P. Devanand
- Department of Psychiatry Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric InstituteNew YorkUSA
- Columbia University Irving Medical CenterNew YorkUSA
| |
Collapse
|
8
|
Beneficial Effects of Sagacious Confucius' Pillow Elixir on Cognitive Function in Senescence-Accelerated P8 Mice (SAMP8) via the NLRP3/Caspase-1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3097923. [PMID: 31781266 PMCID: PMC6874996 DOI: 10.1155/2019/3097923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/27/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Sagacious Confucius' Pillow Elixir (SCPE) is a traditional Chinese medicine that is mainly used for cognitive impairment in aging; however, the underlying mechanisms remain unclear. Aging is one of the most important pathogenic factors leading to inflammation and pyroptosis in the hippocampus, which may be a potential mechanism in elderly patients with cognitive impairment. Here, we examined whether SCPE could improve cognitive impairment in SAMP8 mice by reducing hippocampal inflammation and pyroptosis. Seven-month-old senescence-accelerated P8 mice (SAMP8) received SCPE (2.3 g/kg/day; 4.6 g/kg/day; 9.2 g/kg/day) for 28 days. Cognitive function and morphometric examinations were performed followed by water maze testing, hematoxylin-eosin staining, Congo red staining, toluidine blue staining, and TUNEL analysis of hippocampal CA1 and CA3 regions. Escape latency increased and times across platforms decreased in SAMP8 mice; however, both of them were normalized by SCPE after 28 days. Aging caused significant pyroptosis in hippocampal CA1 and CA3 regions, as evidenced by neuronal degeneration and necrosis, amyloid deposition, and decreased Nissl body amounts after cognitive impairment, which were greatly improved by SCPE. SCPE reduced serum IL-1β, IL-6, IL-18, and TNF-α levels and reduced hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1β, IL-6, IL-18, and Aβ expression. Thus, SCPE exerts an antipyroptotic effect in aging, mainly by suppressing the NLRP3/caspase-1 signaling pathway.
Collapse
|
9
|
Doty RL, Hawkes CH. Chemosensory dysfunction in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:325-360. [PMID: 31604557 DOI: 10.1016/b978-0-444-63855-7.00020-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of neurodegenerative diseases are accompanied by disordered smell function. The degree of dysfunction can vary among different diseases, such that olfactory testing can aid in differentiating, for example, Alzheimer's disease (AD) from major affective disorder and Parkinson's disease (PD) from progressive supranuclear palsy. Unfortunately, altered smell function often goes unrecognized by patients and physicians alike until formal testing is undertaken. Such testing uniquely probes brain regions not commonly examined in physical examinations and can identify, in some cases, patients who are already in the "preclinical" stage of disease. Awareness of this fact is one reason why the Quality Standards Committee of the American Academy of Neurology has designated smell dysfunction as one of the key diagnostic criteria for PD. The same recommendation has been made by the Movement Disorder Society for both the diagnosis of PD and identification of prodromal PD. Similar suggestions are proposed to include olfactory dysfunction as an additional research criterion for the diagnosis of AD. Although taste impairment, i.e., altered sweet, sour, bitter, salty, and umami perception, has also been demonstrated in some disorders, taste has received much less scientific attention than smell. In this review, we assess what is known about the smell and taste disorders of a wide range of neurodegenerative diseases and describe studies seeking to understand their pathologic underpinnings.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | | |
Collapse
|
10
|
Devanand DP, Pelton GH, D’Antonio K, Ciarleglio A, Scodes J, Andrews H, Lunsford J, Beyer JL, Petrella JR, Sneed J, Ciovacco M, Doraiswamy PM. Donepezil Treatment in Patients With Depression and Cognitive Impairment on Stable Antidepressant Treatment: A Randomized Controlled Trial. Am J Geriatr Psychiatry 2018; 26:1050-1060. [PMID: 30037778 PMCID: PMC6396676 DOI: 10.1016/j.jagp.2018.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Depression and cognitive impairment are often comorbid in older adults, but optimal treatment strategies remain unclear. In a two-site study, the efficacy and safety of add-on donepezil versus placebo were compared in depressed patients with cognitive impairment receiving stable antidepressant treatment. METHODS A randomized, double-blind, placebo-controlled trial was conducted in older adults with depression and cognitive impairment (https://clinicaltrials.gov/ct2/show/NCT01658228; NCT01658228). Patients received open-label antidepressant treatment for 16 weeks, initially with citalopram and then with venlafaxine, if needed, followed by random assignment to add-on donepezil 5-10 mg daily or placebo for another 62 weeks. Outcome measures were neuropsychological test performance (Alzheimer's Disease Assessment Scale-Cognitive subscale [ADAS-Cog] and Selective Reminding Test [SRT] total immediate recall) and instrumental activities of daily living (Functional Activities Questionnaire). RESULTS Of 81 patients who signed informed consent, 79 patients completed the baseline evaluation. Open antidepressant treatment was associated with improvement in depression in 63.93% responders by week 16. In the randomized trial, there were no treatment group differences between donepezil and placebo on dementia conversion rates, ADAS-Cog, SRT total immediate recall, or FAQ. Neither baseline cognitive impairment severity nor apolipoprotein E e4 genotype influenced donepezil efficacy. Donepezil was associated with more adverse effects than placebo. CONCLUSION The results do not support adjunctive off-label cholinesterase inhibitor treatment in patients with depression and cognitive impairment. The findings highlight the need to prioritize discovery of novel treatments for this highly prevalent population with comorbid illnesses.
Collapse
|