1
|
Datta D, Arnsten AFT. The etiology and prevention of early-stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques. Alzheimers Dement 2025. [PMID: 39776253 DOI: 10.1002/alz.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217. As soluble p-tau is rapidly dephosphorylated post mortem, it is not captured in human brains except with biopsy material. However, new macaque data show that soluble p-tau is toxic to neurons and capable of seeding across cortical circuits. Extensive evidence indicates that age-related inflammatory signaling contributes to calcium dysregulation, which drives tau hyperphosphorylation and amyloid beta generation. Pharmacological studies in aged macaques suggest that inhibiting inflammation and restoring calcium regulation can reduce tau hyperphosphorylation with minimal side effects, appropriate for potential preventive therapeutics. HIGHLIGHTS: Aging monkeys provide a unique window into early stage, soluble phosphorylated tau (p-tau). Inflammation with advancing age leads to calcium dysregulation, p-tau, and amyloid beta (Aβ). Macaque research shows p-tau undergoes transsynaptic seeding early in the cortex. p-tau traps amyloid precursor protein-containing endosomes, which may increase Aβ and drive vicious cycles. Restoring calcium regulation in cortex reduced p-tau217 levels in aged macaques.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale Medical School, New Haven, Connecticut, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Bathla S, Datta D, Bolat D, Woo E, Duque A, Arellano J, Arnsten A, Nairn AC. Dysregulated calcium signaling in the aged macaque entorhinal cortex associated with tau hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626721. [PMID: 39713378 PMCID: PMC11661118 DOI: 10.1101/2024.12.05.626721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tau pathology in sporadic Alzheimer's disease (AD) follows a distinct pattern, beginning in the entorhinal cortex (ERC) and spreading to interconnected brain regions. Early-stage tau pathology, characterized by soluble phosphorylated tau, is difficult to study in human brains post-mortem due to rapid dephosphorylation. Rhesus macaques, which naturally develop age-related tau pathology resembling human AD, provide an ideal model for investigating early tau etiology. This study examines the molecular processes underlying tau pathology in the macaque ERC, focusing on calcium and inflammatory signaling pathways. Our findings reveal age-related decreases in PDE4 phosphodiesterases that hydrolyze cAMP and increases in calpain-2 and GCPII that occur in parallel with early-stage tau hyperphosphorylation at multiple epitopes (pS214-tau, pT181-tau, pT217-tau). These findings suggest that dysregulated calcium signaling in ERC, beginning in middle-age, primes tau for hyperphosphorylation, potentially driving the early stages of AD, advancing our understanding of how ERC vulnerabilities contribute to neurodegeneration in AD.
Collapse
|
3
|
Yoon G, Kam MK, Koh YH, Jo C. Palmitoyl-L-carnitine induces tau phosphorylation and mitochondrial dysfunction in neuronal cells. PLoS One 2024; 19:e0313507. [PMID: 39536002 PMCID: PMC11560007 DOI: 10.1371/journal.pone.0313507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and memory loss, involving mechanisms such as tau hyperphosphorylation and mitochondrial dysfunction. Increasing evidence suggests that age-related alterations in metabolite levels are crucial for the pathogenesis of AD. Here, we analyzed serum metabolites from mice of various ages (2, 4, 14, and 21 months old) using mass spectrometry. We identified palmitoyl-L-carnitine as a key metabolite with significantly increased levels in aged mice. In vitro experiments with SH-SY5Y neuronal cells demonstrated that palmitoyl-L-carnitine treatment enhanced tau phosphorylation, increased mitochondrial fission, and elevated intracellular calcium levels. Furthermore, the increased levels of tau phosphorylation were significantly reduced by the inhibition of GSK-3β, CDK5, and calpain, indicating that tau kinases activated by calcium overload are directly involved in the increase of tau phosphorylation. Considering that mitochondrial fission is related to mitochondrial dysfunction, we propose that the elevated level of serum palmitoyl-L-carnitine during aging contributes to AD pathology through these pathways. These findings highlight the significant role of lipid metabolism in neurodegeneration and offer potential therapeutic targets for age-related diseases, including AD.
Collapse
Affiliation(s)
- Gwangho Yoon
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min Kyoung Kam
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chulman Jo
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
4
|
Arnsten AFT, Datta D, Preuss TM. Studies of aging nonhuman primates illuminate the etiology of early-stage Alzheimer's-like neuropathology: An evolutionary perspective. Am J Primatol 2021; 83:e23254. [PMID: 33960505 PMCID: PMC8550995 DOI: 10.1002/ajp.23254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Dibyadeep Datta
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Todd M. Preuss
- Division of Neuropharmacology and Neurologic Diseases, Department of Pathology, Yerkes National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Cuestas Torres DM, Cardenas FP. Synaptic plasticity in Alzheimer's disease and healthy aging. Rev Neurosci 2021; 31:245-268. [PMID: 32250284 DOI: 10.1515/revneuro-2019-0058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
The strength and efficiency of synaptic connections are affected by the environment or the experience of the individual. This property, called synaptic plasticity, is directly related to memory and learning processes and has been modeled at the cellular level. These types of cellular memory and learning models include specific stimulation protocols that generate a long-term strengthening of the synapses, called long-term potentiation, or a weakening of the said long-term synapses, called long-term depression. Although, for decades, researchers have believed that the main cause of the cognitive deficit that characterizes Alzheimer's disease (AD) and aging was the loss of neurons, the hypothesis of an imbalance in the cellular and molecular mechanisms of synaptic plasticity underlying this deficit is currently widely accepted. An understanding of the molecular and cellular changes underlying the process of synaptic plasticity during the development of AD and aging will direct future studies to specific targets, resulting in the development of much more efficient and specific therapeutic strategies. In this review, we classify, discuss, and describe the main findings related to changes in the neurophysiological mechanisms of synaptic plasticity in excitatory synapses underlying AD and aging. In addition, we suggest possible mechanisms in which aging can become a high-risk factor for the development of AD and how its development could be prevented or slowed.
Collapse
Affiliation(s)
- Diana Marcela Cuestas Torres
- Departamento de Psicología and Departamento de Biología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| | - Fernando P Cardenas
- Departamento de Psicología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| |
Collapse
|
6
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
7
|
Datta D, Leslie SN, Wang M, Morozov YM, Yang S, Mentone S, Zeiss C, Duque A, Rakic P, Horvath TL, van Dyck CH, Nairn AC, Arnsten AFT. Age-related calcium dysregulation linked with tau pathology and impaired cognition in non-human primates. Alzheimers Dement 2021; 17:920-932. [PMID: 33829643 PMCID: PMC8195842 DOI: 10.1002/alz.12325] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
Introduction The etiology of sporadic Alzheimer's disease (AD) requires non‐genetically modified animal models. Methods The relationship of tau phosphorylation to calcium‐cyclic adenosine monophosphate (cAMP)‐protein kinase A (PKA) dysregulation was analyzed in aging rhesus macaque dorsolateral prefrontal cortex (dlPFC) and rat primary cortical neurons using biochemistry and immuno‐electron microscopy. The influence of calcium leak from ryanodine receptors (RyRs) on neuronal firing and cognitive performance was examined in aged macaques. Results Aged monkeys naturally develop hyperphosphorylated tau, including AD biomarkers (AT8 (pS202/pT205) and pT217) and early tau pathology markers (pS214 and pS356) that correlated with evidence of increased calcium leak (pS2808‐RyR2). Calcium also regulated early tau phosphorylation in vitro. Age‐related reductions in the calcium‐binding protein, calbindin, and in phosphodiesterase PDE4D were seen within dlPFC pyramidal cell dendrites. Blocking RyRs with S107 improved neuronal firing and cognitive performance in aged macaques. Discussion Dysregulated calcium signaling confers risk for tau pathology and provides a potential therapeutic target.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Shannon N Leslie
- Department of Psychiatry, School of Medicine, Yale University, Connecticut, USA.,Interdepartmental Neuroscience Program, School of Medicine, Yale University, Connecticut, USA
| | - Min Wang
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Yury M Morozov
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Shengtao Yang
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - SueAnn Mentone
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, School of Medicine, Yale University, Connecticut, USA
| | - Alvaro Duque
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Pasko Rakic
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, School of Medicine, Yale University, Connecticut, USA
| | - Christopher H van Dyck
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA.,Department of Psychiatry, School of Medicine, Yale University, Connecticut, USA
| | - Angus C Nairn
- Department of Psychiatry, School of Medicine, Yale University, Connecticut, USA
| | - Amy F T Arnsten
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| |
Collapse
|
8
|
Jia J, Zeng X, Xu G, Wang Z. The Potential Roles of Redox Enzymes in Alzheimer's Disease: Focus on Thioredoxin. ASN Neuro 2021; 13:1759091421994351. [PMID: 33557592 PMCID: PMC7876756 DOI: 10.1177/1759091421994351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative diseases. Increasing studies have demonstrated the critical importance for redox proteins mediating neuronal protection in models of AD. This review briefly describes some of the risk factors contributing to AD, specifically highlighting the important roles of oxidative stress in the pathology of AD. Then this article concisely introduces the dysregulation and functions of two main redox enzymes, peroxiredoxins and glutaredoxins, in AD models. This review emphasizes the neuroprotective role of the third redox enzyme thioredoxin (Trx), an important multifunctional protein regulating cellular redox status. This commentary not only summarizes the alterations of Trx expression in AD patients and models, but also reviews the potential effects and mechanisms of Trx, Trx-related molecules and Trx-inducing compounds against AD. In conclusion, Trx has a potential neuroprotection in AD and may be very promising for clinical therapy of AD in the future.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Physiology, Jiaxing University Medical
College, Jiaxing, China
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Xiansi Zeng
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
- Department of Biochemistry, Jiaxing University Medical
College, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Zhanqi Wang
- College of Life Sciences, Huzhou University, Huzhou,
China
| |
Collapse
|
9
|
Jia J, Zeng X, Xu G, Wang Z. The Potential Roles of Redox Enzymes in Alzheimer's Disease: Focus on Thioredoxin. ASN Neuro 2021; 13:1759091421994351. [PMID: 33557592 DOI: 10.1177/1759091421994351if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative diseases. Increasing studies have demonstrated the critical importance for redox proteins mediating neuronal protection in models of AD. This review briefly describes some of the risk factors contributing to AD, specifically highlighting the important roles of oxidative stress in the pathology of AD. Then this article concisely introduces the dysregulation and functions of two main redox enzymes, peroxiredoxins and glutaredoxins, in AD models. This review emphasizes the neuroprotective role of the third redox enzyme thioredoxin (Trx), an important multifunctional protein regulating cellular redox status. This commentary not only summarizes the alterations of Trx expression in AD patients and models, but also reviews the potential effects and mechanisms of Trx, Trx-related molecules and Trx-inducing compounds against AD. In conclusion, Trx has a potential neuroprotection in AD and may be very promising for clinical therapy of AD in the future.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry, Jiaxing University Medical College, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, China
| | - Zhanqi Wang
- College of Life Sciences, Huzhou University, Huzhou, China
| |
Collapse
|
10
|
Ijomone OM, Ifenatuoha CW, Aluko OM, Ijomone OK, Aschner M. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol 2020; 50:801-814. [PMID: 33210961 DOI: 10.1080/10408444.2020.1838441] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aging process is accompanied by critical changes in cellular and molecular functions, which upset the homeostatic balance in the central nervous system. Accumulation of metals renders the brain susceptible to neurotoxic insults by mechanisms such as mitochondrial dysfunction, neuronal calcium-ion dyshomeostasis, buildup of damaged molecules, compromised DNA repair, reduction in neurogenesis, and impaired energy metabolism. These hallmarks have been identified to be responsible for neuronal injuries, resulting in several neurological disorders. Various studies have shown solid associations between metal accumulation, abnormal protein expressions, and pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic lateral sclerosis. This review highlights metals (such as manganese, zinc, iron, copper, and nickel) for their accumulation, and consequences in the development of neurological disorders, in relation to the aging brain.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology, Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Foster TC. Senescent neurophysiology: Ca 2+ signaling from the membrane to the nucleus. Neurobiol Learn Mem 2019; 164:107064. [PMID: 31394200 DOI: 10.1016/j.nlm.2019.107064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/16/2022]
Abstract
The current review provides a historical perspective on the evolution of hypothesized mechanisms for senescent neurophysiology, focused on the CA1 region of the hippocampus, and the relationship of senescent neurophysiology to impaired hippocampal-dependent memory. Senescent neurophysiology involves processes linked to calcium (Ca2+) signaling including an increase in the Ca2+-dependent afterhyperpolarization (AHP), decreasing pyramidal cell excitability, hyporesponsiveness of N-methyl-D-aspartate (NMDA) receptor function, and a shift in Ca2+-dependent synaptic plasticity. Dysregulation of intracellular Ca2+ and downstream signaling of kinase and phosphatase activity lies at the core of senescent neurophysiology. Ca2+-dysregulation involves a decrease in Ca2+ influx through NMDA receptors and an increase release of Ca2+ from internal Ca2+ stores. Recent work has identified changes in redox signaling, arising in middle-age, as an initiating factor for senescent neurophysiology. The shift in redox state links processes of aging, oxidative stress and inflammation, with functional changes in mechanisms required for episodic memory. The link between age-related changes in Ca2+ signaling, epigenetics and gene expression is an exciting area of research. Pharmacological and behavioral intervention, initiated in middle-age, can promote memory function by initiating transcription of neuroprotective genes and rejuvenating neurophysiology. However, with more advanced age, or under conditions of neurodegenerative disease, epigenetic changes may weaken the link between environmental influences and transcription, decreasing resilience of memory function.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience and Genetics and Genomics Program, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|