1
|
Zeng HX, Qin SJ, Andersson J, Li SP, Zeng QG, Li JH, Wu QZ, Meng WJ, Oudin A, Kanninen KM, Jalava P, Dong GH, Zeng XW. The emerging roles of particulate matter-changed non-coding RNAs in the pathogenesis of Alzheimer's disease: A comprehensive in silico analysis and review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125440. [PMID: 39631655 DOI: 10.1016/j.envpol.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Research on epigenetic‒environmental interactions in the development of Alzheimer's disease (AD) has accelerated rapidly in recent decades. Numerous studies have demonstrated the contribution of ambient particulate matter (PM) to the onset of AD. Emerging evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs, circular RNAs, and microRNAs, play a role in the pathophysiology of AD. In this review, we provide an overview of PM-altered ncRNAs in the brain, with emphasis on their potential roles in the pathogenesis of AD. These results suggest that these PM-altered ncRNAs are involved in the regulation of amyloid-beta pathology, microtubule-associated protein Tau pathology, synaptic dysfunction, damage to the blood‒brain barrier, microglial dysfunction, dysmyelination, and neuronal loss. In addition, we utilized in silico analysis to explore the biological functions of PM-altered ncRNAs in the development of AD. This review summarizes the knowns and unknowns of PM-altered ncRNAs in AD pathogenesis and discusses the current dilemma regarding PM-altered ncRNAs as promising biomarkers of AD. Altogether, this is the first thorough review of the connection between PM exposure and ncRNAs in AD pathogenesis, which may offer novel insights into the prevention, diagnosis, and treatment of AD associated with ambient PM exposure.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Parenteau AM, Hang S, Swartz JR, Wexler AS, Hostinar CE. Clearing the air: A systematic review of studies on air pollution and childhood brain outcomes to mobilize policy change. Dev Cogn Neurosci 2024; 69:101436. [PMID: 39244820 PMCID: PMC11407021 DOI: 10.1016/j.dcn.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Climate change, wildfires, and environmental justice concerns have drawn increased attention to the impact of air pollution on children's health and development. Children are especially vulnerable to air pollution exposure, as their brains and bodies are still developing. The objective of this systematic review was to synthesize available empirical evidence on the associations between air pollution exposure and brain outcomes in developmental samples (ages 0-18 years old). Studies were identified by searching the PubMed and Web of Science Core Collection databases and underwent a two-phase screening process before inclusion. 40 studies were included in the review, which included measures of air pollution and brain outcomes at various points in development. Results linked air pollution to varied brain outcomes, including structural volumetric and cortical thickness differences, alterations in white matter microstructure, functional network changes, metabolic and molecular effects, as well as tumor incidence. Few studies included longitudinal changes in brain outcomes. This review also suggests methodologies for incorporating air pollution measures in developmental cognitive neuroscience studies and provides specific policy recommendations to reduce air pollution exposure and promote healthy brain development by improving access to clean air.
Collapse
Affiliation(s)
| | - Sally Hang
- Psychology Department, University of California, Davis, USA
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis, USA
| | - Anthony S Wexler
- Air Quality Research Center, Mechanical and Aerospace Engineering, University of California, Davis, USA
| | | |
Collapse
|
3
|
Masurkar AV, Marsh K, Morgan B, Leitner D, Wisniewski T. Factors Affecting Resilience and Prevention of Alzheimer's Disease and Related Dementias. Ann Neurol 2024; 96:633-649. [PMID: 39152774 PMCID: PMC11534551 DOI: 10.1002/ana.27055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating, age-associated neurodegenerative disorder and the most common cause of dementia. The clinical continuum of AD spans from preclinical disease to subjective cognitive decline, mild cognitive impairment, and dementia stages (mild, moderate, and severe). Neuropathologically, AD is defined by the accumulation of amyloid β (Aβ) into extracellular plaques in the brain parenchyma and in the cerebral vasculature, and by abnormally phosphorylated tau that accumulates intraneuronally forming neurofibrillary tangles (NFTs). Development of treatment approaches that prevent or even reduce the cognitive decline because of AD has been slow compared to other major causes of death. Recently, the United States Food and Drug Administration gave full approval to 2 different Aβ-targeting monoclonal antibodies. However, this breakthrough disease modifying approach only applies to a limited subset of patients in the AD continuum and there are stringent eligibility criteria. Furthermore, these approaches do not prevent progression of disease, because other AD-related pathologies, such as NFTs, are not directly targeted. A non-mutually exclusive alternative is to address lifestyle interventions that can help reduce the risk of AD and AD-related dementias (ADRD). It is estimated that addressing such modifiable risk factors could potentially delay up to 40% of AD/ADRD cases. In this review, we discuss some of the many modifiable risk factors that may be associated with prevention of AD/ADRD and/or increasing brain resilience, as well as other factors that may interact with these modifiable risk factors to influence AD/ADRD progression. [Color figure can be viewed at www.annalsofneurology.org] ANN NEUROL 2024;96:633-649.
Collapse
Affiliation(s)
- Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Karyn Marsh
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Brianna Morgan
- Department of Medicine, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Dominique Leitner
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Thomas Wisniewski
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Pathology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Psychiatry, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| |
Collapse
|
4
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
5
|
Zhang L, Xu F, Yang Y, Yang L, Wu Q, Sun H, An Z, Li J, Wu H, Song J, Wu W. PM 2.5 exposure upregulates pro-inflammatory protein expression in human microglial cells via oxidant stress and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116386. [PMID: 38657455 DOI: 10.1016/j.ecoenv.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Exposure to ambient PM2.5 is associated with neurodegenerative disorders, in which microglia activation plays a critical role. Thus far, the underlying mechanisms for PM2.5-induced microglia activation have not been well elucidated. In this study, a human microglial cell line (HMC3) was used as the in vitro model to examine the inflammatory effect (hall marker of microglia activation) of PM2.5 and regulatory pathways. The expression of inflammatory mediators including interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) as well as the brain derived neurotrophic factor (BDNF) were determined by ELISA and/or real-time PCR, respectively. Flow cytometry was used to measure the production of intracellular reactive oxygen species (ROS). Western blot was used to measure protein levels of Toll-like receptor 4 (TLR4), NF-κB inhibitor α (IκBα) and COX-2. It was shown that PM2.5 stimulation increased IL-6 and COX-2 expression but decreased BDNF expression in a dose-dependent manner. Further studies showed that PM2.5 triggered the formation of ROS and pre-treatment with the ROS scavenger acetylcysteine (NAC) significantly suppressed PM2.5-induced IL-6 and COX-2 expression. Moreover, the nuclear factor kappa B (NF-κB) inhibitor BAY11-7085 or the TLR4 neutralizing antibody markedly blocked PM2.5-induced IL-6 and COX-2 expression. However, NAC or BAY11-7085 exhibited minimal effect on PM2.5-induced BDNF down-regulation. In addition, pre-treatment with BAY11-7085 or TLR4 neutralizing antibody reduced ROS production induced by PM2.5, and NAC pre-treatment inhibited TLR4 expression and NF-κB activation induced by PM2.5. Collectively, PM2.5 treatment induced IL-6 and COX-2 but suppressed BDNF expression. PM2.5-induced IL-6 and COX-2 expression was mediated by interactive oxidative stress and TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Ling Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Fei Xu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yishu Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
6
|
Dang M, Li Y, Zhao L, Li T, Lu Z, Lu J, Feng Y, Yang Y, Li F, Tang F, Wang X, Jian Y, Wang H, Zhang L, Fan H, Zhang G. Causal association between particulate matter 2.5 and Alzheimer's disease: a Mendelian randomization study. Front Public Health 2024; 12:1343915. [PMID: 38873321 PMCID: PMC11169690 DOI: 10.3389/fpubh.2024.1343915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Background Although epidemiological evidence implies a link between exposure to particulate matter (PM) and Alzheimer's disease (AD), establishing causality remains a complex endeavor. In the present study, we used Mendelian randomization (MR) as a robust analytical approach to explore the potential causal relationship between PM exposure and AD risk. We also explored the potential associations between PM exposure and other neurodegenerative diseases. Methods Drawing on extensive genome-wide association studies related to PM exposure, we identified the instrumental variables linked to individual susceptibility to PM. Using summary statistics from five distinct neurodegenerative diseases, we conducted two-sample MR analyses to gauge the causal impact of PM on the risk of developing these diseases. Sensitivity analyses were undertaken to evaluate the robustness of our findings. Additionally, we executed multivariable MR (MVMR) to validate the significant causal associations identified in the two-sample MR analyses, by adjusting for potential confounding risk factors. Results Our MR analysis identified a notable association between genetically predicted PM2.5 (PM with a diameter of 2.5 μm or less) exposure and an elevated risk of AD (odds ratio, 2.160; 95% confidence interval, 1.481 to 3.149; p < 0.001). A sensitivity analysis supported the robustness of the observed association, thus alleviating concerns related to pleiotropy. No discernible causal relationship was identified between PM and any other neurodegenerative diseases. MVMR analyses-adjusting for smoking, alcohol use, education, stroke, hearing loss, depression, and hypertension-confirmed a persistent causal relationship between PM2.5 and AD. Sensitivity analyses, including MR-Egger and weighted median analyses, also supported this causal association. Conclusion The present MR study provides evidence to support a plausible causal connection between PM2.5 exposure and AD. The results emphasize the importance of contemplating air quality interventions as a public health strategy for reducing AD risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guilian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
8
|
Wang C, Jia X, Jin H, Meng Y, Ye W, Zhang N, Wang W, Kan H, Zhang J. Maternal exposure to fine particulate matter and brain-derived neurotrophic factor (BDNF) in the fetus: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114912. [PMID: 37075646 DOI: 10.1016/j.ecoenv.2023.114912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Maternal exposure to ambient fine particulate matter (PM2.5) during pregnancy has been associated with impaired neurobehavioral development in children. However, the specific mechanism remains unclear. Brain derived neurotrophic factor (BDNF) is an important growth factor in the nervous system. We evaluated the associations of maternal PM2.5 exposures with fetal BDNF in the umbilical cord blood in a prospective cohort study. A total of 711 eligible mother-infant pairs from the Shanghai Birth Cohort were included in the current study. Daily maternal exposures to ambient PM2.5 were assessed with a gap-filling approach at 1 * 1 km2 resolution based on self-reported home addresses. The concentrations of BDNF in the cord blood were measured by ELISA. A linear regression model was applied to evaluate the association of maternal ambient PM2.5 exposure with fetal BDNF level at birth. The median concentration of BDNF was 13,403 pg/ml. Vaginal deliveries and female infants had higher BDNF levels than cesarean deliveries and male infants. One natural log (ln) unit increase in maternal PM2.5 exposure during the second trimester was significantly associated with - 0.20 (95% CI: -0.36, -0.05) ln-unit decrease in BDNF level in all births. These effects were stronger and more significant in vaginal deliveries and in male infants. Our study suggests that BDNF in the cord blood may serve as a potential biomarker in assessing the neurodevelopmental effects of maternal PM2.5 exposure.
Collapse
Affiliation(s)
- Cuiping Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Jia
- Department of Obstetrics and Gynecology, Shanghai Putuo Maternity and Infant Hospital, 517 Tong Pu Road, Shanghai 200062, China
| | - Hong Jin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Meng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Ye
- Department of Obstetrics and Gynecology, Shanghai Putuo Maternity and Infant Hospital, 517 Tong Pu Road, Shanghai 200062, China
| | - Na Zhang
- Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Weidong Wang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Public Health, Shanghai, China.
| |
Collapse
|
9
|
Denechaud M, Geurs S, Comptdaer T, Bégard S, Garcia-Núñez A, Pechereau LA, Bouillet T, Vermeiren Y, De Deyn PP, Perbet R, Deramecourt V, Maurage CA, Vanderhaegen M, Vanuytven S, Lefebvre B, Bogaert E, Déglon N, Voet T, Colin M, Buée L, Dermaut B, Galas MC. Tau promotes oxidative stress-associated cycling neurons in S phase as a pro-survival mechanism: Possible implication for Alzheimer's disease. Prog Neurobiol 2023; 223:102386. [PMID: 36481386 DOI: 10.1016/j.pneurobio.2022.102386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.
Collapse
Affiliation(s)
- Marine Denechaud
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Sarah Geurs
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Séverine Bégard
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Alejandro Garcia-Núñez
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Louis-Adrien Pechereau
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Thomas Bouillet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium.
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, eindendreef 1, 2020 Antwerpen, Belgium.
| | - Romain Perbet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Vincent Deramecourt
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Claude-Alain Maurage
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Michiel Vanderhaegen
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Bruno Lefebvre
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Elke Bogaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium; KU Leuven, Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium.
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| |
Collapse
|
10
|
Hajat A, Park C, Adam C, Fitzpatrick AL, Ilango SD, Leary C, Libby T, Lopez O, Semmens EO, Kaufman JD. Air pollution and plasma amyloid beta in a cohort of older adults: Evidence from the Ginkgo Evaluation of Memory study. ENVIRONMENT INTERNATIONAL 2023; 172:107800. [PMID: 36773564 PMCID: PMC9974914 DOI: 10.1016/j.envint.2023.107800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Air pollution has been linked to Alzheimer's disease and related dementias (ADRD), but the mechanisms connecting air pollution to ADRD have not been firmly established. Air pollution may cause oxidative stress and neuroinflammation and contribute to the deposition of amyloid beta (Aβ) in the brain. We examined the association between fine particulate matter<2.5 μm in diameter (PM2.5), particulate matter<10 μm in diameter (PM10), nitrogen dioxide (NO2), and plasma based measures of Aβ1-40, Aβ1-42 and Aβ1-42/Aβ1-40 using data from 3044 dementia-free participants of the Ginkgo Evaluation of Memory Study (GEMS). Air pollution exposures were estimated at residential addresses that incorporated address histories dating back to 1980, resulting in one-, five-, 10- and 20- year exposure averages. Aβ was measured at baseline (2000-2002) and then again at the end of the study (2007-2008) allowing for linear regression models to assess cross-sectional associations and linear random effects models to evaluate repeated measures. After adjustment for socio-demographic and behavioral covariates, we found small positive associations between each air pollutant and Aβ1-40 but no association with Aβ1-42 or the ratio measures in cross sectional analysis. In repeat measures analysis, we found larger positive associations between each air pollutant and all three outcomes. We observed a 4.43% (95% CI 3.26%, 5.60%) higher Aβ1-40 level, 9.73% (6.20%, 13.38%) higher Aβ1-42 and 1.57% (95% CI: 0.94%, 2.20%) higher Aβ1-42/Aβ1-40 ratio associated with a 2 µg/m3 higher 20-year average PM2.5. Associations with other air pollutants were similar. Our study contributes to the broader evidence base on air pollution and ADRD biomarkers by evaluating longer air pollution exposure averaging periods to better mimic disease progression and provides a modifiable target for ADRD prevention.
Collapse
Affiliation(s)
- Anjum Hajat
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA.
| | - Christina Park
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Claire Adam
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Annette L Fitzpatrick
- University of Washington, Department of Family Medicine, 4225 Roosevelt Ave NE Seattle, WA 98195, USA
| | - Sindana D Ilango
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Cindy Leary
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Tanya Libby
- University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Oscar Lopez
- University of Pittsburgh, Department of Neurology, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15123, USA
| | - Erin O Semmens
- University of Montana, School of Public and Community Health Sciences, Skaggs Building, 32 Campus Drive Missola, MT 59812, USA
| | - Joel D Kaufman
- University of Washington, Department of Environmental and Occupational Health and Epidemiology, 4225 Roosevelt Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Humphreys J, Valdés Hernández MDC. Impact of polycyclic aromatic hydrocarbon exposure on cognitive function and neurodegeneration in humans: A systematic review and meta-analysis. Front Neurol 2023; 13:1052333. [PMID: 36703634 PMCID: PMC9871581 DOI: 10.3389/fneur.2022.1052333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction This article documents an emerging body of evidence concerning the neurological effect of polycyclic aromatic hydrocarbon (PAH) exposure with regard to cognitive function and increased risk of neurodegeneration. Methods Two electronic databases, PubMed and Web of Science, were systematically searched. Results The 37/428 studies selected included outcomes measuring cognitive function, neurobehavioral symptoms of impaired cognition, and pathologies associated with neurodegeneration from pre-natal (21/37 studies), childhood (14/37 studies), and adult (8/37 studies) PAH exposure. Sufficient evidence was found surrounding pre-natal exposure negatively impacting child intelligence, mental development, average overall development, verbal IQ, and memory; externalizing, internalizing, anxious, and depressed behaviors; and behavioral development and child attentiveness. Evidence concerning exposure during childhood and as an adult was scarce and highly heterogeneous; however, the presence of neurodegenerative biomarkers and increased concentrations of cryptic "self" antigens in serum and cerebrospinal fluid samples suggest a higher risk of neurodegenerative disease. Associations with lowered cognitive ability and impaired attentiveness were found in children and memory disturbances, specifically auditory memory, verbal learning, and general memory in adults. Discussion Although evidence is not yet conclusive and further research is needed, the studies included supported the hypothesis that PAH exposure negatively impacts cognitive function and increases the risk of neurodegeneration in humans, and recommends considering the introduction of a variable "rural vs. urban" as covariate for adjusting analyses, where the neurological functions affected (as result of our review) are outcome variables.
Collapse
Affiliation(s)
- Jessica Humphreys
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria del C. Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Maria del C. Valdés Hernández ✉
| |
Collapse
|
12
|
Long-term particulate matter 2.5 exposure and dementia: a systematic review and meta-analysis. Public Health 2022; 212:33-41. [DOI: 10.1016/j.puhe.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
|
13
|
Calderón-Garcidueñas L, Stommel EW, Lachmann I, Waniek K, Chao CK, González-Maciel A, García-Rojas E, Torres-Jardón R, Delgado-Chávez R, Mukherjee PS. TDP-43 CSF Concentrations Increase Exponentially with Age in Metropolitan Mexico City Young Urbanites Highly Exposed to PM 2.5 and Ultrafine Particles and Historically Showing Alzheimer and Parkinson's Hallmarks. Brain TDP-43 Pathology in MMC Residents Is Associated with High Cisternal CSF TDP-43 Concentrations. TOXICS 2022; 10:559. [PMID: 36287840 PMCID: PMC9611594 DOI: 10.3390/toxics10100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Environmental exposures to fine particulate matter (PM2.5) and ultrafine particle matter (UFPM) are associated with overlapping Alzheimer’s, Parkinson’s and TAR DNA-binding protein 43 (TDP-43) hallmark protein pathologies in young Metropolitan Mexico City (MMC) urbanites. We measured CSF concentrations of TDP-43 in 194 urban residents, including 92 MMC children aged 10.2 ± 4.7 y exposed to PM2.5 levels above the USEPA annual standard and to high UFPM and 26 low pollution controls (11.5 ± 4.4 y); 43 MMC adults (42.3 ± 15.9 y) and 14 low pollution adult controls (33.1 ± 12.0 y); and 19 amyotrophic lateral sclerosis (ALS) patients (52.4 ± 14.1 y). TDP-43 neuropathology and cisternal CSF data from 20 subjects—15 MMC (41.1 ± 18.9 y) and 5 low pollution controls (46 ± 16.01 y)—were included. CSF TDP-43 exponentially increased with age (p < 0.0001) and it was higher for MMC residents. TDP-43 cisternal CSF levels of 572 ± 208 pg/mL in 6/15 MMC autopsy cases forecasted TDP-43 in the olfactory bulb, medulla and pons, reticular formation and motor nuclei neurons. A 16 y old with TDP-43 cisternal levels of 1030 pg/mL exhibited TDP-43 pathology and all 15 MMC autopsy cases exhibited AD and PD hallmarks. Overlapping TDP-43, AD and PD pathologies start in childhood in urbanites with high exposures to PM2.5 and UFPM. Early, sustained exposures to PM air pollution represent a high risk for developing brains and MMC UFPM emissions sources ought to be clearly identified, regulated, monitored and controlled. Prevention of deadly neurologic diseases associated with air pollution ought to be a public health priority and preventive medicine is key.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | - Chih-Kai Chao
- College of Health, The University of Montana, Missoula, MT 59812, USA
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
14
|
Song J, Han K, Wang Y, Qu R, Liu Y, Wang S, Wang Y, An Z, Li J, Wu H, Wu W. Microglial Activation and Oxidative Stress in PM2.5-Induced Neurodegenerative Disorders. Antioxidants (Basel) 2022; 11:antiox11081482. [PMID: 36009201 PMCID: PMC9404971 DOI: 10.3390/antiox11081482] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Fine particulate matter (PM2.5) pollution remains a prominent environmental problem worldwide, posing great threats to human health. The adverse effects of PM2.5 on the respiratory and cardiovascular systems have been extensively studied, while its detrimental effects on the central nervous system (CNS), specifically neurodegenerative disorders, are less investigated. Neurodegenerative disorders are characterized by reduced neurogenesis, activated microglia, and neuroinflammation. A variety of studies involving postmortem examinations, epidemiological investigations, animal experiments, and in vitro cell models have shown that PM2.5 exposure results in neuroinflammation, oxidative stress, mitochondrial dysfunction, neuronal apoptosis, and ultimately neurodegenerative disorders, which are strongly associated with the activation of microglia. Microglia are the major innate immune cells of the brain, surveilling and maintaining the homeostasis of CNS. Upon activation by environmental and endogenous insults, such as PM exposure, microglia can enter an overactivated state that is featured by amoeboid morphology, the over-production of reactive oxygen species, and pro-inflammatory mediators. This review summarizes the evidence of microglial activation and oxidative stress and neurodegenerative disorders following PM2.5 exposure. Moreover, the possible mechanisms underlying PM2.5-induced microglial activation and neurodegenerative disorders are discussed. This knowledge provides certain clues for the development of therapies that may slow or halt the progression of neurodegenerative disorders induced by ambient PM.
Collapse
Affiliation(s)
- Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Keyang Han
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Ya Wang
- Nursing School, Zhenjiang College, Zhenjiang 212028, China;
| | - Rongrong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Yuan Liu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Shaolan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
- Correspondence:
| |
Collapse
|
15
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118320. [PMID: 34634399 DOI: 10.1016/j.envpol.2021.118320] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter with a diameter of less than 2.5 μm or PM2.5 is recognized worldwide as a cause of public health problems, mainly associated with respiratory and cardiovascular diseases. There is accumulating evidence to show that exposure to PM2.5 has a crucial causative role in various neurological disorders, the main ones being dementia and Alzheimer's disease (AD). PM2.5 can activate glial and microglial activity, resulting in neuroinflammation, increased intracellular ROS production, and ultimately neuronal apoptosis. PM2.5 also causes the alteration of neuronal morphology and synaptic changes and increases AD biomarkers, including amyloid-beta and hyperphosphorylated-tau, as well as raising the levels of enzymes involved in the amyloidogenic pathway. Clinical trials have highlighted the correlation between exposure to PM2.5, dementia, and AD diagnosis. This correlation is also displayed by concordant evidence from animal models, as indicated by increased AD biomarkers in cerebrospinal fluid and markers of vascular injury. Blood-brain barrier disruption is another aggravated phenomenon demonstrated in people at risk who are exposed to PM2.5. This review summarizes and discusses studies from in vitro, in vivo, and clinical studies on causative relationships of PM2.5 exposure to AD-related neuropathology. Conflicting data are also examined in order to determine the actual association between ambient air pollution and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Liu J, Liu B, Yuan P, Cheng L, Sun H, Gui J, Pan Y, Huang D, Chen H, Jiang L. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112005. [PMID: 33640725 DOI: 10.1016/j.ecoenv.2021.112005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 05/20/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is implicated in neurodevelopmental disorders including cognitive decline, attention-deficit/hyperactivity disorder, and autism spectrum disorder. However, the specific molecular mechanisms by which PM2.5 impacts neurodevelopment are poorly understood. Accordingly, in the present study, the role of protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling in PM2.5-induced neurodevelopmental damage was investigated using primary cultured hippocampal neurons. When hippocampal neurons cultured for 3 days in vitro (DIV3) were exposed to PM2.5 for 24 h and 96 h, neuronal viability decreased by 18.8% and 32.7% respectively, percentage of TUNEL-positive neurons increased by 78.5% and 64.0% separately, caspase-9 expression increased, lower postsynaptic density and shorter active zones were observed by transmission electron microscopy, expression of synapse-related proteins including postsynaptic density-95 (PSD95), growth associated protein-43 (GAP43), and synaptophysin (SYP) were decreased, and the phosphorylation levels of PKA, CREB, and BDNF expression also decreased. However, the PM2.5-induced neuronal damage could be ameliorated or aggravated to varying degrees by up- or down-regulation of the PKA/CREB/BDNF signaling pathway, respectively. Our results indicate that PM2.5 exposure exerts neurodevelopmental toxicity as indicated by lower viability, apoptosis, and synaptic damage in primary cultured hippocampal neurons, and that the PKA/CREB/BDNF pathways could play a vital role in PM2.5-mediated neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Benke Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Ping Yuan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hong Sun
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Jianxiong Gui
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Yanan Pan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China.
| |
Collapse
|
18
|
Iaccarino L, La Joie R, Lesman-Segev OH, Lee E, Hanna L, Allen IE, Hillner BE, Siegel BA, Whitmer RA, Carrillo MC, Gatsonis C, Rabinovici GD. Association Between Ambient Air Pollution and Amyloid Positron Emission Tomography Positivity in Older Adults With Cognitive Impairment. JAMA Neurol 2021; 78:197-207. [PMID: 33252608 DOI: 10.1001/jamaneurol.2020.3962] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Amyloid-β (Aβ) deposition is a feature of Alzheimer disease (AD) and may be promoted by exogenous factors, such as ambient air quality. Objective To examine the association between the likelihood of amyloid positron emission tomography (PET) scan positivity and ambient air quality in individuals with cognitive impairment. Design, Setting, and Participants This cross-sectional study used data from the Imaging Dementia-Evidence for Amyloid Scanning Study, which included more than 18 000 US participants with cognitive impairment who received an amyloid PET scan with 1 of 3 Aβ tracers (fluorine 18 [18F]-labeled florbetapir, 18F-labeled florbetaben, or 18F-labeled flutemetamol) between February 16, 2016, and January 10, 2018. A sample of older adults with mild cognitive impairment (MCI) or dementia was selected. Exposures Air pollution was estimated at the patient residence using predicted fine particulate matter (PM2.5) and ground-level ozone (O3) concentrations from the Environmental Protection Agency Downscaler model. Air quality was estimated at 2002 to 2003 (early, or approximately 14 [range, 13-15] years before amyloid PET scan) and 2015 to 2016 (late, or approximately 1 [range, 0-2] years before amyloid PET scan). Main Outcomes and Measures Primary outcome measure was the association between air pollution and the likelihood of amyloid PET scan positivity, which was measured as odds ratios (ORs) and marginal effects, adjusting for demographic, lifestyle, and socioeconomic factors and medical comorbidities, including respiratory, cardiovascular, cerebrovascular, psychiatric, and neurological conditions. Results The data set included 18 178 patients, of which 10 991 (60.5%) had MCI and 7187 (39.5%) had dementia (mean [SD] age, 75.8 [6.3] years; 9333 women [51.3%]). Living in areas with higher estimated biennial PM2.5 concentrations in 2002 to 2003 was associated with a higher likelihood of amyloid PET scan positivity (adjusted OR, 1.10; 95% CI, 1.05-1.15; z score = 3.93; false discovery rate [FDR]-corrected P < .001; per 4-μg/m3 increments). Results were similar for 2015 to 2016 data (OR, 1.15; 95% CI, 1.05-1.26, z score = 3.14; FDR-corrected P = .003). An average marginal effect (AME) of +0.5% (SE = 0.1%; z score, 3.93; 95% CI, 0.3%-0.7%; FDR-corrected P < .001) probability of amyloid PET scan positivity for each 1-μg/m3 increase in PM2.5 was observed for 2002 to 2003, whereas an AME of +0.8% (SE = 0.2%; z score = 3.15; 95% CI, 0.3%-1.2%; FDR-corrected P = .002) probability was observed for 2015 to 2016. Post hoc analyses showed no effect modification by sex (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.04; z score = 1.13; FDR-corrected P = .56]; 2015-2016: β = 1.02 [95% CI, 0.98-1.07; z score = 0.91; FDR-corrected P = .56]) or clinical stage (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.03; z score = 0.77; FDR-corrected P = .58]; 2015-2016: β = 1.03; 95% CI, 0.99-1.08; z score = 1.46; FDR-corrected P = .47]). Exposure to higher O3 concentrations was not associated with amyloid PET scan positivity in both time windows. Conclusions and Relevance This study found that higher PM2.5 concentrations appeared to be associated with brain Aβ plaques. These findings suggest the need to consider airborne toxic pollutants associated with Aβ pathology in public health policy decisions and to inform individual lifetime risk of developing AD and dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Eunice Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco
| | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Bruce E Hillner
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - Barry A Siegel
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Rachel A Whitmer
- Division of Research, Kaiser Permanente, Oakland, California.,Department of Public Health Sciences, University of California, Davis, Davis
| | - Maria C Carrillo
- Medical and Scientific Relations Division, Alzheimer's Association, Chicago, Illinois
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island.,Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| |
Collapse
|
19
|
Calderón-Garcidueñas L, Torres-Solorio AK, Kulesza RJ, Torres-Jardón R, González-González LO, García-Arreola B, Chávez-Franco DA, Luévano-Castro SC, Hernández-Castillo A, Carlos-Hernández E, Solorio-López E, Crespo-Cortés CN, García-Rojas E, Mukherjee PS. Gait and balance disturbances are common in young urbanites and associated with cognitive impairment. Air pollution and the historical development of Alzheimer's disease in the young. ENVIRONMENTAL RESEARCH 2020; 191:110087. [PMID: 32890478 PMCID: PMC7467072 DOI: 10.1016/j.envres.2020.110087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 05/03/2023]
Abstract
To determine whether gait and balance dysfunction are present in young urbanites exposed to fine particular matter PM2.5 ≥ annual USEPA standard, we tested gait and balance with Tinetti and Berg tests in 575 clinically healthy subjects, age 21.0 ± 5.7 y who were residents in Metropolitan Mexico City, Villahermosa and Reynosa. The Montreal Cognitive Assessment was also applied to an independent cohort n:76, age 23.3 ± 9.1 y. In the 575 cohort, 75.4% and 34.4% had abnormal total Tinetti and Berg scores and high risk of falls in 17.2% and 5.7% respectively. BMI impacted negatively Tinetti and Berg performance. Gait dysfunction worsen with age and males performed worse than females. Gait and balance dysfunction were associated with mild cognitive impairment MCI (19.73%) and dementia (55.26%) in 57/76 and 19 cognitively intact subjects had gait and balance dysfunction. Seventy-five percent of urbanites exposed to PM2.5 had gait and balance dysfunction. For MMC residents-with historical documented Alzheimer disease (AD) and CSF abnormalities, these findings suggest Alzheimer Continuum is in progress. Early development of a Motoric Cognitive Risk Syndrome ought to be considered in city dwellers with normal cognition and gait dysfunction. The AD research frame in PM2.5 exposed young urbanites should include gait and balance measurements. Multicity teens and young adult cohorts are warranted for quantitative gait and balance measurements and neuropsychological and brain imaging studies in high vs low PM2.5 exposures. Early identification of gait and balance impairment in young air pollution-exposed urbanites would facilitate multidisciplinary prevention efforts for modifying the course of AD.
Collapse
Affiliation(s)
| | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Liu J, Yang C, Yang J, Song X, Han W, Xie M, Cheng L, Xie L, Chen H, Jiang L. Effects of early postnatal exposure to fine particulate matter on emotional and cognitive development and structural synaptic plasticity in immature and mature rats. Brain Behav 2019; 9:e01453. [PMID: 31709780 PMCID: PMC6908876 DOI: 10.1002/brb3.1453] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/16/2019] [Accepted: 09/21/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fine particulate matter (PM2.5) is closely associated with many neurological disorders including neurodegenerative disease, stroke, and brain tumors. However, the toxic effects of PM2.5 on neurodevelopment remain unclear. In this study, we aimed to determine the neurotoxic effects of early postnatal exposure to PM2.5 in immature and mature rats. METHODS We exposed neonatal rats to PM2.5 (2 or 10 mg/kg body weight) through intranasal instillation from postnatal day (PND) 3-15, once a day. Emotional and cognitive development were evaluated using the elevated plus maze, forced swimming, and Morris water maze tests. Hippocampal tissue was collected and subjected to transmission electron microscopy observation and western blot analysis. RESULTS Rats had lower body weight after exposure to high dose of PM2.5. The behavioral test results indicated that high-dose PM2.5 exposure led to increased anxiety-like symptoms in immature and mature rats, apparent depressive-like behaviors in mature rats, and impaired spatial learning and memory abilities in immature rats, and low-dose PM2.5 exposure increased anxiety-like behaviors in immature rats. Further, high-dose PM2.5 exposure contributed to fewer synapses, thinner postsynaptic density, and shorter active zone in immature and mature rats, and also decreased expressions of synaptophysin (SYP), growth associated protein-43 (GAP43), and postsynaptic density-95 (PSD95) in immature rats, SYP and PSD95 in mature rats. Moreover, low-dose PM2.5 exposure diminished the expression of PSD95 in immature rats. In addition, high-dose PM2.5 exposure reduced brain-derived neurotrophic factor (BDNF) expression and cAMP response element binding protein (CREB) phosphorylation in both immature and mature rats, and low-dose PM2.5 exposure lessened BDNF expression and CREB phosphorylation in immature rats. CONCLUSIONS Our findings indicate that PM2.5 impairs emotional and cognitive development by disrupting structural synaptic plasticity, possibly via the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Jie Liu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Yang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Han
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingdan Xie
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cheng
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Xie
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hengsheng Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Calderón-Garcidueñas L, Kulesza RJ, Mansour Y, Aiello-Mora M, Mukherjee PS, González-González LO. Increased Gain in the Auditory Pathway, Alzheimer’s Disease Continuum, and Air Pollution: Peripheral and Central Auditory System Dysfunction Evolves Across Pediatric and Adult Urbanites. J Alzheimers Dis 2019; 70:1275-1286. [DOI: 10.3233/jad-190405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Randy J. Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Yusra Mansour
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Mario Aiello-Mora
- Servicio de Otorrinolaringologia, Instituto Nacional de Cardiología, Mexico
| | | | | |
Collapse
|
23
|
Calderón-Garcidueñas L, González-Maciel A, Kulesza RJ, González-González LO, Reynoso-Robles R, Mukherjee PS, Torres-Jardón R. Air Pollution, Combustion and Friction Derived Nanoparticles, and Alzheimer’s Disease in Urban Children and Young Adults. J Alzheimers Dis 2019; 70:343-360. [DOI: 10.3233/jad-190331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| |
Collapse
|