1
|
Farnum Z, Mani R, Bindoff A, Wilson R, Fiotakis A, Stephens J, Cho E, Mackay-Sim A, Sinclair D. Convergent effects of synthetic glucocorticoid dexamethasone and amyloid beta in human olfactory neurosphere-derived cells. J Neurochem 2025; 169:e16263. [PMID: 39556451 DOI: 10.1111/jnc.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Stressful life events and glucocorticoid (stress) hormones appear to increase the risk of Alzheimer's disease and hasten its progression, but the reasons for this remain unclear. One potential explanation is that when amyloid β (Aβ) pathology is accumulating in the preclinical disease stage, glucocorticoid receptor signalling during stressful events exacerbates cellular dysfunction caused by Aβ. Alternatively, Aβ may disrupt glucocorticoid receptor signalling. To explore these possibilities, we investigated whether the synthetic glucocorticoid dexamethasone and Aβ have overlapping effects on the cellular proteome and whether Aβ influences canonical glucocorticoid receptor function. Human olfactory neurosphere-derived (ONS) cells, collected from the olfactory mucosa of six adult donors, were treated with soluble Aβ40 or Aβ42 followed by dexamethasone. Proteins were quantified by mass spectrometry. After 32 h treatment, Aβ40 and Aβ42 both induced profound changes in innate immunity-related proteins. After 72 h, Aβ42 formed widespread aggregates and induced few proteomic changes, whereas Aβ40 remained soluble and altered expression of mitochondrial and innate immunity-related proteins. ONS cells revealed overlapping impacts of Aβ40 and dexamethasone, with 23 proteins altered by both treatments. For 16 proteins (including eight mitochondrial proteins) dexamethasone counteracted the effects of Aβ40. For example, caspase 4 and methylmalonate-semialdehyde dehydrogenase were increased by Aβ40 and decreased by dexamethasone. Consistent with this finding, Aβ40 increased, but dexamethasone decreased, ONS cell proliferation. For seven proteins, including superoxide dismutase [Mn] mitochondrial, dexamethasone exacerbated the effects of Aβ40. For some proteins, including complement C3, the effects of dexamethasone differed depending on whether Aβ40 was present or absent. Neither Aβ species influenced glucocorticoid receptor nuclear translocation. Overall, this study revealed that glucocorticoid receptor signalling modifies the intracellular effects of Aß40, counteracting some effects and exacerbating others. It suggests that cellular mechanisms through which glucocorticoid receptor signalling influences Alzheimer's disease risk/progression are complex and determined by the balance of beneficial and detrimental glucocorticoid effects.
Collapse
Affiliation(s)
- Zane Farnum
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Radhika Mani
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Adoni Fiotakis
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Stephens
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Gomes Goncalves N, Mininel de Medeiros G, Ciciliati A, Contrera Avila J, Bertola L, Ferri C, Wong R, Kimie Suemoto C. Association between occupational complexity and cognitive function in older adults from Brazil and Mexico. Neuroscience 2025; 568:446-453. [PMID: 39892814 DOI: 10.1016/j.neuroscience.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
More complex occupations during adulthood may be associated with better cognition in later life. We used data from the Brazilian Longitudinal Study of Aging (ELSI) and the Mexican Health and Aging Study (MHAS) to investigate the association between occupational complexity and cognitive function. Using a regression-based approach, participants were classified as cognitively impaired or not. Occupation was categorized into four levels using the 2008 International Standard of Classification of Occupations. We used logistic regression models for separate and pooled analysis. The odds of cognitive impairment decreased with higher occupation skill levels in the ELSI, but this trend was not seen in the MHAS, where the highest skill level was not associated with cognitive impairment. ELSI participants had a lower probability of cognitive impairment compared to MHAS participants with the same occupation skill level. The results of this study suggest that programs addressing the negative consequences of lower-complexity occupations need to be tailored to specific regional contexts, considering their unique socioeconomic, cultural, and occupational landscapes.
Collapse
Affiliation(s)
| | | | - Aline Ciciliati
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Laiss Bertola
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Cleusa Ferri
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Rebeca Wong
- Center for Hispanic Healthy Aging, University of Texas Health San Antonio, USA
| | | |
Collapse
|
3
|
Ren Z, Guan Z, Guan Q, Guan H, Guan H. Association between apolipoprotein E ε4 status and the risk of Alzheimer's disease: a meta-analysis. BMC Neurosci 2025; 26:5. [PMID: 39856540 PMCID: PMC11761182 DOI: 10.1186/s12868-024-00914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 11/22/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The apolipoprotein E ε4 (APOE ε4) status has a controversial role in predicting Alzheimer's disease (AD) factors. This meta-analysis assessed AD event risk in patients with APOE ε4 status. MATERIALS AND METHODS The relevant English-language articles were identified by searching the Cochrane Library, EMBASE, and PubMed databases. The prognostic significance of APOE ε4 status in AD patients was examined on the basis of pooled hazard ratios (HRs). RESULTS A total of 22 studies published after 1987, including 571,800 patients, were included. Consequently, APOE ε4 status was a risk factor for disease-free survival (DFS, HR = 2.033; 95% confidence interval [CI] = 1.589-2.602; P = 0.000; I 2 = 93.1%) in patients with AD. Additionally, subgroup analysis suggested that the ROC curve was the main risk factor among patients with AD. CONCLUSIONS AD patients with different events are managed via different methods; however, the present meta-analysis suggests an increased risk of AD events in patients with different APOE ε4 statuses.
Collapse
Affiliation(s)
- Zijun Ren
- Department of Neurology, Yanbian University hospital, City of Yanji, Jilin Province, China
| | - Zhenting Guan
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingliang Guan
- Department of Neurosurgery, City of Zhucheng, Zhucheng Hospital of Chinese Medicine, Zhucheng, Shandong Province, China
| | - Hongjian Guan
- Department of Neurology, Yanbian University hospital, City of Yanji, Jilin Province, China.
| | - Hongjian Guan
- Department of General Medicine, Yanbian University Hospital, City of Yanji, Jilin Province, China.
| |
Collapse
|
4
|
Barbosa BJAP, Souza-Talarico JND, Jesus MCFD, Mota GPS, Oliveira MOD, Cassimiro L, Avolio IMB, Trés ES, Borges CR, Teixeira TBM, Brucki SMD. Allostatic load measures in older adults with subjective cognitive decline and mild cognitive impairment: A cross-sectional analysis from the Brazilian Memory and Aging Study. Clin Neurol Neurosurg 2024; 243:108365. [PMID: 38852227 DOI: 10.1016/j.clineuro.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION An increasing body of research suggests that stress and allostatic load are related to cognitive dysfunction and neurodegeneration. OBJECTIVES to determine the relationship between allostatic load (AL) and cognitive status in older adults classified with subjective cognitive decline (SCD) and mild cognitive impairment (MCI). METHODOLOGY Using the Brazilian Memory and Aging Study (BRAMS) database, we analyzed data from 57 older adults with SCD and MCI. Blood neuroendocrine (cortisol, DHEA-s), inflammatory (C-reactive protein, fibrinogen), metabolic (HbA1c, HDL-cholesterol, total cholesterol, creatinine), and cardiovascular (blood pressure, waist/hip ratio) were transformed into an AL index. RESULTS Despite a significant difference in the univariate analysis between waist/hip ratio (0.94 in the MCI group vs. 0, 88 in the SCD group, p = 0.03), total cholesterol levels (194 vs. 160, p = 0.02), and AL index (36.9 % in the MCI group vs. 27.2 % in the SCD group, p = 0.04), AL was not associated with SCD or MCI in the multivariate analysis. CONCLUSION Our data suggest that different profiles of AL in MCI compared to individuals with SCD could be due to cofounding factors. These findings need to be confirmed in longitudinal studies investigating profiles of AL changes at preclinical and prodromal stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Breno José Alencar Pires Barbosa
- University of São Paulo, School of Medicine, Department of Neurology, São Paulo, Brazil; Federal University of Pernambuco, Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Recife, Brazil.
| | - Juliana Nery de Souza-Talarico
- University of São Paulo, School of Nursing, Department of Medical-Surgical Nursing, São Paulo, Brazil; The University of Iowa, College of Nursing, IA, USA.
| | | | | | | | - Luciana Cassimiro
- University of São Paulo, School of Medicine, Department of Neurology, São Paulo, Brazil.
| | | | | | - Conrado Regis Borges
- University of São Paulo, School of Medicine, Department of Neurology, São Paulo, Brazil.
| | | | | |
Collapse
|
5
|
Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H, Le W. Progress on early diagnosing Alzheimer's disease. Front Med 2024; 18:446-464. [PMID: 38769282 PMCID: PMC11391414 DOI: 10.1007/s11684-023-1047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.
Collapse
Affiliation(s)
- Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
6
|
Sinclair D, Canty AJ, Ziebell JM, Woodhouse A, Collins JM, Perry S, Roccati E, Kuruvilla M, Leung J, Atkinson R, Vickers JC, Cook AL, King AE. Experimental laboratory models as tools for understanding modifiable dementia risk. Alzheimers Dement 2024; 20:4260-4289. [PMID: 38687209 PMCID: PMC11180874 DOI: 10.1002/alz.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.
Collapse
Affiliation(s)
- Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
- Global Brain Health Institute, Trinity CollegeDublinIreland
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Maneesh Kuruvilla
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
7
|
Holleman J, Daniilidou M, Kåreholt I, Aspö M, Hagman G, Udeh-Momoh CT, Spulber G, Kivipelto M, Solomon A, Matton A, Sindi S. Diurnal cortisol, neuroinflammation, and neuroimaging visual rating scales in memory clinic patients. Brain Behav Immun 2024; 118:499-509. [PMID: 38503394 DOI: 10.1016/j.bbi.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/18/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Neuroinflammation is a hallmark of the Alzheimer's disease (AD) pathogenic process. Cortisol dysregulation may increase AD risk and is related to brain atrophy. This cross-sectional study aims to examine interactions of cortisol patterns and neuroinflammation markers in their association with neuroimaging correlates. METHOD 134 participants were recruited from the Karolinska University Hospital memory clinic (Stockholm, Sweden). Four visual rating scales were applied to magnetic resonance imaging or computed tomography scans: medial temporal lobe atrophy (MTA), global cortical atrophy (GCA), white matter lesions (WML), and posterior atrophy. Participants provided saliva samples for assessment of diurnal cortisol patterns, and underwent lumbar punctures for cerebrospinal fluid (CSF) sampling. Three cortisol measures were used: the cortisol awakening response, total daily output, and the ratio of awakening to bedtime levels. Nineteen CSF neuroinflammation markers were categorized into five composite scores: proinflammatory cytokines, other cytokines, angiogenesis markers, vascular injury markers, and glial activation markers. Ordinal logistic regressions were conducted to assess associations between cortisol patterns, neuroinflammation scores, and visual rating scales, and interactions between cortisol patterns and neuroinflammation scores in relation to visual rating scales. RESULT Higher levels of angiogenesis markers were associated with more severe WML. Some evidence was found for interactions between dysregulated diurnal cortisol patterns and greater neuroinflammation-related biomarkers in relation to more severe GCA and WML. No associations were found between cortisol patterns and visual rating scales. CONCLUSION This study suggests an interplay between diurnal cortisol patterns and neuroinflammation in relation to brain structure. While this cross-sectional study does not provide information on causality or temporality, these findings suggest that neuroinflammation may be involved in the relationship between HPA-axis functioning and AD.
Collapse
Affiliation(s)
- Jasper Holleman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden.
| | - Makrina Daniilidou
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Chinedu T Udeh-Momoh
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Division of Public Health Sciences, Wake Forest University School of Medicine, North Carolina, USA; Brain and Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Gabriela Spulber
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Alina Solomon
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anna Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
8
|
Li Y, Ren Y, Cong L, Hou T, Song L, Wang M, Wang X, Han X, Tang S, Zhang Q, Dekhtyar S, Wang Y, Du Y, Qiu C. Association of Lifelong Cognitive Reserve with Dementia and Mild Cognitive Impairment among Older Adults with Limited Formal Education: A Population-Based Cohort Study. Dement Geriatr Cogn Disord 2023; 52:258-266. [PMID: 37517389 PMCID: PMC10614281 DOI: 10.1159/000532131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION Early-life educational attainment contributes to cognitive reserve (CR). We investigated the associations of lifelong CR with dementia and mild cognitive impairment (MCI) among older people with limited formal education. METHODS This population-based cohort study included 2,127 dementia-free participants (≥60 years; 59.4% women; 81.5% with no or elementary school) who were examined at baseline (August-December 2014) and follow-up (March-September 2018). Lifelong CR score at baseline was generated from six lifespan intellectual factors. Dementia, MCI, and their subtypes were defined according to the international criteria. Data were analyzed using Cox proportional-hazards models. RESULTS During the total of 8,330.6 person-years of follow-up, 101 persons were diagnosed with dementia, including 74 with Alzheimer's disease (AD) and 26 with vascular dementia (VaD). The high (vs. low) tertile of lifelong CR score was associated with multivariable-adjusted hazards ratios (95% confidence interval) of 0.28 (0.14-0.55) for dementia and 0.18 (0.07-0.48) for AD. The association between higher CR and reduced AD risk was significant in people aged 60-74 but not in those aged ≥75 years (p for interaction = 0.011). Similarly, among MCI-free people at baseline (n = 1,635), the high (vs. low) tertile of lifelong CR score was associated with multivariable-adjusted hazard ratios of 0.51 (0.38-0.69) for MCI and 0.46 (0.33-0.64) for amnestic MCI. Lifelong CR was not related to VaD or non-amnestic MCI. DISCUSSION High lifelong CR is associated with reduced risks of dementia and MCI, especially AD and amnestic MCI. It highlights the importance of lifelong CR in maintaining late-life cognitive health even among people with no or limited education.
Collapse
Affiliation(s)
- Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Solna, Sweden
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Mingqi Wang
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Serhiy Dekhtyar
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Solna, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chengxuan Qiu
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Solna, Sweden
- Department of Neurology, Shandong Provincial Hospital, Jinan, PR China
| |
Collapse
|
9
|
Li Y, Wang M, Cong L, Hou T, Song L, Wang X, Shi L, Dekhtyar S, Wang Y, Du Y, Qiu C. Lifelong Cognitive Reserve, Imaging Markers of Brain Aging, and Cognitive Function in Dementia-Free Rural Older Adults: A Population-Based Study. J Alzheimers Dis 2023; 92:261-272. [PMID: 36710675 PMCID: PMC10041437 DOI: 10.3233/jad-220864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cognitive reserve (CR) partly explains cognitive variability in the presence of pathological brain aging. OBJECTIVE We investigated the interplay of lifelong CR with age, sex, and brain aging markers in cognitive phenotypes among older adults with very limited education. METHODS This population-based cross-sectional study included 179 dementia-free participants (age ≥65 years; 39.7% women; 67.0% had no or elementary education) examined in 2014-2016. We assessed lacunes and volumes of hippocampus, ventricles, grey matter, white matter (WM), and white matter hyperintensities. Lifelong CR score was generated from six lifespan intellectual factors (e.g., education and social support). We used Mini-Mental State Examination (MMSE) score to assess cognition and Petersen's criteria to define mild cognitive impairment (MCI). Data were analyzed using general linear and logistic models. RESULTS The association of higher lifelong CR score (range: -4.0-5.0) with higher MMSE score was stronger in women (multivariable-adjusted β-coefficient and 95% CI: 1.75;0.99-2.51) than in men (0.68;0.33-1.03) (pinteraction = 0.006). The association of higher CR with MCI (multivariable-adjusted odds ratio and 95% CI: 0.77;0.60-0.99) did not vary by age or sex. Among participants with low CR (<1.4[median]), greater hippocampal and WM volumes were related to higher MMSE scores with multivariable-adjusted β-coefficients being 1.77(0.41-3.13) and 0.44(0.15-0.74); the corresponding figures in those with high CR were 0.15(-0.76-1.07) and -0.17(-0.41-0.07) (pinteraction <0.01). There was no statistical interaction of CR with MRI markers on MCI. CONCLUSION Greater lifelong CR capacity is associated with better late-life cognition among people with limited education, possibly by compensating for impact of neurodegeneration.
Collapse
Affiliation(s)
- Yuanjing Li
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Mingqi Wang
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Serhiy Dekhtyar
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Li H, Chen K, Yang L, Wang Q, Zhang J, He J. The role of plasma cortisol in dementia, epilepsy, and multiple sclerosis: A Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1107780. [PMID: 37008911 PMCID: PMC10050717 DOI: 10.3389/fendo.2023.1107780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Many clinical studies have shown a correlation between plasma cortisol and neurological disorders. This study explored the causal relationship between plasma cortisol and dementia, epilepsy and multiple sclerosis based on Mendelian randomization (MR) method. METHODS Data were taken from the summary statistics of a genome-wide association study, FinnGen consortium and United Kingdom Biobank. Dementia, epilepsy, and multiple sclerosis were used as outcomes, and genetic variants associated with plasma cortisol were used as instrumental variables. The main analysis was performed using the inverse variance weighted method, and the results were assessed according to the odds ratio (OR) and 95% confidence interval. Heterogeneity tests, pleiotropy tests, and leave-one-out method were conducted to evaluate the stability and accuracy of the results. RESULTS In two-sample MR analysis, the inverse variance weighted method showed that plasma cortisol was associated with Alzheimer's disease (AD) [odds ratio (95% confidence interval) = 0.99 (0.98-1.00), P = 0.025], vascular dementia (VaD) [odds ratio (95% confidence interval) = 2.02 (1.00-4.05), P = 0.049)], Parkinson's disease with dementia (PDD) [odds ratio (95% confidence interval) = 0.24 (0.07-0.82), P = 0.023] and epilepsy [odds ratio (95% confidence interval) = 2.00 (1.03-3.91), P = 0.042]. There were no statistically significant associations between plasma cortisol and dementia with Lewy bodies (DLB), frontotemporal dementia (FTD) and multiple sclerosis. CONCLUSION This study demonstrates that plasma cortisol increase the incidence rates of epilepsy and VaD and decrease the incidence rates of AD and PDD. Monitoring plasma cortisol concentrations in clinical practice can help prevent diseases, such as AD, PDD, VaD and epilepsy.
Collapse
Affiliation(s)
- Haiqi Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kaili Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, Jilin Province People’s Hospital, Changchun, China
| | - Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jinting He,
| |
Collapse
|
11
|
Kleineidam L, Wolfsgruber S, Weyrauch AS, Zulka LE, Forstmeier S, Roeske S, van den Bussche H, Kaduszkiewicz H, Wiese B, Weyerer S, Werle J, Fuchs A, Pentzek M, Brettschneider C, König HH, Weeg D, Bickel H, Luppa M, Rodriguez FS, Freiesleben SD, Erdogan S, Unterfeld C, Peters O, Spruth EJ, Altenstein S, Lohse A, Priller J, Fliessbach K, Kobeleva X, Schneider A, Bartels C, Schott BH, Wiltfang J, Maier F, Glanz W, Incesoy EI, Butryn M, Düzel E, Buerger K, Janowitz D, Ewers M, Rauchmann BS, Perneczky R, Kilimann I, Görß D, Teipel S, Laske C, Munk MHJ, Spottke A, Roy N, Brosseron F, Heneka MT, Ramirez A, Yakupov R, Scherer M, Maier W, Jessen F, Riedel-Heller SG, Wagner M. Midlife occupational cognitive requirements protect cognitive function in old age by increasing cognitive reserve. Front Psychol 2022; 13:957308. [PMID: 36571008 PMCID: PMC9773841 DOI: 10.3389/fpsyg.2022.957308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Several lifestyle factors promote protection against Alzheimer's disease (AD) throughout a person's lifespan. Although such protective effects have been described for occupational cognitive requirements (OCR) in midlife, it is currently unknown whether they are conveyed by brain maintenance (BM), brain reserve (BR), or cognitive reserve (CR) or a combination of them. Methods We systematically derived hypotheses for these resilience concepts and tested them in the population-based AgeCoDe cohort and memory clinic-based AD high-risk DELCODE study. The OCR score (OCRS) was measured using job activities based on the O*NET occupational classification system. Four sets of analyses were conducted: (1) the interaction of OCR and APOE-ε4 with regard to cognitive decline (N = 2,369, AgeCoDe), (2) association with differentially shaped retrospective trajectories before the onset of dementia of the Alzheimer's type (DAT; N = 474, AgeCoDe), (3) cross-sectional interaction of the OCR and cerebrospinal fluid (CSF) AD biomarkers and brain structural measures regarding memory function (N = 873, DELCODE), and (4) cross-sectional and longitudinal association of OCR with CSF AD biomarkers and brain structural measures (N = 873, DELCODE). Results Regarding (1), higher OCRS was associated with a reduced association of APOE-ε4 with cognitive decline (mean follow-up = 6.03 years), consistent with CR and BR. Regarding (2), high OCRS was associated with a later onset but subsequently stronger cognitive decline in individuals converting to DAT, consistent with CR. Regarding (3), higher OCRS was associated with a weaker association of the CSF Aβ42/40 ratio and hippocampal volume with memory function, consistent with CR. Regarding (4), OCR was not associated with the levels or changes in CSF AD biomarkers (mean follow-up = 2.61 years). We found a cross-sectional, age-independent association of OCRS with some MRI markers, but no association with 1-year-change. OCR was not associated with the intracranial volume. These results are not completely consistent with those of BR or BM. Discussion Our results support the link between OCR and CR. Promoting and seeking complex and stimulating work conditions in midlife could therefore contribute to increased resistance to pathologies in old age and might complement prevention measures aimed at reducing pathology.
Collapse
Affiliation(s)
- Luca Kleineidam
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,*Correspondence: Luca Kleineidam
| | | | - Anne-Sophie Weyrauch
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Linn E. Zulka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,Department of Psychology and Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | - Simon Forstmeier
- Developmental Psychology and Clinical Psychology of the Lifespan, University of Siegen, Siegen, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hendrik van den Bussche
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Kaduszkiewicz
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Medical Faculty, Institute of General Practice, University of Kiel, Kiel, Germany
| | - Birgitt Wiese
- Center for Information Management, Hannover Medical School, Hanover, Germany
| | - Siegfried Weyerer
- Medical Faculty, Central Institute of Mental Health, Mannheim/Heidelberg University, Heidelberg, Germany
| | - Jochen Werle
- Medical Faculty, Central Institute of Mental Health, Mannheim/Heidelberg University, Heidelberg, Germany
| | - Angela Fuchs
- Medical Faculty, Centre for Health and Society (CHS), Institute of General Practice (ifam), Heinrich Heine University, Düsseldorf, Germany
| | - Michael Pentzek
- Medical Faculty, Centre for Health and Society (CHS), Institute of General Practice (ifam), Heinrich Heine University, Düsseldorf, Germany
| | - Christian Brettschneider
- Department of Health Economics and Health Services Research, Hamburg Center for Health Economics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Helmut König
- Department of Health Economics and Health Services Research, Hamburg Center for Health Economics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Weeg
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Horst Bickel
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Luppa
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Francisca S. Rodriguez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Silka Dawn Freiesleben
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany,Department of Psychiatry, Campus Berlin-Buch, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany,Memory Clinic and Dementia Prevention Center, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Selin Erdogan
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany,Department of Psychiatry, Campus Berlin-Buch, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany,Memory Clinic and Dementia Prevention Center, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Chantal Unterfeld
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany,Department of Psychiatry, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany,Department of Psychiatry, Campus Berlin-Buch, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany,Memory Clinic and Dementia Prevention Center, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Eike J. Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany,Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany,Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany,Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Berlin, Germany,University of Edinburgh and UK DRI, Edinburgh, United Kingdom
| | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Xenia Kobeleva
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Björn H. Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany,Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Enise I. Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany,Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom,Sheeld Institute for Translational Neuroscience (SITraN), University of Sheeld, Sheeld, United Kingdom
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Doreen Görß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Michael T. Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany,Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Martin Scherer
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Steffi G. Riedel-Heller
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
12
|
Holleman J, Adagunodo S, Kåreholt I, Hagman G, Aspö M, Udeh-Momoh CT, Solomon A, Kivipelto M, Sindi S. Cortisol, cognition and Alzheimer's disease biomarkers among memory clinic patients. BMJ Neurol Open 2022; 4:e000344. [PMID: 36277478 PMCID: PMC9582323 DOI: 10.1136/bmjno-2022-000344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022] Open
Abstract
Objective This study aims to investigate the relationship between diurnal cortisol patterns, cognition and Alzheimer's disease (AD) biomarkers in memory clinic patients. Method Memory clinic patients were recruited from Karolinska University Hospital in Sweden (n=155). Diurnal cortisol patterns were assessed using five measures: awakening levels, cortisol awakening response, bedtime levels, the ratio of awakening to bedtime levels (AM/PM ratio) and total daily output. Cognition was measured in five domains: memory, working memory, processing speed, perceptual reasoning and overall cognition. AD biomarkers Aβ42, total tau and phosphorylated tau were assessed from cerebrospinal fluid (CSF). Cognition was measured at follow-up (average 32 months) in a subsample of participants (n=57). Results In assessing the associations between cortisol and cognition, higher awakening cortisol levels were associated with greater processing speed at baseline. No relationship was found between diurnal cortisol patterns and change in cognition over time or CSF AD biomarkers in the total sample. After stratification by CSF Aβ42 levels, higher awakening cortisol levels were associated with worse memory performance in amyloid-positive participants. In amyloid-negative participants, higher bedtime cortisol levels and a lower AM/PM ratio were associated with lower overall cognition, greater awakening cortisol levels were associated with better processing speed, and a higher AM/PM ratio was associated with better perceptual reasoning. Additionally, higher awakening cortisol levels were associated with lower CSF Aβ42 levels in amyloid-positive participants, while higher bedtime cortisol levels and a lower AM/PM ratio were associated with higher CSF total tau in amyloid-negative participants. Conclusions Our findings suggest that diurnal cortisol patterns are associated with cognitive function and provide new insights into the association between diurnal cortisol patterns and AD-related CSF biomarkers. Further research is needed to examine the complex relationship between cortisol, cognition and brain pathology.
Collapse
Affiliation(s)
- Jasper Holleman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Adagunodo
- Memory Clinic Zentralschweiz, Luzerner Psychiatrie, Pfaffnau-Sankt Urban, Switzerland
| | - Ingemar Kåreholt
- Institute of Gerontology, School of Health and Welfare, Aging Research Network – Jönköping (ARN-J), Jönköping University, Jonkoping, Sweden
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Chinedu T Udeh-Momoh
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Alina Solomon
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
13
|
Ouanes S, Clark C, Richiardi J, Maréchal B, Lewczuk P, Kornhuber J, Kirschbaum C, Popp J. Cerebrospinal Fluid Cortisol and Dehydroepiandrosterone Sulfate, Alzheimer’s Disease Pathology, and Cognitive Decline. Front Aging Neurosci 2022; 14:892754. [PMID: 35875796 PMCID: PMC9301040 DOI: 10.3389/fnagi.2022.892754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction Elevated cortisol levels have been reported in Alzheimer’s disease (AD) and may accelerate the development of brain pathology and cognitive decline. Dehydroepiandrosterone sulfate (DHEAS) has anti-glucocorticoid effects and it may be involved in the AD pathophysiology. Objectives To investigate associations of cerebrospinal fluid (CSF) cortisol and DHEAS levels with (1) cognitive performance at baseline; (2) CSF biomarkers of amyloid pathology (as assessed by CSF Aβ levels), neuronal injury (as assessed by CSF tau), and tau hyperphosphorylation (as assessed by CSF p-tau); (3) regional brain volumes; and (4) clinical disease progression. Materials and Methods Individuals between 49 and 88 years (n = 145) with mild cognitive impairment or dementia or with normal cognition were included. Clinical scores, AD biomarkers, brain MRI volumetry along with CSF cortisol and DHEAS were obtained at baseline. Cognitive and functional performance was re-assessed at 18 and 36 months from baseline. We also assessed the following covariates: apolipoprotein E (APOE) genotype, BMI, and education. We used linear regression and mixed models to address associations of interest. Results Higher CSF cortisol was associated with poorer global cognitive performance and higher disease severity at baseline. Cortisol and cortisol/DHEAS ratio were positively associated with tau and p-tau CSF levels, and negatively associated with the amygdala and insula volumes at baseline. Higher CSF cortisol predicted more pronounced cognitive decline and clinical disease progression over 36 months. Higher CSF DHEAS predicted more pronounced disease progression over 36 months. Conclusion Increased cortisol in the CNS is associated with tau pathology and neurodegeneration, and with decreased insula and amygdala volume. Both CSF cortisol and DHEAS levels predict faster clinical disease progression. These results have implications for the identification of patients at risk of rapid decline as well as for the development of interventions targeting both neurodegeneration and clinical manifestations of AD.
Collapse
Affiliation(s)
- Sami Ouanes
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Christopher Clark
- Centre for Gerontopsychiatric Medicine, Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Kirschbaum
- Chair of Biopsychology, Technische Universität Dresden, Andreas-Schubert-Bau, Dresden, Germany
| | - Julius Popp
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Centre for Gerontopsychiatric Medicine, Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland
- *Correspondence: Julius Popp,
| |
Collapse
|
14
|
Nucara A, Ripanti F, Sennato S, Nisini G, De Santis E, Sefat M, Carbonaro M, Mango D, Minicozzi V, Carbone M. Influence of Cortisol on the Fibril Formation Kinetics of Aβ42 Peptide: A Multi-Technical Approach. Int J Mol Sci 2022; 23:ijms23116007. [PMID: 35682687 PMCID: PMC9180743 DOI: 10.3390/ijms23116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aβ42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Aβ42 concentration ratio (ρ) close to 0.1 a faster organization of Aβ42 fragments into fibrils is promoted, while for ρ = 1 the formation of fibrils is completely inhibited.
Collapse
Affiliation(s)
- Alessandro Nucara
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
- Correspondence: (A.N.); (F.R.)
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (A.N.); (F.R.)
| | - Simona Sennato
- CNR-ISC Sede Sapienza, Department of Physics, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy;
| | - Giacomo Nisini
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
| | - Emiliano De Santis
- Department of Physics and Astronomy and Department of Chemistry-BMC, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden;
| | - Mahta Sefat
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
| | - Marina Carbonaro
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Dalila Mango
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
15
|
Duff K, Ying J, Suhrie KR, Dalley BCA, Atkinson TJ, Porter SM, Dixon AM, Hammers DB, Wolinsky FD. Computerized Cognitive Training in Amnestic Mild Cognitive Impairment: A Randomized Clinical Trial. J Geriatr Psychiatry Neurol 2022; 35:400-409. [PMID: 33783254 DOI: 10.1177/08919887211006472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Computerized cognitive training has been successful in healthy older adults, but its efficacy has been mixed in patients with amnestic Mild Cognitive Impairment (MCI). METHODS In a randomized, placebo-controlled, double-blind, parallel clinical trial, we examined the short- and long-term efficacy of a brain-plasticity computerized cognitive training in 113 participants with amnestic MCI. RESULTS Immediately after 40-hours of training, participants in the active control group who played computer games performed better than those in the experimental group on the primary cognitive outcome (p = 0.02), which was an auditory memory/attention composite score. There were no group differences on 2 secondary outcomes (global cognitive composite and rating of daily functioning). After 1 year, there was no difference between the 2 groups on primary or secondary outcomes. No adverse events were noted. CONCLUSIONS Although the experimental cognitive training program did not improve outcomes in those with MCI, the short-term effects of the control group should not be dismissed, which may alter treatment recommendations for these patients.
Collapse
Affiliation(s)
- Kevin Duff
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, 14434University of Utah, UT, USA
| | - Jian Ying
- Department of Internal Medicine, 14434University of Utah, UT, USA
| | - Kayla R Suhrie
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, 14434University of Utah, UT, USA
| | - Bonnie C A Dalley
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, 14434University of Utah, UT, USA
| | - Taylor J Atkinson
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, 14434University of Utah, UT, USA.,School of Aging Studies, 7831University of South Florida, FL, USA
| | - Sariah M Porter
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, 14434University of Utah, UT, USA
| | - Ava M Dixon
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, 14434University of Utah, UT, USA
| | - Dustin B Hammers
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, 14434University of Utah, UT, USA
| | | |
Collapse
|
16
|
Gerritsen L, Twait EL, Jonsson PV, Gudnason V, Launer LJ, Geerlings MI. Depression and Dementia: The Role of Cortisol and Vascular Brain Lesions. AGES-Reykjavik Study. J Alzheimers Dis 2022; 85:1677-1687. [PMID: 34958034 PMCID: PMC11044806 DOI: 10.3233/jad-215241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Late-life depression (LLD) is related to an increased risk of developing dementia; however, the biological mechanisms explaining this relationship remain unclear. OBJECTIVE To determine whether the relationship between LLD and dementia can be best explained by the glucocorticoid cascade or vascular hypothesis. METHODS Data are from 4,354 persons (mean age 76±5 years) without dementia at baseline from the AGES-Reykjavik Study. LLD was assessed with the MINI diagnostic interview (current and remitted major depressive disorder [MDD]) and the Geriatric Depression Scale-15. Morning and evening salivary cortisol were collected (glucocorticoid cascade hypothesis). White matter hyperintensities (WMH; vascular hypothesis) volume was assessed using 1.5T brain MRI. Using Cox proportional hazard models, we estimated the associations of LLD, cortisol levels, and WMH volume with incident all-cause dementia, AD, and non-AD dementia. RESULTS During 8.8±3.2 years of follow-up, 843 persons developed dementia, including 397 with AD. Current MDD was associated with an increased risk of developing all-cause dementia (HR = 2.17; 95% CI 1.66-2.67), with risks similar for AD and non-AD, while remitted MDD was not (HR = 1.02; 95% CI 0.55-1.49). Depressive symptoms were also associated with increased risk of dementia, in particular non-AD dementias. Higher levels of evening cortisol increased risk of dementia, but this was independent of MDD. WMH partially explained the relation between current MDD and dementia risk but remained increased (HR = 1.71; 95% CI 1.34-2.08). CONCLUSION The current study highlights the importance of LLD in developing dementia. However, neither the glucocorticoid cascade nor the vascular hypotheses fully explained the relation between depression and dementia.
Collapse
Affiliation(s)
- Lotte Gerritsen
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | - Emma L. Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Palmi V. Jonsson
- Department of Geriatrics, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lenore J. Launer
- National Institute on Aging, Laboratory for Epidemiology and Population Sciences, Baltimore, MD, USA
| | - Mirjam I. Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
- National Institute on Aging, Laboratory for Epidemiology and Population Sciences, Baltimore, MD, USA
| |
Collapse
|
17
|
García-Moreno JA, Cañadas-Pérez F, García-García J, Roldan-Tapia MD. Cognitive Reserve and Anxiety Interactions Play a Fundamental Role in the Response to the Stress. Front Psychol 2021; 12:673596. [PMID: 34539485 PMCID: PMC8446200 DOI: 10.3389/fpsyg.2021.673596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/03/2021] [Indexed: 12/21/2022] Open
Abstract
The aims of the present study were to assess the possible interaction between Cognitive Reserve (CR) and State Anxiety (SA) on adrenocortical and physiological responses in coping situations. Forty healthy, middle-aged men completed the Cognitive Reserve Scale and the State-Trait Anxiety Inventory. We used an Observational Fear Conditioning (OFC) paradigm in order to assess emotional learning and to induce stress. Electrodermal activity (EDA) and salivary cortisol concentrations were measured throughout the conditions. Our results indicate that those who indicated having higher state anxiety showed a lower capacity for learning the contingency, along with presenting higher salivary cortisol peak response following the observational fear-conditioning paradigm. The most prominent finding was the interaction between cognitive reserve and state anxiety on cortisol response to the post observational fear-conditioning paradigm. Thus, those who showed a high anxiety-state and, at the same time, a high cognitive reserve did not present an increased salivary cortisol response following the observational fear-conditioning paradigm. Given these results, we postulate that the state anxiety reported by participants, reflects emotional activation that hinders the attention needed to process and associate emotional stimuli. However, cognitive reserve has an indirect relation with conditioning, enabling better emotional learning. In this context, cognitive reserve demonstrated a protective effect on hormonal response in coping situations, when reported anxiety or emotional activation were high. These findings suggest that cognitive reserve could be used as a tool to deal with the effects of stressors in life situations, limiting development of the allostatic load.
Collapse
Affiliation(s)
- Jose A García-Moreno
- CERNEP Research Center, University of Almeria, Almería, Spain.,CEINSAUAL Research Center, University of Almeria, Almería, Spain
| | - Fernando Cañadas-Pérez
- CERNEP Research Center, University of Almeria, Almería, Spain.,CEINSAUAL Research Center, University of Almeria, Almería, Spain
| | | | - María D Roldan-Tapia
- CERNEP Research Center, University of Almeria, Almería, Spain.,CEINSAUAL Research Center, University of Almeria, Almería, Spain
| |
Collapse
|
18
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Cognitive Reserve, Alzheimer's Neuropathology, and Risk of Dementia: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2021; 31:233-250. [PMID: 33415533 PMCID: PMC7790730 DOI: 10.1007/s11065-021-09478-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/03/2021] [Indexed: 01/06/2023]
Abstract
Cognitive reserve (CR) may reduce the risk of dementia. We summarized the effect of CR on progression to mild cognitive impairment (MCI) or dementia in studies accounting for Alzheimer's disease (AD)-related structural pathology and biomarkers. Literature search was conducted in Web of Science, PubMed, Embase, and PsycINFO. Relevant articles were longitudinal, in English, and investigating MCI or dementia incidence. Meta-analysis was conducted on nine articles, four measuring CR as cognitive residual of neuropathology and five as composite psychosocial proxies (e.g., education). High CR was related to a 47% reduced relative risk of MCI or dementia (pooled-hazard ratio: 0.53 [0.35, 0.81]), with residual-based CR reducing risk by 62% and proxy-based CR by 48%. CR protects against MCI and dementia progression above and beyond the effect of AD-related structural pathology and biomarkers. The finding that proxy-based measures of CR rivaled residual-based measures in terms of effect on dementia incidence underscores the importance of early- and mid-life factors in preventing dementia later.
Collapse
|
20
|
Cortisol hypersecretion and the risk of Alzheimer's disease: A systematic review and meta-analysis. Ageing Res Rev 2020; 64:101171. [PMID: 32971258 DOI: 10.1016/j.arr.2020.101171] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Morning cortisol levels have been reported to be elevated among patients with Alzheimer's disease (AD); yet no meta-analysis has been conducted to confirm the existence and magnitude of this association. It also remains unclear whether hypercortisolism is a risk factor for AD. METHODS PubMed, EMBASE, and PsycINFO were systematically searched for eligible studies. Cross-sectional data were pooled using random-effects meta-analyses; the differences in morning cortisol levels between patients and cognitively normal controls were quantified. Longitudinal studies were qualitatively synthesised due to methodological heterogeneity. RESULTS 17,245 participants from 57 cross-sectional studies and 19 prospective cohort studies were included. Compared with cognitively normal controls, AD patients had moderately increased morning cortisol in blood (g = 0.422, P < 0.001; I2 = 48.5 %), saliva (g = 0.540, P < 0.001; I2 = 13.6 %), and cerebrospinal fluids (g = 0.565, P = 0.003; I2 = 75.3 %). A moderate elevation of morning cortisol was also detected in cerebrospinal fluids from patients with mild cognitive impairment (MCI) versus controls (g = 0.309, P = 0.001; I2 = 0.0 %). Cohort studies suggested that higher morning cortisol may accelerate cognitive decline in MCI or mild AD patients, but the results in cognitively healthy adults were inconsistent. CONCLUSIONS Morning cortisol was confirmed to be moderately elevated in AD patients and may have diagnostic and prognostic values for AD.
Collapse
|
21
|
Teubel J, Parr MK. Determination of neurosteroids in human cerebrospinal fluid in the 21st century: A review. J Steroid Biochem Mol Biol 2020; 204:105753. [PMID: 32937199 DOI: 10.1016/j.jsbmb.2020.105753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
Determination of steroid hormones synthesized by the human body plays an important role in various fields of endocrinology. Neurosteroids (NS) are steroids that are synthesized in the central (CNS) or peripheral nervous system (PNS), which is not only a source but also a target for neurosteroids. They are discussed as possible biomarkers in various cognitive disorders and research interest in this topic raises continuously. Nevertheless, knowledge on functions and metabolism is still limited, although the concept of neurosteroids was already introduced in the 1980s. Until today, the analysis of neurosteroids is truly challenging. The only accessible matrix for investigations of brain metabolism in living human beings is cerebrospinal fluid (CSF), which therefore becomes a very interesting specimen for analysis. However, neurosteroid concentrations are expected to be very low and the available amount of cerebrospinal fluid is limited. Further, high structural similarities of endogenous neurosteroids challenges analysis. Therefore, comprehensive methods, highly selective and sensitive for a large range of concentrations for different steroids in one aliquot are required and under continuous development. Although research has been increasingly intensified, still only few data are available on reference levels of neurosteroids in human cerebrospinal fluid. In this review, published literature of the last twenty years, as a period with relatively contemporary analytical methods, was systematically investigated. Considerations on human cerebrospinal fluid, different analytical approaches, and available data on levels of in analogy to periphery conceivable occurring neurosteroids, including (pro-) gestagens, androgens, corticoids, estrogens, and steroid conjugates, and their interpretation are intensively discussed.
Collapse
Affiliation(s)
- Juliane Teubel
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Maria Kristina Parr
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
22
|
Gregory S, Hill D, Grey B, Ketelbey W, Miller T, Muniz-Terrera G, Ritchie CW. 11β-hydroxysteroid dehydrogenase type 1 inhibitor use in human disease-a systematic review and narrative synthesis. Metabolism 2020; 108:154246. [PMID: 32333937 DOI: 10.1016/j.metabol.2020.154246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an intracellular enzyme that catalyses conversion of cortisone into cortisol; correspondingly, 11β-HSD1 inhibitors inhibit this conversion. This systematic review focuses on the use of 11β-HSD1 inhibitors in diseases known to be associated with abnormalities in hypothalamic pituitary adrenal (HPA) axis function. METHODS The databases screened for suitable papers were: MedLine, EMBASE, Web of Science, ClinicalTrials.gov, and Cochrane Central. RESULTS 1925 papers were identified, of which 29 were included in the final narrative synthesis. 11β-HSD1 and its inhibitors have been studied in diabetes, obesity, metabolic syndrome (MetS), and Alzheimer's disease (AD). Higher expression of 11β-HSD1 is seen in obesity and MetS, but has not yet been described in obesity or AD. Genetic studies identify 11β-HSD1 SNPs of interest in populations with diabetes, MetS, and AD. One phase II trial successfully reduced HbA1c in a diabetic population, however trials in MetS, obesity, and AD have not met primary endpoints. CONCLUSIONS Translation of this research from preclinical studies has proved challenging so far, however this is a growing area of research and more studies should focus on understanding the complex relationships between 11β-HSD1 and disease pathology, especially given the therapeutic potential of 11β-HSD1 inhibitors in development.
Collapse
Affiliation(s)
- Sarah Gregory
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - David Hill
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ben Grey
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Graciela Muniz-Terrera
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Contador I, Mograbi DC, Fernández-Calvo B, Benito-León J, Bermejo-Pareja F. Comparison of mortality rate in older adults with and without functional awareness: the Neurological Disorders in Central Spain (NEDICES) population-based study. Public Health 2020; 183:146-152. [PMID: 32502701 DOI: 10.1016/j.puhe.2020.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The main aim of the study was to compare the rates of mortality in older adults with and without functional unawareness (FU). We also tested a possible interaction effect between levels of awareness and education, as a single cognitive reserve proxy, on mortality. STUDY DESIGN The study design is a longitudinal population-based cohort study. METHODS The Neurological Disorders in Central Spain is epidemiological study to detect main age-associated conditions in people aged 65 years and older. Participants were collected from updated population-based registers of residents in three areas of central Spain. Awareness of functional limitations was established in accordance with the discrepancy between two sources of information on functional impairments: reliable informants versus the participants themselves. Three mutually exclusive groups were formed, namely, Functional Limitation Complaints (FCs), FU, and Functional Awareness (FA). Cox's regression models, adjusted by different covariates, were used to calculate the risk of mortality for each group at 5-year follow-up (vs. reference group without limitations). RESULTS Of 1818 selected individuals, 229 (12.5%) showed FA, 254 (13.9%) showed FC, and 96 (5%) were classified as FU. All these groups showed an increased risk of mortality at 5-year follow-up [adjusted hazard ratio (HR) for FC < FU < FA]. However, the association of FU with mortality remained significant only for highly educated individuals. CONCLUSIONS Functional impairment was associated with increased mortality rates, regardless of the presence of unawareness. This study extends the role of education in modulating the symptoms and prognosis of individuals at very mild or preclinical dementia stages.
Collapse
Affiliation(s)
- I Contador
- Department of Basic Psychology, Psychobiology and Methodology of Behavioral Science, Faculty of Psychology, University of Salamanca, Spain.
| | - D C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Brazil; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience. King's College London, UK
| | - B Fernández-Calvo
- Department of Psychology, Faculty of Educational Sciences, University of Córdoba, Spain
| | - J Benito-León
- Research Institute (Imas12), University Hospital "12 de Octubre", Madrid, Spain
| | - F Bermejo-Pareja
- Research Institute (Imas12), University Hospital "12 de Octubre", Madrid, Spain; Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
24
|
de Souza-Talarico JN, Alves AR, Brucki SMD, Nitrini R, Lupien SJ, Suchecki D. Cortisol reactivity to a psychosocial stressor significantly increases the risk of developing Cognitive Impairment no Dementia five years later. Psychoneuroendocrinology 2020; 115:104601. [PMID: 32087524 DOI: 10.1016/j.psyneuen.2020.104601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 02/01/2020] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) patients show high cortisol levels suggesting that biological mediators of stress may play a role in the neurodegenerative process of cognitive disorders. However, there is no consensus as to whether cortisol concentrations represent a risk factor for the development of cognitive impairment. We analyzed the potential association between the incidence of cognitive impairment and cortisol concentrations under basal and acute stress conditions in 129 individuals aged 50 years or older, with preserved cognitive and functional abilities. All participants were recruited in 2011 for assessment of cognitive performance and cortisol levels. Cortisol was analyzed in saliva samples collected during two typical and consecutive days, in the morning, afternoon, and night, and also during exposure to an acute psychosocial stressor (Trier Social Stress Test - TSST). After a five-year follow-up, 69 of these volunteers were reassessed for cognitive performance, functional evaluation, memory complaints, and depression. The incidence of cognitive impairment not dementia (CIND) was 26.1 %, and was positively associated with greater TSST-induced cortisol release (responsiveness) [(95 % CI = 1.001-1.011; B = 0.006), p = 0.023]. Moreover, five years before diagnosis, participants who later developed CIND had greater responsiveness to TSST (p = 0.019) and lower cortisol awakening response (CAR: p = 0.018), as compared to those who did not develop CIND. These findings suggest that higher psychosocial stress responsiveness profiles may represent a preclinical sign of cognitive impairment.
Collapse
Affiliation(s)
| | - Andrea Regiani Alves
- Department of Medical-Surgical Nursing, School of Nursing, Universidade de São Paulo, São Paulo, 05403 000, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Faculty of Medicine, Universidade de São Paulo, São Paulo, 05403 000, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Faculty of Medicine, Universidade de São Paulo, São Paulo, 05403 000, Brazil
| | - Sonia J Lupien
- Centre for Studies on Human Stress, Mental Health Research Centre Fernand Seguin, Hospital Louis H. Lafontaine, Université de Montréal, Montréal, QC, H1N 3V2, Canada
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil
| |
Collapse
|
25
|
Abstract
The concept of cognitive reserve (CR) was proposed to account for the discrepancy between levels of brain pathologic process or damage and clinical and cognitive function. We provide a detailed review of prospective longitudinal studies that have investigated the interaction between CR and Alzheimer disease (AD) biomarkers on clinical and cognitive outcomes among individuals with normal cognition at baseline. Current evidence is consistent with the view that higher levels of CR are associated with a delay in the onset of symptoms of mild cognitive impairment and that there may be multiple pathways by which CR exerts its protective effects.
Collapse
|