1
|
Fan YG, Guo C, Zhao LX, Ge RL, Pang ZQ, He DL, Ren H, Wu TY, Zhang YH, Wang ZY. Astrocyte-derived lactoferrin reduces β-amyloid burden by promoting the interaction between p38 kinase and PP2A phosphatase in male APP/PS1 transgenic mice. Br J Pharmacol 2024; 181:896-913. [PMID: 37309219 DOI: 10.1111/bph.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/23/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Overexpression of astrocytic lactoferrin (Lf) was observed in the brain of Alzheimer's disease (AD) patients, whereas the role of astrocytic Lf in AD progression remains unexplored. In this study, we aimed to evaluate the effects of astrocytic Lf on AD progression. EXPERIMENTAL APPROACH Male APP/PS1 mice with astrocytes overexpressing human Lf were developed to evaluate the effects of astrocytic Lf on AD progression. N2a-sw cells also were employed to further uncover the mechanism of astrocytic Lf on β-amyloid (Aβ) production. KEY RESULTS Astrocytic Lf overexpression increased protein phosphatase 2A (PP2A) activity and reduced amyloid precursor protein (APP) phosphorylation, Aβ burden and tau hyperphosphorylation in APP/PS1 mice. Mechanistically, astrocytic Lf overexpression promoted the uptake of astrocytic Lf into neurons in APP/PS1 mice, and conditional medium from astrocytes overexpressing Lf inhibited p-APP (Thr668) expression in N2a-sw cells. Furthermore, recombinant human Lf (hLf) significantly enhanced PP2A activity and inhibited p-APP expression, whereas inhibition of p38 or PP2A activities abrogated the hLf-induced p-APP down-regulation in N2a-sw cells. Additionally, hLf promoted the interaction of p38 and PP2A via p38 activation, thereby enhancing PP2A activity, and low-density lipoprotein receptor-related protein 1 (LRP1) knockdown significantly reversed the hLf-induced p38 activation and p-APP down-regulation. CONCLUSIONS AND IMPLICATIONS Our data suggested that astrocytic Lf promoted neuronal p38 activation, via targeting to LRP1, subsequently promoting p38 binding to PP2A to enhance PP2A enzyme activity, which finally inhibited Aβ production via APP dephosphorylation. In conclusion, promoting astrocytic Lf expression may be a potential strategy against AD. LINKED ARTICLES This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Ri-Le Ge
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Zhong-Qiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Da-Long He
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yan-Hui Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Abdelhamid M, Jung CG, Zhou C, Inoue R, Chen Y, Sento Y, Hida H, Michikawa M. Potential Therapeutic Effects of Bifidobacterium breve MCC1274 on Alzheimer's Disease Pathologies in AppNL-G-F Mice. Nutrients 2024; 16:538. [PMID: 38398861 PMCID: PMC10893354 DOI: 10.3390/nu16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Rieko Inoue
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yuxin Chen
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yoshiki Sento
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Geriatric Medicine School of Life, Dentistry at Niigata, Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| |
Collapse
|
3
|
Chen Y, Zhou C, Abdelhamid M, Jung CG, Michikawa M. Inhibition of Sirt2 Decreases ApoE Secretion in Astrocytes and Microglial Cells. J Biochem 2023; 174:409-420. [PMID: 37488092 DOI: 10.1093/jb/mvad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Amyloid-β (Aβ) accumulation caused by an imbalance of the production and clearance of Aβ in the brain is associated with the development of Alzheimer's disease (ad). Apolipoprotein E (ApoE) (the strongest genetic risk factor) enhances Aβ clearance, preventing Aβ deposition. Sirtuin 2 (Sirt2) is an NAD+-dependent histone deacetylase and its inhibition has been reported to ameliorate memory impairment in ad-like model mice. However, the role of Sirt2 in ApoE secretion is unknown. Here, we found that inhibition of Sirt2 activity in primary cultured astrocytes and BV2 cells decreased ApoE secretion, resulting in the accumulation of intracellular ApoE and inhibiting extracellular Aβ degradation. However, the reduction of Sirt2 protein level by Sirt2 siRNA decreased ApoE protein level, which ultimately reduces ApoE secretion. In addition, the knockdown of Sirt2 in the HEK293-APP cells also decreased levels of intracellular ApoE leading to reduction of its secretion, which is accompanied by increased Aβ levels without altering APP and APP processing enzymes. Our findings provide a novel role of Sirt2 in ApoE secretion.
Collapse
Key Words
- Alzheimer's disease
- Sirt2Abbreviations: ad, Alzheimer’s disease; ABCA1, ATP-binding cassette protein A1; ADAM10, A disintegrin and metalloproteinase domain-containing protein 10; Aβ, Amyloid-beta; APP, Amyloid precursor protein; ApoE, Apolipoprotein E; BACE1, β-site amyloid precursor protein cleaving enzyme 1; IDE, Insulin degrading enzyme; NEP, Neprilysin; PS1, Presenilin 1; Sirt2, Sirtuin 2
- amyloid-β
- apolipoprotein E
- glial cells
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
- Department of Geriatric Medicine School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
4
|
Sanches E, van de Looij Y, Ho D, Modernell L, da Silva A, Sizonenko S. Early Neuroprotective Effects of Bovine Lactoferrin Associated with Hypothermia after Neonatal Brain Hypoxia-Ischemia in Rats. Int J Mol Sci 2023; 24:15583. [PMID: 37958562 PMCID: PMC10650654 DOI: 10.3390/ijms242115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) in term newborns is a leading cause of mortality and chronic disability. Hypothermia (HT) is the only clinically available therapeutic intervention; however, its neuroprotective effects are limited. Lactoferrin (LF) is the major whey protein in milk presenting iron-binding, anti-inflammatory and anti-apoptotic properties and has been shown to protect very immature brains against HI damage. We hypothesized that combining early oral administration of LF with whole body hypothermia could enhance neuroprotection in a HIE rat model. Pregnant Wistar rats were fed an LF-supplemented diet (1 mg/kg) or a control diet from (P6). At P7, the male and female pups had the right common carotid artery occluded followed by hypoxia (8% O2 for 60') (HI). Immediately after hypoxia, hypothermia (target temperature of 32.5-33.5 °C) was performed (5 h duration) using Criticool®. The animals were divided according to diet, injury and thermal condition. At P8 (24 h after HI), the brain neurochemical profile was assessed using magnetic resonance spectroscopy (1H-MRS) and a hyperintense T2W signal was used to measure the brain lesions. The mRNA levels of the genes related to glutamatergic excitotoxicity, energy metabolism and inflammation were assessed in the right hippocampus. The cell markers and apoptosis expression were assessed using immunofluorescence in the right hippocampus. HI decreased the energy metabolites and increased lactate. The neuronal-astrocytic coupling impairments observed in the HI groups were reversed mainly by HT. LF had an important effect on astrocyte function, decreasing the levels of the genes related to glutamatergic excitotoxicity and restoring the mRNA levels of the genes related to metabolic support. When combined, LF and HT presented a synergistic effect and prevented lactate accumulation, decreased inflammation and reduced brain damage, pointing out the benefits of combining these therapies. Overall, we showed that through distinct mechanisms lactoferrin can enhance neuroprotection induced by HT following neonatal brain hypoxia-ischemia.
Collapse
Affiliation(s)
- Eduardo Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Dini Ho
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Laura Modernell
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Analina da Silva
- Center for Biomedical Imaging (CIBM), Animal Imaging and Technology Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| |
Collapse
|
5
|
Kaštelan S, Braš M, Pjevač N, Bakija I, Tomić Z, Pjevač Keleminić N, Gverović Antunica A. Tear Biomarkers and Alzheimer's Disease. Int J Mol Sci 2023; 24:13429. [PMID: 37686235 PMCID: PMC10488148 DOI: 10.3390/ijms241713429] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative brain disorder that represents the most common type of dementia. It poses a significant diagnostic challenge that requires timely recognition and treatment. Currently, there is no effective therapy for AD; however, certain medications may slow down its progression. The discovery of AD biomarkers, namely, magnetic resonance imaging, positron emission tomography and cerebrospinal fluid molecules (amyloid-β and tau) has advanced our understanding of this disease and has been crucial for identifying early neuropathologic changes prior to clinical changes and cognitive decline. The close interrelationship between the eye and the brain suggests that tears could be an interesting source of biomarkers for AD; however, studies in this area are limited. The identification of biomarkers in tears will enable the development of cost-effective, non-invasive methods of screening, diagnosis and disease monitoring. In order to use tears as a standard method for early and non-invasive diagnosis of AD, future studies need to be conducted on a larger scale.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijana Braš
- Centre for Palliative Medicine, Medical Ethics and Communication Skills, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neda Pjevač
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Bakija
- Department of Integrative Psychiatry, Psychiatry Hospital “Sveti Ivan”, 10090 Zagreb, Croatia
| | - Zora Tomić
- Health Centre of the Croatian Department of Internal Affairs, 10000 Zagreb, Croatia
| | - Nada Pjevač Keleminić
- Department of Family Medicine, Health Centre Zagreb-Centar, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonela Gverović Antunica
- Department of Ophthalmology, General Hospital Dubrovnik, University of Dubrovnik, 20000 Dubrovnik, Croatia
| |
Collapse
|
6
|
He Q, Zhang LL, Li D, Wu J, Guo YX, Fan J, Wu Q, Wang HP, Wan Z, Xu JY, Qin LQ. Lactoferrin alleviates Western diet-induced cognitive impairment through the microbiome-gut-brain axis. Curr Res Food Sci 2023; 7:100533. [PMID: 37351541 PMCID: PMC10282426 DOI: 10.1016/j.crfs.2023.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Lactoferrin (Lf) has been shown to benefit cognitive function in several animal models. To elucidate the underlying mechanisms, male C57BL/6J mice were randomly divided into the control (CON), Western-style diets (WD), lactoferrin (Lf), and Lf + antibiotics (AB) groups. The Lf group was intragastrically administered with Lf, and the Lf + AB group additionally drank a solution with antibiotics. After 16 weeks of intervention, Lf improved the cognitive function as indicated by behavioral tests. Lf also increased the length and curvature of postsynaptic density and upregulated the related protein expression, suggesting improved hippocampal neurons and synapses. Lf suppressed microglia activation and proliferation as revealed by immunofluorescence analysis. Lf decreased the serum levels of pro-inflammatory cytokines and downregulated their protein expressions in the hippocampus region. Lf also inhibited the activation of NF-κB/NLRP3 inflammasomes in the hippocampus. Meanwhile, Lf upregulated the expression of tight junction proteins, and increased the abundance of Bacteroidetes at phylum and Roseburia at genus, which are beneficial for gut barrier and cognitive function. The antibiotics eliminated the effects of long-term Lf intervention on cognitive impairment in the Lf + AB group, suggesting that gut microbiota participated in Lf action. Short-term Lf intervention (2 weeks) prevented WD-induced gut microbiota alteration without inducing behavioral changes, supporting the timing sequence of gut microbiota to the brain. Thus, Lf intervention alleviated cognitive impairment by inhibiting microglial activation and neuroinflammation through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jiangxue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jingbo Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Laboratory Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Qingyang Wu
- School of Life Science, Chinese University of Hong Kong, 7th Floor, Yasumoto International Academic Park, 999077, China
| | - Hai-Peng Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
7
|
Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol 2023; 13:1151021. [PMID: 37333848 PMCID: PMC10272569 DOI: 10.3389/fcimb.2023.1151021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer`s disease (AD) is the most prevalent cause of dementia. It is often assumed that AD is caused by an aggregation of extracellular beta-amyloid and intracellular tau-protein, supported by a recent study showing reduced brain amyloid levels and reduced cognitive decline under treatment with a beta-amyloid-binding antibody. Confirmation of the importance of amyloid as a therapeutic target notwithstanding, the underlying causes of beta-amyloid aggregation in the human brain, however, remain to be elucidated. Multiple lines of evidence point towards an important role of infectious agents and/or inflammatory conditions in the etiology of AD. Various microorganisms have been detected in the cerebrospinal fluid and brains of AD-patients and have thus been hypothesized to be linked to the development of AD, including Porphyromonas gingivalis (PG) and Spirochaetes. Intriguingly, these microorganisms are also found in the oral cavity under normal physiological conditions, which is often affected by multiple pathologies like caries or tooth loss in AD patients. Oral cavity pathologies are mostly accompanied by a compositional shift in the community of oral microbiota, mainly affecting commensal microorganisms and referred to as 'dysbiosis'. Oral dysbiosis seems to be at least partly mediated by key pathogens such as PG, and it is associated with a pro-inflammatory state that promotes the destruction of connective tissue in the mouth, possibly enabling the translocation of pathogenic microbiota from the oral cavity to the nervous system. It has therefore been hypothesized that dysbiosis of the oral microbiome may contribute to the development of AD. In this review, we discuss the infectious hypothesis of AD in the light of the oral microbiome and microbiome-host interactions, which may contribute to or even cause the development of AD. We discuss technical challenges relating to the detection of microorganisms in relevant body fluids and approaches for avoiding false-positives, and introduce the antibacterial protein lactoferrin as a potential link between the dysbiotic microbiome and the host inflammatory reaction.
Collapse
|
8
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2023; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
9
|
Zhou C, Jung CG, Kim MJ, Watanabe A, Abdelhamid M, Taslima F, Michikawa M. Insulin Deficiency Increases Sirt2 Level in Streptozotocin-Treated Alzheimer's Disease-Like Mouse Model: Increased Sirt2 Induces Tau Phosphorylation Through ERK Activation. Mol Neurobiol 2022; 59:5408-5425. [PMID: 35701718 PMCID: PMC9395464 DOI: 10.1007/s12035-022-02918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2022] [Indexed: 11/11/2022]
Abstract
Accumulating evidence suggests that insulin deficiency is a risk factor for Alzheimer's disease (AD); however, the underlying molecular mechanisms are not completely understood. Here, we investigated the effects of insulin deficiency on AD-like pathologies using an insulin-deficient amyloid-β (Aβ) precursor protein (APP) transgenic mouse model (Tg2576 mice). Female Tg2576 mice were injected intraperitoneally with streptozotocin (STZ) to induce insulin deficiency, and their body weights, serum glucose levels, and serum insulin levels were evaluated. STZ-treated mice showed exacerbated Aβ accumulation, tau hyperphosphorylation, glial activation, neuroinflammation, and increased Sirt2 protein levels in the brain, as determined by two-dimensional gel electrophoresis (2-DE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and Western blotting. Furthermore, our in vitro experiments revealed that insulin depletion or interleukin-6 treatment increased Sirt2 protein levels in both Neuro2a and Neuro2a-P301L cells. The overexpression of Sirt2 in these cells induced tau hyperphosphorylation through extracellular signal-regulated kinase (ERK) activation. Conversely, Sirt2 knockdown reversed tau hyperphosphorylation in these cells. We showed for the first time that Sirt2 is upregulated in the brains of STZ-treated Tg2576 mice and is involved in tau phosphorylation through ERK activation. Our findings suggest that Sirt2 is a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Mi-Jeong Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 South Korea
| | - Atsushi Watanabe
- Laboratory of Research Advancement, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Ferdous Taslima
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| |
Collapse
|
10
|
Saiyasit N, Butlig EAR, Chaney SD, Traylor MK, Hawley NA, Randall RB, Bobinger HV, Frizell CA, Trimm F, Crook ED, Lin M, Hill BD, Keller JL, Nelson AR. Neurovascular Dysfunction in Diverse Communities With Health Disparities-Contributions to Dementia and Alzheimer's Disease. Front Neurosci 2022; 16:915405. [PMID: 35844216 PMCID: PMC9279126 DOI: 10.3389/fnins.2022.915405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Evan-Angelo R. Butlig
- Department of Neurology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha D. Chaney
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Miranda K. Traylor
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Nanako A. Hawley
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Ryleigh B. Randall
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Hanna V. Bobinger
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Department of Physician Assistant Studies, University of South Alabama, Mobile, AL, United States
| | - Franklin Trimm
- College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Errol D. Crook
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mike Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
11
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Bartolomé F, Rosa L, Valenti P, Lopera F, Hernández-Gallego J, Cantero JL, Orive G, Carro E. Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients. Front Immunol 2022; 13:878201. [PMID: 35547737 PMCID: PMC9083828 DOI: 10.3389/fimmu.2022.878201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus 2 (SARS-CoV2) (COVID-19) causes severe acute respiratory syndrome. Severe illness of COVID-19 largely occurs in older people and recent evidence indicates that demented patients have higher risk for COVID-19. Additionally, COVID-19 further enhances the vulnerability of older adults with cognitive damage. A balance between the immune and inflammatory response is necessary to control the infection. Thus, antimicrobial and anti-inflammatory drugs are hopeful therapeutic agents for the treatment of COVID-19. Accumulating evidence suggests that lactoferrin (Lf) is active against SARS-CoV-2, likely due to its potent antiviral and anti-inflammatory actions that ultimately improves immune system responses. Remarkably, salivary Lf levels are significantly reduced in different Alzheimer's disease (AD) stages, which may reflect AD-related immunological disturbances, leading to reduced defense mechanisms against viral pathogens and an increase of the COVID-19 susceptibility. Overall, there is an urgent necessity to protect AD patients against COVID-19, decreasing the risk of viral infections. In this context, we propose bovine Lf (bLf) as a promising preventive therapeutic tool to minimize COVID-19 risk in patients with dementia or AD.
Collapse
Affiliation(s)
- Fernando Bartolomé
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Jesús Hernández-Gallego
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Luis Cantero
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Networked Center for Biomedical Research in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Abdelhamid M, Zhou C, Ohno K, Kuhara T, Taslima F, Abdullah M, Jung CG, Michikawa M. Probiotic Bifidobacterium breve Prevents Memory Impairment Through the Reduction of Both Amyloid-β Production and Microglia Activation in APP Knock-In Mouse. J Alzheimers Dis 2022; 85:1555-1571. [PMID: 34958017 PMCID: PMC8925106 DOI: 10.3233/jad-215025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Probiotic supplementation reestablishes microbiome diversity and improves brain function in Alzheimer's disease (AD); their molecular mechanisms, however, have not yet been fully illustrated. OBJECTIVE We investigated the effects of orally supplemented Bifidobacterium breve MCC1274 on cognitive function and AD-like pathologies in AppNL-G-F mice. METHODS Three-month-old AppNL-G-F mice were orally supplemented with B. breve MCC1274 for four months. The short-term memory function was evaluated using a novel object recognition test. Amyloid plaques, amyloid-β (Aβ) levels, Aβ fibril, amyloid-β protein precursor and its processing enzymes, its metabolic products, glial activity, and cell proliferation in the subgranular zone of the dentate gyrus were evaluated by immunohistochemistry, Aβ ELISA, western blotting, and immunofluorescence staining. The mRNA expression levels of pro- and anti-inflammatory cytokines were determined by qRT-PCR analysis. RESULTS We found that the oral B. breve MCC1 274 supplementation prevented memory impairment in AppNL-G-F mice and decreased hippocampal Aβ levels through the enhancement of the a-disintegrin and metalloproteinase 10 (ADAM10) level. Moreover, administration of the probiotic activated the ERK/HIF-1α signaling pathway responsible for increasing the ADAM10 level and also attenuated microglial activation, which in turn led to reduction in the mRNA expression levels of pro-inflammatory cytokines in the brain. In addition, B. breve MCC1274 supplementation increased the level of synaptic proteins in the hippocampus. CONCLUSION Our findings support the possibility that oral B. breve MCC1274 supplementation might be used as a potential preventive therapy for AD progression.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuya Ohno
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Tetsuya Kuhara
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Ferdous Taslima
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mohammad Abdullah
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
14
|
Li B, Zhang B, Liu X, Zheng Y, Han K, Liu H, Wu C, Li J, Fan S, Peng W, Zhang F, Liu X. The effect of lactoferrin in aging: role and potential. Food Funct 2021; 13:501-513. [PMID: 34928288 DOI: 10.1039/d1fo02750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Collapse
Affiliation(s)
- Bing Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Bo Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xudong Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Yidan Zheng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Kuntong Han
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Henan Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Shuhua Fan
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Fuli Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| |
Collapse
|
15
|
Zhou HH, Wang G, Luo L, Ding W, Xu JY, Yu Z, Qin LQ, Wan Z. Dietary lactoferrin has differential effects on gut microbiota in young versus middle-aged APPswe/PS1dE9 transgenic mice but no effects on cognitive function. Food Nutr Res 2021; 65:5496. [PMID: 34776831 PMCID: PMC8559448 DOI: 10.29219/fnr.v65.5496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background Existing evidence suggest that lactoferrin might be beneficial for Alzheimer’s disease, while precise mechanisms are not fully elucidated. Objective To determine the effects of lactoferrin intervention on cognitive function from APPswe/PS1dE9 (APP/PS1) mice, and potential mechanisms involved. Design Both the young and middle-aged male APP/PS1 mice were divided into the control and lactoferrin intervention groups with 16 weeks’ intervention. Results Lactoferrin had no effects on cognitive function for both the young and middle-aged mice, and no key markers involved in Aβ, tau pathology, neuro-inflammation and synaptic plasticity were altered after lactoferrin intervention. With regards to gut microbiota profiles, in the young APP/PS1 mice, lactoferrin elevated the α diversity index including ACE and Chao 1, and reduced the relative abundance of the genera Bacteroides and Alistipes and elevated Oscillibacter; in addition, Oscillibacter, Anaerotruncus, EF096579_g, EU454405_g, Mollicutes_RF39, EU474361_g, EU774448_g, and EF096976_g were specifically abundant via linear discriminant analysis with effect size (LEfSe) analysis. In the middle-aged APP/PS1 mice, the relative abundance of the phylum Proteobacteria, as well as the genera Oscillospira, Coprococcus, and Ruminococcus was significantly reduced post lactoferrin; additionally, S24_7, Bacteroidia, Bacteroidetes, and Methylobacterium were specific via LEfSe analysis in the lactoferrin group. Conclusions Dietary lactoferrin might be beneficial for gut microbiota homeostasis although it might have no effects on cognition.
Collapse
Affiliation(s)
- Huan-Huan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Guiping Wang
- School of Physical Education, Soochow University, Suzhou, China.,Laboratory Animal Center, Medical College of Soochow University, Suzhou, China
| | - Lan Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Wei Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Reseco L, Atienza M, Fernandez-Alvarez M, Carro E, Cantero JL. Salivary lactoferrin is associated with cortical amyloid-beta load, cortical integrity, and memory in aging. ALZHEIMERS RESEARCH & THERAPY 2021; 13:150. [PMID: 34488875 PMCID: PMC8422723 DOI: 10.1186/s13195-021-00891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aging is associated with declining protective immunity and persistent low-grade inflammatory responses, which significantly contribute to Alzheimer's disease (AD) pathogenesis. Detecting aging-related cerebral vulnerability associated with deterioration of the immune system requires from non-invasive biomarkers able to detect failures in the brain-immunity connection. Reduced levels of salivary lactoferrin (sLF), an iron-binding protein with immunomodulatory activity, have been related to AD diagnosis. However, it remains unknown whether decreased sLF is associated with increased cortical amyloid-beta (Aβ) load and/or with loss of cortical integrity in normal aging. METHODS Seventy-four cognitively normal older adults (51 females) participated in the study. We applied multiple linear regression analyses to assess (i) whether sLF is associated with cortical Aβ load measured by 18F-Florbetaben (FBB)-positron emission tomography (PET), (ii) whether sLF-related variations in cortical thickness and cortical glucose metabolism depend on global Aβ burden, and (iii) whether such sLF-related cortical abnormalities moderate the relationship between sLF and cognition. RESULTS sLF was negatively associated with Aβ load in parieto-temporal regions. Moreover, sLF was related to thickening of the middle temporal cortex, increased FDG uptake in the posterior cingulate cortex, and poorer memory. These associations were stronger in individuals showing the highest Aβ burden. CONCLUSIONS sLF levels are sensitive to variations in cortical Aβ load, structural and metabolic cortical abnormalities, and subclinical memory impairment in asymptomatic older adults. These findings provide support for the use of sLF as a non-invasive biomarker of cerebral vulnerability in the general aging population.
Collapse
Affiliation(s)
- Lucia Reseco
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Eva Carro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain. .,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
17
|
Zhu M, Jia L, Jia J. Inhibition of miR-96-5p May Reduce Aβ42/Aβ40 Ratio via Regulating ATP-binding cassette transporter A1. J Alzheimers Dis 2021; 83:367-377. [PMID: 34334400 DOI: 10.3233/jad-210411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imbalance between amyloid-β (Aβ) production and clearance results in Aβ accumulation. Regulating Aβ levels is still a hot point in the research of Alzheimer's disease (AD). OBJECTIVE To identify the differential expression of ATP-binding cassette transporter A1 (ABCA1) and its upstream microRNA (miRNA) in AD models, and to explore their relationships with Aβ levels. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the expression of ABCA1 in 5xFAD mice, SH-SY5Y cells treated with Aβ oligomers and SH-SY5YAβPP695 cells (AD models). TargetScan was used to predict the upstream miRNAs for ABCA1. Dual-luciferase assay was conducted to identify the regulation of the miRNA on ABCA1. qRT-PCR was used to measure the expression of miRNA in AD models. Finally, enzyme-linked immunosorbent assays were performed to detect Aβ42 and Aβ40 levels. RESULTS The expression of ABCA1 was significantly downregulated in AD models at both mRNA and protein levels. Dual-luciferase assay showed that miR-96-5p could regulate the expression of ABCA1 through binding to the 3 untranslated region of ABCA1. The level of miR-96-5p was significantly elevated in AD models. The expression of ABCA1 was enhanced while Aβ42 levels and Aβ42/Aβ40 ratios were reduced in SH-SY5YAβPP695 cells after treated with miR-96-5p inhibitor. CONCLUSION The current study found that miR-96-5p is the upstream miRNA for ABCA1. Suppression of miR-96-5p in AD models could reduce Aβ42/Aβ40 ratios via upregulating the expression of ABCA1, indicating that miR-96-5p plays an important role in regulating the content of Aβ.
Collapse
Affiliation(s)
- Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| |
Collapse
|
18
|
Taslima F, Jung CG, Zhou C, Abdelhamid M, Abdullah M, Goto T, Saito T, Saido TC, Michikawa M. Tooth Loss Induces Memory Impairment and Gliosis in App Knock-In Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1687-1704. [PMID: 33720883 DOI: 10.3233/jad-201055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Epidemiological studies have shown that tooth loss is associated with Alzheimer's disease (AD) and dementia. However, the molecular and cellular mechanisms by which tooth loss causes AD remain unclear. OBJECTIVE We investigated the effects of tooth loss on memory impairment and AD pathogenesis in AppNL-G-F mice. METHODS Maxillary molar teeth on both sides were extracted from 2-month-old AppNL-G-F mice, and the mice were reared for 2 months. The short- and long-term memory functions were evaluated using a novel object recognition test and a passive avoidance test. Amyloid plaques, amyloid-β (Aβ) levels, glial activity, and neuronal activity were evaluated by immunohistochemistry, Aβ ELISA, immunofluorescence staining, and western blotting. The mRNA expression levels of neuroinflammatory cytokines were determined by qRT-PCR analysis. RESULTS Tooth loss induced memory impairment via an amyloid-cascade-independent pathway, and decreased the neuronal activity, presynaptic and postsynaptic protein levels in both the cortex and hippocampus. Interestingly, we found that tooth loss induced glial activation, which in turn leads to the upregulation of the mRNA expression levels of the neuroinflammation cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in the hippocampus. We also found that tooth loss activated a stress-activated protein kinase, c-Jun N-terminal kinase (JNK), and increased heat shock protein 90 (HSP90) levels in the hippocampus, which may lead to a glial activation. CONCLUSION Our findings suggest that taking care of teeth is very important to preserve a healthy oral environment, which may reduce the risk of cognitive dysfunction.
Collapse
Affiliation(s)
- Ferdous Taslima
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohammad Abdullah
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy & Cell Biology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
19
|
Tsatsanis A, McCorkindale AN, Wong BX, Patrick E, Ryan TM, Evans RW, Bush AI, Sutherland GT, Sivaprasadarao A, Guennewig B, Duce JA. The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Aβ burden through induction of APP amyloidogenic processing. Mol Psychiatry 2021; 26:5516-5531. [PMID: 34400772 PMCID: PMC8758478 DOI: 10.1038/s41380-021-01248-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Amyloidogenic processing of the amyloid precursor protein (APP) forms the amyloid-β peptide (Aβ) component of pathognomonic extracellular plaques of AD. Additional early cortical changes in AD include neuroinflammation and elevated iron levels. Activation of the innate immune system in the brain is a neuroprotective response to infection; however, persistent neuroinflammation is linked to AD neuropathology by uncertain mechanisms. Non-parametric machine learning analysis on transcriptomic data from a large neuropathologically characterised patient cohort revealed the acute phase protein lactoferrin (Lf) as the key predictor of amyloid pathology. In vitro studies showed that an interaction between APP and the iron-bound form of Lf secreted from activated microglia diverted neuronal APP endocytosis from the canonical clathrin-dependent pathway to one requiring ADP ribosylation factor 6 trafficking. By rerouting APP recycling to the Rab11-positive compartment for amyloidogenic processing, Lf dramatically increased neuronal Aβ production. Lf emerges as a novel pharmacological target for AD that not only modulates APP processing but provides a link between Aβ production, neuroinflammation and iron dysregulation.
Collapse
Affiliation(s)
- Andrew Tsatsanis
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Andrew N. McCorkindale
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Bruce X. Wong
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Ellis Patrick
- grid.1013.30000 0004 1936 834XFaculty of Science, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW Australia
| | - Tim M. Ryan
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Robert W. Evans
- grid.7728.a0000 0001 0724 6933School of Engineering and Design, Brunel University, London, UK
| | - Ashley I. Bush
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Greg T. Sutherland
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Asipu Sivaprasadarao
- grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Boris Guennewig
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, NSW Australia
| | - James A. Duce
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
20
|
Olsen I, Singhrao SK. Low levels of salivary lactoferrin may affect oral dysbiosis and contribute to Alzheimer's disease: A hypothesis. Med Hypotheses 2020; 146:110393. [PMID: 33229194 DOI: 10.1016/j.mehy.2020.110393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Recently it has been reported that reduced levels of salivary lactoferrin (LF) can be a plausible biomarker for amyloid beta (Aβ) accumulation in Alzheimer's disease (AD) brains. This could mean that reduced levels of salivary LF act as a trigger for oral dysbiosis and that low LF levels could change the oral microbiota. A chemical change in the composition of saliva has not yet been considered as a cause for microbial dysbiosis but does present an opportunity to view oral dysbiosis as a plausible contributory factor in the development of AD pathophysiology. Oral dysbiosis has largely been reported as a result of inadequate oral hygiene and dry mouth in elderly subjects. Here we discuss if the deficiency of LF in saliva and gingival fluid of AD patients can facilitate proliferation of oral pathogens, and as a result their spread elsewhere in the body. Additionally, we ask if LF in the AD brain could be overexposed as a result of chronic infection. Together these outcomes will indicate if reduced levels of salivary LF can act as a trigger of oral dysbiosis.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|