1
|
Li T, Ma X, Pan W, Huo X. The impact of transcranial direct current stimulation combined with interim testing on spatial route learning in patients with schizophrenia. J Psychiatr Res 2024; 177:169-176. [PMID: 39024741 DOI: 10.1016/j.jpsychires.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cognitive deficits in patients with schizophrenia have drawn widespread attention. Transcranial direct current stimulation (tDCS) can modulate cognitive processes by altering neuronal excitability. Previous studies have found that interim testing can enhance spatial route learning and memory in patients with schizophrenia. However, there has been limited research on the combined effects of these two methods on spatial route learning in these patients. OBJECTIVE To investigate whether the combination of tDCS and interim testing can effectively contribute to the maintenance of spatial route memory in patients with schizophrenia. The study involved conducting route learning using interim testing after anodal tDCS treatment on the left dorsolateral prefrontal cortex (L-DLPFC). METHODS Ninety-two patients with schizophrenia were recruited and divided into groups receiving anodal, sham, or no stimulation. The anodal group received L-DLPFC tDCS treatment 10 times over 5 days (twice daily for 20 min). After treatment, spatial route learning was assessed in interim testing. Correct recall rates of landmark positions and proactive interference from prior learning were compared among the groups. RESULTS Regardless of stimulation type, the interim testing group outperformed the relearning group. Additionally, recall scores were higher following anodal stimulation, indicating the efficacy of tDCS. CONCLUSIONS Both tDCS and interim testing independently enhance the ability to learn new information in spatial route learning for patients with schizophrenia, indicating that tDCS of the left DLPFC significantly improves memory in these patients.
Collapse
Affiliation(s)
- Tiantian Li
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China
| | - Xiaofeng Ma
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China.
| | - Wen Pan
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China
| | - Xiaoning Huo
- The Third People's Hospital of Lanzhou, Lanzhou, China
| |
Collapse
|
2
|
Yang T, Liu W, He J, Gui C, Meng L, Xu L, Jia C. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2024; 16:140. [PMID: 38937842 PMCID: PMC11212379 DOI: 10.1186/s13195-024-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) combined with cognitive training (CT) may have shown some prospects on improving cognitive function in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, data from clinical trials or meta-analysis involving NIBS combined with CT have shown controversial results. The aim of this systematic review and meta-analysis was to evaluate short-term and long-term effects of NIBS combined with CT on improving global cognition and other specific cognitive domains in patients with AD and MCI. METHODS This systematic review and meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Five electronic databases including PubMed, Web of Science, EBSCO, Cochrane Library and Embase were searched up from inception to 20 November 2023. The PEDro scale and the Cochrane's risk of bias assessment were used to evaluate risk of bias and methodological quality of included studies. All statistical analyses were conducted with Review Manager 5.3. RESULTS We included 15 studies with 685 patients. The PEDro scale was used to assess methodological quality with a mean score of 7.9. The results of meta-analysis showed that NIBS combined with CT was effective on improving global cognition in AD and MCI (SMD = 0.52, 95% CI (0.18, 0.87), p = 0.003), especially for patients accepting repetitive transcranial magnetic stimulation (rTMS) combined with CT (SMD = 0.46, 95% CI (0.14, 0.78), p = 0.005). AD could achieve global cognition improvement from NIBS combined with CT group (SMD = 0.77, 95% CI (0.19, 1.35), p = 0.01). Transcranial direct current stimulation (tDCS) combined with CT could improve language function in AD and MCI (SMD = 0.29, 95% CI (0.03, 0.55), p = 0.03). At evaluation follow-up, rTMS combined with CT exhibited larger therapeutic responses to AD and MCI in global cognition (SMD = 0.55, 95% CI (0.09, 1.02), p = 0.02). AD could achieve global cognition (SMD = 0.40, 95% CI (0.03, 0.77), p = 0.03) and attention/working memory (SMD = 0.72, 95% CI (0.23, 1.20), p = 0.004) improvement after evaluation follow-up from NIBS combined with CT group. CONCLUSIONS Overall, NIBS combined with CT, particularly rTMS combined with CT, has both short-term and follow-up effects on improving global cognition, mainly in patients with AD. tDCS combined with CT has advantages on improving language function in AD and MCI. Future more studies need evaluate cognitive effects of NIBS combined with CT on other specific cognitive domain in patients with cognitive deterioration.
Collapse
Affiliation(s)
- Ting Yang
- Department of Rehabilitation Medicine, West China Tianfu Hospital, Sichuan University, No. 3966, South Section 2, Tianfu Avenue, Tianfu New Area, Chengdu, 610212, Sichuan, China
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Wentao Liu
- Department of Rehabilitation Medicine, West China Tianfu Hospital, Sichuan University, No. 3966, South Section 2, Tianfu Avenue, Tianfu New Area, Chengdu, 610212, Sichuan, China
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Jiali He
- Department of Rehabilitation Medicine, The Second Hospital of Chongzhou, No. 431, Tang'an West Road, Chongyang Town, Chongzhou City, Chengdu, 611230, Sichuan, China
| | - Chenfan Gui
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Lijiao Meng
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China
| | - Li Xu
- Department of Rehabilitation Medicine, The Second Hospital of Chongzhou, No. 431, Tang'an West Road, Chongyang Town, Chongzhou City, Chengdu, 611230, Sichuan, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Fromm AE, Grittner U, Brodt S, Flöel A, Antonenko D. No Object-Location Memory Improvement through Focal Transcranial Direct Current Stimulation over the Right Temporoparietal Cortex. Life (Basel) 2024; 14:539. [PMID: 38792561 PMCID: PMC11122124 DOI: 10.3390/life14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day. The focal stimulation did not enhance OLM performance on either training day (stimulation effect: -0.09, 95%CI: [-0.19; 0.02], p = 0.08). Higher electric field magnitudes in the target region were not associated with individual performance benefits. Participants with content-related learning strategies showed slightly superior performance compared to participants with position-related strategies. Additionally, training gains were associated with individual verbal learning skills. Consequently, the lack of behavioral benefits through focal tDCS might be due to the involvement of different cognitive processes and brain regions, reflected by participant's learning strategies. Future studies should evaluate whether other brain regions or memory-relevant networks may be involved in the modulation of object-location associations, investigating other target regions, and further exploring individualized stimulation parameters.
Collapse
Affiliation(s)
- Anna Elisabeth Fromm
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Svenja Brodt
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17489 Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
4
|
Li S, Tang Y, Zhou Y, Ni Y. Effects of Transcranial Direct Current Stimulation on Cognitive Function in Older Adults with and without Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gerontology 2024; 70:544-560. [PMID: 38452749 DOI: 10.1159/000537848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION Noninvasive brain stimulation (NIBS) has shown benefits for cognitive function in older adults. However, the effects of transcranial direct current stimulation (tDCS) on cognitive function in older adults are inconsistent across studies, and the evidence for tDCS has limitations. We aim to explore whether tDCS can improve cognitive function and different cognitive domains (i.e., learning and memory and executive function) in adults aged 65 years and older with and without mild cognitive impairment and to further analyze the influencing factors of tDCS. METHODS Five English databases (PubMed, Cochrane Library, EMBASE, Web of Science, the cumulative Index to Nursing and Allied Health Literature [CINAHL]) and four Chinese databases were searched from inception to October 14, 2023. Literature screening, data extraction, and quality assessment were completed independently by two reviewers. All statistical analyses were conducted using RevMan software (version 5.3). Standardized mean difference (SMD) along with a 95% confidence interval (CI) was used to express the effect size of the outcomes, and a random-effect model was also used. RESULTS A total of 10 RCTs and 1,761 participants were included in the meta-analysis, and the risk of bias in those studies was relatively low. A significant effect favoring tDCS on immediate postintervention cognitive function (SMD = 0.16, Z = 2.36, p = 0.02) was found. However, the effects on immediate postintervention learning and memory (SMD = 0.20, Z = 2.00, p = 0.05) and executive function (SMD = 0.10, Z = 1.22, p = 0.22), and 1-month postintervention cognitive function (SMD = 0.12, Z = 1.50, p = 0.13), learning and memory (SMD = 0.17, Z = 1.39, p = 0.16), and executive function (SMD = 0.08, Z = 0.67, p = 0.51) were not statistically significant. CONCLUSION tDCS can significantly improve the immediate postintervention cognitive function of healthy older adults and MCI elderly individuals. Additional longitudinal extensive sample studies are required to clarify the specific effects of tDCS on different cognitive domains, and the optimal tDCS parameters need to be explored to guide clinical practice.
Collapse
Affiliation(s)
- Sijia Li
- Department of Cardiology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China,
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Ying Tang
- Department of Cardiology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - You Zhou
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunxia Ni
- Department of Cardiology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Ha J, Fang Y, Cron GO, Heo J, Jung E, Lee D, Kim H, Kim E, Park JY, Lee JH. In patients with late-life depression and cognitive decline, adding tDCS to cognitive training does not significantly affect depressive symptoms but shows potential benefits on cognition as measured by fMRI. Brain Stimul 2024; 17:202-204. [PMID: 38367933 PMCID: PMC11060895 DOI: 10.1016/j.brs.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Affiliation(s)
- Junghee Ha
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Fang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Greg O Cron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Jaeseok Heo
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yonsei University Health System, Yongin, Republic of Korea
| | - Eunjin Jung
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Deokjong Lee
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yonsei University Health System, Yongin, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Park
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yonsei University Health System, Yongin, Republic of Korea; Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, Republic of Korea.
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Diedrich L, Kolhoff HI, Chakalov I, Vékony T, Németh D, Antal A. Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Sci Rep 2024; 14:4955. [PMID: 38418511 PMCID: PMC10901881 DOI: 10.1038/s41598-024-55125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Faralli A, Fucà E, Lazzaro G, Menghini D, Vicari S, Costanzo F. Transcranial Direct Current Stimulation in neurogenetic syndromes: new treatment perspectives for Down syndrome? Front Cell Neurosci 2024; 18:1328963. [PMID: 38456063 PMCID: PMC10917937 DOI: 10.3389/fncel.2024.1328963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
This perspective review aims to explore the potential neurobiological mechanisms involved in the application of transcranial Direct Current Stimulation (tDCS) for Down syndrome (DS), the leading cause of genetically-based intellectual disability. The neural mechanisms underlying tDCS interventions in genetic disorders, typically characterized by cognitive deficits, are grounded in the concept of brain plasticity. We initially present the neurobiological and functional effects elicited by tDCS applications in enhancing neuroplasticity and in regulating the excitatory/inhibitory balance, both associated with cognitive improvement in the general population. The review begins with evidence on tDCS applications in five neurogenetic disorders, including Rett, Prader-Willi, Phelan-McDermid, and Neurofibromatosis 1 syndromes, as well as DS. Available evidence supports tDCS as a potential intervention tool and underscores the importance of advancing neurobiological research into the mechanisms of tDCS action in these conditions. We then discuss the potential of tDCS as a promising non-invasive strategy to mitigate deficits in plasticity and promote fine-tuning of the excitatory/inhibitory balance in DS, exploring implications for cognitive treatment perspectives in this population.
Collapse
Affiliation(s)
- Alessio Faralli
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
- Life Sciences and Public Health Department, Catholic University of Sacred Heart, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| |
Collapse
|
8
|
Huang P, Lin L, Zhang J, Cheng Y, Pan X. Efficacy analysis of three brain stimulation techniques for Alzheimer's disease: a meta-analysis of repeated transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Expert Rev Neurother 2024; 24:117-127. [PMID: 38088070 DOI: 10.1080/14737175.2023.2293225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION This systematic review and meta-analysis study investigates the efficacy of repeated transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) using neuropsychological assessments as a potential treatment option for Alzheimer's disease (AD). METHODS PubMed, Embase, and the Cochrane Library were searched for studies on rTMS, tDCS, and DBS for the treatment of patients with AD between April 1970 and October 2022. The mini-Mental State Examination (MMSE) and AD Assessment Scale - Cognitive Subscale (ADAS-Cog) were adopted as the efficacy index. RESULTS The analysis yielded 17 eligible studies. rTMS greatly improved the cognition of patients with AD (immediate post-treatment WMD of MMSE score: 2.06, p < 0.00001; short-term follow-up WMD of MMSE score: 2.12, p = 0.006; WMD of ADAS-Cog score in single-arm studies: -4.97, p = 0.001). DBS did not reverse the progression of cognitive decline (WMD of ADAS-Cog score in single-arm studies: 7.40, p < 0.00001). Furthermore, tDCS demonstrated no significant efficacy in improving cognition in random clinical trials or single-arm studies. CONCLUSION rTMS is a promising non-medicinal alternative for cognitive improvement inpatients with AD.
Collapse
Affiliation(s)
- Peilin Huang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Lin Lin
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Center for Geriatrics, Hainan General Hospital, Hainan, China
| | - Yingzhe Cheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Palimariciuc M, Oprea DC, Cristofor AC, Florea T, Dobrin RP, Dobrin I, Gireadă B, Gavril R, Mawas I, Bejenariu AC, Knieling A, Ciobica A, Chiriță R. The Effects of Transcranial Direct Current Stimulation in Patients with Mild Cognitive Impairment. Neurol Int 2023; 15:1423-1442. [PMID: 38132971 PMCID: PMC10745513 DOI: 10.3390/neurolint15040092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) came into consideration in recent years as a promising, non-invasive form of neuromodulation for individuals suffering from mild cognitive impairment (MCI). MCI represents a transitional stage between normal cognitive aging and more severe cognitive decline, which appears in neurodegenerative diseases, such as Alzheimer's disease. Numerous studies have shown that tDCS can have several useful effects in patients with MCI. It is believed to enhance cognitive functions, including memory and attention, potentially slowing down the progression of neurodegeneration and cognitive decline. tDCS is believed to work by modulating neuronal activity and promoting synaptic plasticity in the brain regions associated with cognition. Moreover, tDCS is generally considered safe and well-tolerated, making it an attractive option for long-term therapeutic use in MCI. However, further research is needed to determine the optimal stimulation parameters and long-term effects of tDCS in this population, as well as its potential to serve as a complementary therapy alongside other interventions for MCI. In this review, we included 16 randomized clinical trials containing patients with MCI who were treated with tDCS. We aim to provide important evidence for the cognitive enhancement using tDCS in patients with MCI, summarizing the effects and conclusions found in several clinical trials, and discuss its main mechanisms.
Collapse
Affiliation(s)
- Matei Palimariciuc
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Dan Cătălin Oprea
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Ana Caterina Cristofor
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Tudor Florea
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Romeo Petru Dobrin
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Irina Dobrin
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Bogdan Gireadă
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Radu Gavril
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Iasmin Mawas
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
| | - Andreea Cristina Bejenariu
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Anton Knieling
- Institute of Forensic Medicine, 700455 Iași, Romania;
- Forensic Science Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B-dul Carol I No. 11, 700506 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei Nr. 54, Sector 5, 050094 Bucuresti, Romania
- Centre of Biomedical Research, Romanian Academy, B-dul Carol I No. 8, 700506 Iasi, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iași, Romania
| | - Roxana Chiriță
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.P.); (D.C.O.); (A.C.C.); (T.F.); (I.D.); (B.G.); (R.G.); (I.M.); (A.C.B.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| |
Collapse
|
10
|
Saleh O, Assaf M, Alzoubi A, Anshase A, Tarkhan H, Ayoub M, Abuelazm M. The effects of transcranial direct current stimulation on cognitive function for mild cognitive impairment: a systematic review and meta-analysis of randomized controlled trials. Aging Clin Exp Res 2023; 35:2293-2306. [PMID: 37668843 DOI: 10.1007/s40520-023-02528-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) emerged as a potential modality for enhancing cognitive functions in patients with cognitive decline, including mild cognitive impairment (MCI). Our systematic review and meta-analysis aim to synthesize the available randomized controlled trials (RCTs) on the effects of tDCS on cognitive functions in patients with MCI. METHODS Our review protocol was registered on PROSPERO with ID: CRD42022360587. We conducted a systematic database search until September 2022. Standardized mean difference (SMD) and pooled effect size (ES) for robust variance estimation (RVE) method were used as effect estimates for our meta-analysis. RESULTS We included 11 RCTs with a total of 429 participants. The meta-analysis showed that, compared to sham groups, tDCS did not improve global functioning (measured by MOCA) (SMD = 0.02, CI = - 0.30 to 0.35; p = 0.88), memory domain (ES = 0.681, CI = - 2.15 to 3.51, p = 0.576), sustained attention (measured by TMT-A) (SMD = - 0.21, CI = - 0.52 to 0.10, p = 0.19), and executive function (measured by TMT-B) (SMD = - 0.53, CI = - 1.56 to 0.50, p = 0.20). CONCLUSION Our meta-analysis found no significant effect of tDCS on cognitive functions in MCI patients, including effects on global functioning, memory, sustained attention, and executive function. Therefore, an important change to be tested in future studies is to look for a better combination with tDCS for patients with MCI.
Collapse
Affiliation(s)
- Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Mohammad Assaf
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Alzoubi
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Anshase
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Husam Tarkhan
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Motasem Ayoub
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | |
Collapse
|
11
|
El Jamal C, Harrie A, Rahman-Filipiak A, Iordan AD, DaSilva AF, Ploutz-Snyder R, Khadr L, Vesia M, Bikson M, Hampstead BM. Tolerability and blinding of high-definition transcranial direct current stimulation among older adults at intensities of up to 4 mA per electrode. Brain Stimul 2023; 16:1328-1335. [PMID: 37660936 PMCID: PMC11218548 DOI: 10.1016/j.brs.2023.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Few studies have investigated tolerability, blinding, and double-blinding of High-Definition transcranial Direct Current Stimulation (HD-tDCS) at amplitudes above 2 milliamps (mA). OBJECTIVE We examined a) tolerability of HD-tDCS during stimulation sessions and b) blinding and double blinding of participants and study team members. METHODS Data from a mixed neurologic sample of 292 older adults were pooled from 3046 HD-tDCS sessions (2329 active; 717 sham). Per electrode amplitudes ranged from 1 mA to 4 mA with total currents up to 10 mA. Participants completed a standardized sensation (tolerability) questionnaire after each session. Participants and study team members stated whether the participant received active or sham stimulation at the end of various sessions. Data were collapsed into the presence/absence of a symptom due to low rates of positive responding and were analyzed for both differences and bioequivalency. RESULTS There were no safety-related adverse events. HD-tDCS was well tolerated with mostly no ("none") or "mild" sensations reported across sessions, regardless of active or sham condition and in both stimulation naïve and experienced participants. There were no significant differences in side effects between active and sham, with some achieving bioequivalence. Tingling and itching were significantly more common after lower (<2 mA) than higher (≥3 mA) amplitude active sessions, while skin redness was significantly more common after higher amplitudes. Blinding was effective at the participant and study team levels. CONCLUSIONS HD-tDCS was well tolerated with center electrode amplitudes up to 4 mA. The bimodal ramp-up/down format of the sham was effective for blinding. These results support higher scalp-based amplitudes that enable greater brain-based current intensities in older adults.
Collapse
Affiliation(s)
- Carine El Jamal
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ashley Harrie
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Annalise Rahman-Filipiak
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru D Iordan
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre F DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Robert Ploutz-Snyder
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Lara Khadr
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Michael Vesia
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Benjamin M Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Bjekić J, Manojlović M, Filipović SR. Transcranial Electrical Stimulation for Associative Memory Enhancement: State-of-the-Art from Basic to Clinical Research. Life (Basel) 2023; 13:life13051125. [PMID: 37240770 DOI: 10.3390/life13051125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Associative memory (AM) is the ability to bind new information into complex memory representations. Noninvasive brain stimulation (NIBS), especially transcranial electric stimulation (tES), has gained increased interest in research of associative memory (AM) and its impairments. To provide an overview of the current state of knowledge, we conducted a systematic review following PRISMA guidelines covering basic and clinical research. Out of 374 identified records, 41 studies were analyzed-twenty-nine in healthy young adults, six in the aging population, three comparing older and younger adults, as well as two studies on people with MCI, and one in people with Alzheimer's dementia. Studies using transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS) as well as oscillatory (otDCS) and high-definition protocols (HD-tDCS, HD-tACS) have been included. The results showed methodological heterogeneity in terms of study design, stimulation type, and parameters, as well as outcome measures. Overall, the results show that tES is a promising method for AM enhancement, especially if the stimulation is applied over the parietal cortex and the effects are assessed in cued recall paradigms.
Collapse
Affiliation(s)
- Jovana Bjekić
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Manojlović
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Saša R Filipović
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Koo GK, Gaur A, Tumati S, Kusumo RW, Bawa KK, Herrmann N, Gallagher D, Lanctôt KL. Identifying factors influencing cognitive outcomes after anodal transcranial direct current stimulation in older adults with and without cognitive impairment: A systematic review. Neurosci Biobehav Rev 2023; 146:105047. [PMID: 36646259 DOI: 10.1016/j.neubiorev.2023.105047] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Anodal transcranial direct current stimulation (tDCS) can improve cognition in healthy older adults, those with Alzheimer's disease (AD) and mild cognitive impairment (MCI), albeit with considerable variability in response. This systematic review identifies interindividual factors that may influence tDCS outcomes in older individuals with or without cognitive impairment. Peer-reviewed articles were included if they assessed whether cognitive outcomes (memory or global cognition) after tDCS were associated with pre-intervention factors in healthy older adults or individuals with AD/MCI. We identified eight factors that may affect cognitive outcomes after tDCS. Improved tDCS outcomes were predicted by lower baseline cognitive function when tDCS was combined with a co-intervention (but not when used alone). Preserved brain structure and better baseline functional connectivity, genetic polymorphisms, and the use of concomitant medications may predict better tDCS outcomes, but further research is warranted. tDCS outcomes were not consistently associated with age, cognitive reserve, sex, and AD risk factors. Accounting for individual differences in baseline cognition, particularly for combined interventions, may thus maximize the therapeutic potential of tDCS.
Collapse
Affiliation(s)
- Grace Ky Koo
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Amish Gaur
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shankar Tumati
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Raphael W Kusumo
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Kritleen K Bawa
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
14
|
Telerehabilitation-Based Exercises with or without Transcranial Direct Current Stimulation for Pain, Motor and Cognitive Function in Older Adults with mild Cognitive Impairments Post-Stroke: A Multi-Arm Parallel-Group Randomized Controlled Trial Study Protocol. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Burton CZ, Garnett EO, Capellari E, Chang SE, Tso IF, Hampstead BM, Taylor SF. Combined Cognitive Training and Transcranial Direct Current Stimulation in Neuropsychiatric Disorders: A Systematic Review and Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:151-161. [PMID: 36653210 PMCID: PMC10823589 DOI: 10.1016/j.bpsc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Treatments for cognitive dysfunction in neuropsychiatric conditions are urgently needed. Cognitive training and transcranial direct current stimulation (tDCS) hold promise, and there is growing interest in combined or multimodal treatments, though studies to date have had small samples and inconsistent results. METHODS A systematic review and meta-analysis was completed. Retained studies included cognitive training combined with active or sham tDCS in a neuropsychiatric population and reported a posttreatment cognitive outcome. Meta-analyses included effect sizes comparing cognitive training plus active tDCS and cognitive training plus sham tDCS in 5 cognitive domains. Risk of bias in included studies and across studies was explored. RESULTS Fifteen studies were included: 10 in neurodegenerative disorders and 5 in psychiatric disorders (n = 629). There were several tDCS montages, though two-thirds of studies placed the anode over the left dorsolateral prefrontal cortex. A wide variety of cognitive training types and outcome measures were reported. There was a small, statistically significant effect of combined treatment on measures of attention/working memory, as well as small and non-statistically significant effects favoring combined treatment on global cognition and language. There was no evidence of bias in individual studies but some evidence of nonreporting or small-study bias across studies. CONCLUSIONS These results may provide preliminary support for the efficacy of combined cognitive training and tDCS on measures of attention/working memory. More data are needed, particularly via studies that explicitly align the cognitive ability of interest, stimulation target, training type, and outcome measures.
Collapse
Affiliation(s)
- Cynthia Z Burton
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Emily Capellari
- Taubman Health Sciences Library, University of Michigan, Ann Arbor, Michigan
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Benjamin M Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Mental Health Service, U.S. Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer's disease? An updated meta-analysis. Clin Neurophysiol 2022; 144:23-40. [PMID: 36215904 DOI: 10.1016/j.clinph.2022.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Alzheimer's disease dementia (AD) and its preclinical stage, mild cognitive impairment (MCI), are critical issues confronting the aging society. Non-invasive brain stimulation (NIBS) techniques have the potential to be effective tools for enhancing cognitive functioning. The main objective of our meta-analysis was to quantify and update the status of the efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) and Transcranial Direct Current Stimulation (tDCS) when applied in AD and MCI. METHODS The systematic literature search was conducted in PubMed and Web of Science according to PRISMA statement. RESULTS Pooled effect sizes (Hedges' g) from 32 studies were analyzed using random effect models. We found both, rTMS and tDCS to have significant immediate cognition-enhancing effect in AD with rTMS inducing also beneficial long-term effects. We found no evidence for synergistic effect of cognitive training with NIBS. CONCLUSIONS In AD a clinical recommendation can be made for NEURO-ADTM system and for high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) as probably effective protocols (B-level of evidence) and for anodal tDCS over the left DLPFC as a possibly effective. SIGNIFICANCE According to scientific literature, NIBS may be an effective method for improving cognition in AD and possibly in MCI.
Collapse
|
17
|
Thams F, Külzow N, Flöel A, Antonenko D. Modulation of network centrality and gray matter microstructure using multi-session brain stimulation and memory training. Hum Brain Mapp 2022; 43:3416-3426. [PMID: 35373873 PMCID: PMC9248322 DOI: 10.1002/hbm.25857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022] Open
Abstract
Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention. To delineate changes in whole-brain functional network architecture, we employed eigenvector centrality mapping. Gray matter alterations were analyzed using DTI-derived mean diffusivity (MD). Network centrality in the bilateral posterior temporooccipital cortex was reduced after anodal compared to sham stimulation. This focal effect is indicative of decreased functional connectivity of the brain region underneath the anodal electrode and its left-hemispheric homolog with other "relevant" (i.e., highly connected) brain regions, thereby providing evidence for reorganizational processes within the brain's network architecture. Examining local MD changes in these clusters, an interaction between stimulation condition and training success indicated a decrease of MD in the right (stimulated) temporooccipital cluster in individuals who showed superior behavioral training benefits. Using a data-driven whole-brain network approach, we provide evidence for targeted neuromodulatory effects of a combined tDCS-and-training intervention. We show for the first time that gray matter alterations of microstructure (assessed by DTI-derived MD) may be involved in tDCS-enhanced cognitive training. Increased knowledge on how combined interventions modulate neural networks in older adults, will help the development of specific therapeutic interventions against age-associated cognitive decline.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nadine Külzow
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Neurological Rehabilitation Clinic, Kliniken Beelitz GmbH, Beelitz, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, Dubljević V, Fecteau S, Ferreri F, Flöel A, Hallett M, Hamilton RH, Herrmann CS, Lavidor M, Loo C, Lustenberger C, Machado S, Miniussi C, Moliadze V, Nitsche MA, Rossi S, Rossini PM, Santarnecchi E, Seeck M, Thut G, Turi Z, Ugawa Y, Venkatasubramanian G, Wenderoth N, Wexler A, Ziemann U, Paulus W. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 2022; 7:146-165. [PMID: 35734582 PMCID: PMC9207555 DOI: 10.1016/j.cnp.2022.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
Collapse
Key Words
- AD, Alzheimer’s Disease
- BDNF, brain derived neurotrophic factor
- Cognitive enhancement
- DARPA, Defense Advanced Research Projects Agency
- DIY stimulation
- DIY, Do-It-Yourself
- DLPFC, dorsolateral prefrontal cortex
- EEG, electroencephalography
- EMG, electromyography
- FCC, Federal Communications Commission
- FDA, (U.S.) Food and Drug Administration
- Home-stimulation
- IFCN, International Federation of Clinical Neurophysiology
- LTD, long-term depression
- LTP, long-term potentiation
- MCI, mild cognitive impairment
- MDD, Medical Device Directive
- MDR, Medical Device Regulation
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- NIBS, noninvasive brain stimulation
- Neuroenhancement
- OTC, Over-The-Counter
- PAS, paired associative stimulation
- PET, positron emission tomography
- PPC, posterior parietal cortex
- QPS, quadripulse stimulation
- RMT, resting motor threshold
- SAE, serious adverse event
- SMA, supplementary motor cortex
- TBS, theta-burst stimulation
- TMS, transcranial magnetic stimulation
- Transcranial brain stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tACS
- tACS, transcranial alternating current stimulation
- tDCS
- tDCS, transcranial direct current stimulation
- tES, transcranial electric stimulation
- tRNS, transcranial random noise stimulation
Collapse
Affiliation(s)
- Andrea Antal
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marom Bikson
- Biomedical Engineering at the City College of New York (CCNY) of the City University of New York (CUNY), NY, USA
| | - Andre R. Brunoni
- Departamento de Clínica Médica e de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Veljko Dubljević
- Science, Technology and Society Program, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Michal Lavidor
- Department of Psychology and the Gonda Brain Research Center, Bar Ilan University, Israel
| | - Collen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales; The George Institute; Sydney, Australia
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Carlo Miniussi
- Center for Mind/Brain Sciences – CIMeC and Centre for Medical Sciences - CISMed, University of Trento, Rovereto, Italy
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund, Germany
- Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Paolo M. Rossini
- Department of Neuroscience and Neurorehabilitation, Brain Connectivity Lab, IRCCS-San Raffaele-Pisana, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margitta Seeck
- Department of Clinical Neurosciences, Hôpitaux Universitaires de Genève, Switzerland
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, EEG & Epolepsy Unit, University of Glasgow, United Kingdom
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Walter Paulus
- Department of of Neurology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
19
|
Teselink J, Bawa KK, Koo GKY, Sankhe K, Liu CS, Rapoport M, Oh P, Marzolini S, Gallagher D, Swardfager W, Herrmann N, Lanctôt KL. Efficacy of non-invasive brain stimulation on global cognition and neuropsychiatric symptoms in Alzheimer's disease and mild cognitive impairment: A meta-analysis and systematic review. Ageing Res Rev 2021; 72:101499. [PMID: 34700007 DOI: 10.1016/j.arr.2021.101499] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) techniques have shown some promise in improving cognitive and neuropsychiatric symptoms (NPS) in people with Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). However, data from clinical trials involving NIBS have shown inconsistent results. This meta-analysis investigated the efficacy of NIBS, specifically repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) compared to sham stimulation on global cognition and NPS in people with AD and MCI. METHOD Multi-session randomized sham-controlled clinical trials were identified through MEDLINE, PsycINFO, and Embase until June 2021. Standardized mean difference (SMD) and 95% confidence interval (CI) between the active and sham treatments were calculated using random-effects meta-analyses. Included studies reported outcome measures for global cognition and/or NPS. Heterogeneity, from different NIBS techniques, disease populations, or tests used to assess global cognition or NPS, was measured using chi-square and I2, and investigated using subgroup analyses. Possible effects of covariates were also investigated using meta-regressions. RESULT The pooled meta-analyses included 19 studies measuring global cognition (Nactive=288, Nsham=264), and 9 studies investigating NPS (Nactive=165, Nsham=140). NIBS significantly improved global cognition (SMD=1.14; 95% CI=0.49,1.78; p = 0.001; I2 = 90.2%) and NPS (SMD=0.82; 95% CI=0.13, 1.50; p = 0.019; I2 = 86.1%) relative to sham stimulation in patients with AD and MCI. Subgroup analyses found these effects were restricted to rTMS but not tDCS, and to patients with AD but not MCI. Meta-regression showed that age was significantly associated with global cognition response (Nstudies=16, p = 0.020, I2 = 89.51%, R2 = 28.96%), with larger effects sizes in younger populations. All significant meta-analyses had large effect sizes (SMD ≥0.8), suggesting clinical utility of NIBS in the short term. There remained substantial heterogeneity across all subgroup analyses and meta-regressions (all I2 > 50%). Egger's tests showed no evidence of publication biases. CONCLUSION rTMS improved global cognition and NPS in those with AD. Further studies in MCI and using tDCS will help to fully evaluate the specific NIBS techniques and populations most likely to benefit on global cognition and NPS measures. Additional research should investigate the long term clinical utility of NIBS in these populations.
Collapse
|
20
|
Brioschi Guevara A, Bieler M, Altomare D, Berthier M, Csajka C, Dautricourt S, Démonet JF, Dodich A, Frisoni GB, Miniussi C, Molinuevo JL, Ribaldi F, Scheltens P, Chételat G. Protocols for cognitive enhancement. A user manual for Brain Health Services-part 5 of 6. Alzheimers Res Ther 2021; 13:172. [PMID: 34635149 PMCID: PMC8507160 DOI: 10.1186/s13195-021-00844-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022]
Abstract
Cognitive complaints in the absence of objective cognitive impairment, observed in patients with subjective cognitive decline (SCD), are common in old age. The first step to postpone cognitive decline is to use techniques known to improve cognition, i.e., cognitive enhancement techniques.We aimed to provide clinical recommendations to improve cognitive performance in cognitively unimpaired individuals, by using cognitive, mental, or physical training (CMPT), non-invasive brain stimulations (NIBS), drugs, or nutrients. We made a systematic review of CMPT studies based on the GRADE method rating the strength of evidence.CMPT have clinically relevant effects on cognitive and non-cognitive outcomes. The quality of evidence supporting the improvement of outcomes following a CMPT was high for metamemory; moderate for executive functions, attention, global cognition, and generalization in daily life; and low for objective memory, subjective memory, motivation, mood, and quality of life, as well as a transfer to other cognitive functions. Regarding specific interventions, CMPT based on repeated practice (e.g., video games or mindfulness, but not physical training) improved attention and executive functions significantly, while CMPT based on strategic learning significantly improved objective memory.We found encouraging evidence supporting the potential effect of NIBS in improving memory performance, and reducing the perception of self-perceived memory decline in SCD. Yet, the high heterogeneity of stimulation protocols in the different studies prevent the issuing of clear-cut recommendations for implementation in a clinical setting. No conclusive argument was found to recommend any of the main pharmacological cognitive enhancement drugs ("smart drugs", acetylcholinesterase inhibitors, memantine, antidepressant) or herbal extracts (Panax ginseng, Gingko biloba, and Bacopa monnieri) in people without cognitive impairment.Altogether, this systematic review provides evidence for CMPT to improve cognition, encouraging results for NIBS although more studies are needed, while it does not support the use of drugs or nutrients.
Collapse
Affiliation(s)
- Andrea Brioschi Guevara
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Melanie Bieler
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Marcelo Berthier
- Unit of Cognitive Neurology and Aphasia, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
| | - Chantal Csajka
- Center for Research and Innovation in clinical Pharmaceutical Sciences, University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sophie Dautricourt
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Jean-François Démonet
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alessandra Dodich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gael Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| |
Collapse
|
21
|
Rajji TK. Noninvasive brain stimulation for the treatment of neurocognitive disorders: right for prime time? Curr Opin Psychiatry 2021; 34:129-135. [PMID: 33395102 DOI: 10.1097/yco.0000000000000686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Neurocognitive disorders are associated with tremendous burden at the level of the individual, the care giver, and society at large. No effective treatments have been discovered to date. RECENT FINDINGS Noninvasive brain stimulation (NIBS) comprises several promising interventions that have been studied in Alzheimer's disease and related dementias. Most recent studies have tested transcranial direct current stimulation or repetitive transcranial magnetic stimulation on their own or in combination with other interventions, particularly cognitive training. While most studies were proof-of-principle studies with small sample sizes, combination and long-duration protocols seem to be promising approaches to pursue. Some studies also investigated novel neurophysiological markers as predictors of response to NIBS. SUMMARY NIBS presents several interventional options that are ready to be evaluated using well powered, long-duration trials. These future studies should build on the promising leads from the current literature, including the potential advantage of combining NIBS with other interventions; the delivery of interventions for long durations to assess long-term impact; and the use of neurophysiological markers that could optimize the personalization and efficacy of NIBS.
Collapse
Affiliation(s)
- Tarek K Rajji
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health.,Department of Psychiatry & Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Transcranial Direct Current Stimulation Enhances Episodic Memory in Healthy Older Adults by Modulating Retrieval-Specific Activation. Neural Plast 2020; 2020:8883046. [PMID: 33354206 PMCID: PMC7735856 DOI: 10.1155/2020/8883046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022] Open
Abstract
Memory decline has become an issue of major importance in the aging society. Anodal transcranial direct current stimulation (atDCS) is a viable tool to counteract age-associated episodic memory deterioration. However, the underlying neural mechanisms are unclear. In this single-blind, sham-controlled study, we combined atDCS and functional magnetic resonance imaging to assess the behavioral and neural consequences of multiple-session atDCS in older adults. Forty-nine healthy older adults received either 10 sessions of anodal or sham stimulation over the left dorsolateral prefrontal cortex. Before and after stimulation, participants performed a source memory task in the MRI scanner. Compared to sham stimulation, atDCS significantly improved item memory performance. Additionally, atDCS significantly increased regional brain activity around the stimulation area in the prefrontal cortex and extended to the bilateral anterior cingulate cortex. Neural changes in the prefrontal cortex correlated with memory gains. Our findings therefore indicate that multiple-session offline atDCS may improve memory in older adults by inducing neural alterations.
Collapse
|