1
|
Tian Z, Zhang Q, Wang L, Li M, Li T, Wang Y, Cao Z, Jiang X, Luo P. Progress in the mechanisms of pain associated with neurodegenerative diseases. Ageing Res Rev 2024; 102:102579. [PMID: 39542176 DOI: 10.1016/j.arr.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases (NDDs) represent a class of neurological disorders characterized by the progressive degeneration or loss of neurons, impacting millions of individuals globally. In addition to the typical manifestations, pain is a prevalent symptom associated with NDDs, seriously impacting the quality of life for patients. The pathogenesis of pain associated with NDDs is intricate and multifaceted. Currently, the clinical management of NDDs-related pain symptoms predominantly relies on conventional pharmacological agents or physical therapy. However, these approaches often fail to produce satisfactory outcomes. This article summarizes the underlying mechanisms of major NDDs-associated pain: Neuroinflammation, Brain and spinal cord dysfunctions, Mitochondrial dysfunction, Risk gene and pathological protein, as well as Receptor, channel, and neurotransmitter. While numerous studies have investigated the downstream pathological processes associated with these mechanisms, there remains a significant gap in identifying the key initiating factors. Specifically, there is insufficient evidence for the upstream elements that activate microglia and astrocytes in neuroinflammation leading to pain in NDDs. Likewise, there is an absence of upstream factors elucidating how dysfunctions in the brain and spinal cord, as well as mitochondrial impairments, contribute to the development of pain. Furthermore, the specific mechanisms through which hallmark pathological proteins related to NDDs contribute to these pathological processes remain inadequately understood. The objective of this article is to synthesize the existing mechanisms underlying pain associated with NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, Schizophrenia, Amyotrophic lateral sclerosis, and Multiple sclerosis, while also identifying gaps and deficiencies in these mechanisms. This paper offers insights for future research trajectories. Given the intricate pathogenesis of NDDs-related pain, it emphasizes that a promising short-term strategy is combination therapy-intervening concurrently in multiple pathological processes-akin to the cocktail approach utilized in treating acquired immunodeficiency syndrome (AIDS). For long-term advancements, achieving breakthroughs in the treatment of the NDDs themselves will remain essential for alleviating accompanying pain symptoms.
Collapse
Affiliation(s)
- Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Wang
- Xi'an Children's Hospital, Xi'an 710002, China
| | - Mengxiang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tianjing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yujie Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zixuan Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Bakulin A, Teyssier NB, Kampmann M, Khoroshkin M, Goodarzi H. pyPAGE: A framework for Addressing biases in gene-set enrichment analysis-A case study on Alzheimer's disease. PLoS Comput Biol 2024; 20:e1012346. [PMID: 39236079 PMCID: PMC11421795 DOI: 10.1371/journal.pcbi.1012346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Inferring the driving regulatory programs from comparative analysis of gene expression data is a cornerstone of systems biology. Many computational frameworks were developed to address this problem, including our iPAGE (information-theoretic Pathway Analysis of Gene Expression) toolset that uses information theory to detect non-random patterns of expression associated with given pathways or regulons. Our recent observations, however, indicate that existing approaches are susceptible to the technical biases that are inherent to most real world annotations. To address this, we have extended our information-theoretic framework to account for specific biases and artifacts in biological networks using the concept of conditional information. To showcase pyPAGE, we performed a comprehensive analysis of regulatory perturbations that underlie the molecular etiology of Alzheimer's disease (AD). pyPAGE successfully recapitulated several known AD-associated gene expression programs. We also discovered several additional regulons whose differential activity is significantly associated with AD. We further explored how these regulators relate to pathological processes in AD through cell-type specific analysis of single cell and spatial gene expression datasets. Our findings showcase the utility of pyPAGE as a precise and reliable biomarker discovery in complex diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Artemy Bakulin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Noam B. Teyssier
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Arc Institute, Palo Alto, California, United States of America
| |
Collapse
|
3
|
Shvetcov A, Thomson S, Spathos J, Cho AN, Wilkins HM, Andrews SJ, Delerue F, Couttas TA, Issar JK, Isik F, Kaur S, Drummond E, Dobson-Stone C, Duffy SL, Rogers NM, Catchpoole D, Gold WA, Swerdlow RH, Brown DA, Finney CA. Blood-Based Transcriptomic Biomarkers Are Predictive of Neurodegeneration Rather Than Alzheimer's Disease. Int J Mol Sci 2023; 24:15011. [PMID: 37834458 PMCID: PMC10573468 DOI: 10.3390/ijms241915011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is a growing global health crisis affecting millions and incurring substantial economic costs. However, clinical diagnosis remains challenging, with misdiagnoses and underdiagnoses being prevalent. There is an increased focus on putative, blood-based biomarkers that may be useful for the diagnosis as well as early detection of AD. In the present study, we used an unbiased combination of machine learning and functional network analyses to identify blood gene biomarker candidates in AD. Using supervised machine learning, we also determined whether these candidates were indeed unique to AD or whether they were indicative of other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Our analyses showed that genes involved in spliceosome assembly, RNA binding, transcription, protein synthesis, mitoribosomes, and NADH dehydrogenase were the best-performing genes for identifying AD patients relative to cognitively healthy controls. This transcriptomic signature, however, was not unique to AD, and subsequent machine learning showed that this signature could also predict PD and ALS relative to controls without neurodegenerative disease. Combined, our results suggest that mRNA from whole blood can indeed be used to screen for patients with neurodegeneration but may be less effective in diagnosing the specific neurodegenerative disease.
Collapse
Affiliation(s)
- Artur Shvetcov
- Department of Psychological Medicine, Sydney Children’s Hospitals Network, Sydney, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Ann-Na Cho
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - Shea J. Andrews
- Department of Psychiatry & Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Fabien Delerue
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A. Couttas
- Brain and Mind Centre, Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jasmeen Kaur Issar
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Medical Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Finula Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Simranpreet Kaur
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eleanor Drummond
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Carol Dobson-Stone
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Shantel L. Duffy
- Allied Health, Research and Strategic Partnerships, Nepean Blue Mountains Local Health District, Penrith, NSW 2750, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Daniel Catchpoole
- The Tumor Bank, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Children’s Cancer Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Wendy A. Gold
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Medical Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW 2145, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
4
|
Kopeć K, Szleszkowski S, Koziorowski D, Szlufik S. Glymphatic System and Mitochondrial Dysfunction as Two Crucial Players in Pathophysiology of Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10366. [PMID: 37373513 DOI: 10.3390/ijms241210366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Neurodegenerative diseases are a complex problem affecting millions of people around the world. The pathogenesis is not fully understood, but it is known that both insufficiency of the glymphatic system and mitochondrial disorders affect the development of pathology. It appears that these are not just two independent factors that coexist in the processes of neurodegeneration, but that they often interact and drive each other. Bioenergetics disturbances are potentially associated with the accumulation of protein aggregates and impaired glymphatic clearance. Furthermore, sleep disorders characteristic of neurodegeneration may impair the work of both the glymphatic system and the activity of mitochondria. Melatonin may be one of the elements linking sleep disorders with the function of these systems. Moreover, noteworthy in this context is the process of neuroinflammation inextricably linked to mitochondria and its impact not only on neurons, but also on glia cells involved in glymphatic clearance. This review only presents possible direct and indirect connections between the glymphatic system and mitochondria in the process of neurodegeneration. Clarifying the connection between these two areas in relation to neurodegeneration could lead to the development of new multidirectional therapies, which, due to the complexity of pathogenesis, seems to be worth considering.
Collapse
Affiliation(s)
- Kamila Kopeć
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanisław Szleszkowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanislaw Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
5
|
Salvador CL, Oppebøen M, Vassli AØ, Pfeiffer HCV, Varhaug KN, Elgstøen KBP, Yazdani M. Increased Sphingomyelin and Free Sialic Acid in Cerebrospinal Fluid of Kearns-Sayre Syndrome: New Findings Using Untargeted Metabolomics. Pediatr Neurol 2023; 143:68-76. [PMID: 37018879 DOI: 10.1016/j.pediatrneurol.2023.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/25/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Kearns-Sayre syndrome (KSS) is caused by duplications and/or deletions of mitochondrial DNA (mtDNA) and is typically diagnosed based on a classic triad of symptoms with chronic progressive external ophthalmoplegia (CPEO), retinitis pigmentosa, and onset before age 20 years. The present study aimed to diagnose two patients, on suspicion of KSS. METHODS One of the patients went through a diagnostic odyssey, with normal results from several mtDNA analyses, both in blood and muscle, before the diagnosis was confirmed genetically. RESULTS Two patients presented increased tau protein and low 5-methyltetrahydrofolate (5-MTHF) levels in the cerebrospinal fluid (CSF). Untargeted metabolomics on CSF samples also showed an increase in the levels of free sialic acid and sphingomyelin C16:0 (d18:1/C16:0), compared with four control groups (patients with mitochondrial disorders, nonmitochondrial disorders, low 5-MTHF, or increased tau proteins). CONCLUSIONS It is the first time that elevated sphingomyelin C16:0 (d18:1/C16:0) and tau protein in KSS are reported. Using an untargeted metabolomics approach and standard laboratory methods, the study could shed new light on metabolism in KSS to better understand its complexity. In addition, the findings may suggest the combination of elevated free sialic acid, sphingomyelin C16:0 (d18:1/C16:0), and tau protein as well as low 5-MTHF as new biomarkers in the diagnostics of KSS.
Collapse
Affiliation(s)
| | - Mari Oppebøen
- Department of Pediatrics, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anja Østeby Vassli
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Helle Cecilie Viekilde Pfeiffer
- Department of Pediatrics, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Department of Pediatrics, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kristin Nielsen Varhaug
- The Mitochondrial Medicine and Neurogenetics (MMN) Group, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
6
|
The Mechanism of Two Benzaldehydes from Aspergillus terreus C23-3 Improve Neuroinflammatory and Neuronal Damage to Delay the Progression of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24020905. [PMID: 36674443 PMCID: PMC9866346 DOI: 10.3390/ijms24020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, is the most common cause of dementia in humans worldwide. Although more in-depth research has been carried out on AD, the therapeutic effect of AD is not as expected, and natural active substances are increasingly sought after by scientists. In the present study, we evaluated two benzaldehydes from a coral-derived Aspergillus terreus strain C23-3, their anti-neuroinflammatory activity in microglia (BV-2), and their neuroprotective activity and mechanisms in hippocampal neuronal cells (HT-22). These include the protein expression of iNOS, COX-2, MAPKs pathways, Tau protein-related pathways, caspases family-related signaling pathways. They also include the levels of TNF-α, IL-6, IL-18 and ROS, as well as the level of mitochondrial oxidative stress and neuronal cell apoptosis. The results showed that both benzaldehydes were effective in reducing the secretion of various inflammatory mediators, as well as pro-inflammatory factors. Among these, benzaldehyde 2 inhibited mitochondrial oxidative stress and blocked neuronal cell apoptosis through Tau protein-related pathways and caspases family-related signaling pathways, thereby inhibiting β-amyloid (Aβ)-induced neurological damage. This study reveals that benzaldehyde 2 has potential as a therapeutic agent for Alzheimer's disease, and offers a new approach to the high-value use of marine natural products.
Collapse
|
7
|
Rahman MM, Tumpa MAA, Rahaman MS, Islam F, Sutradhar PR, Ahmed M, Alghamdi BS, Hafeez A, Alexiou A, Perveen A, Ashraf GM. Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1081-1099. [PMID: 36927428 PMCID: PMC10286587 DOI: 10.2174/1570159x21666230316150559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Popy Rani Sutradhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
8
|
Holt AG, Davies AM. A comparison of mtDNA deletion mutant proliferation mechanisms. J Theor Biol 2022; 551-552:111244. [PMID: 35973607 DOI: 10.1016/j.jtbi.2022.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
In this paper we use simulation methods to investigate the proliferation of deletion mutations of mitochondrial DNA in neurons. We simulate three mtDNA proliferation mechanisms, namely, random drift, replicative advantage and vicious cycle. For each mechanism, we investigated the effect mutation rates have on neuron loss within a human host. We also compare heteroplasmy of each mechanism at mutation rates that yield the levels neuron loss that would be associated with dementia. Both random drift and vicious cycle predicted high levels of heteroplasmy, while replicative advantage showed a small number of dominant clones with a low background of heteroplasmy.
Collapse
|
9
|
Zambrano K, Barba D, Castillo K, Noboa L, Argueta-Zamora D, Robayo P, Arizaga E, Caicedo A, Gavilanes AWD. Fighting Parkinson's disease: the return of the mitochondria. Mitochondrion 2022; 64:34-44. [PMID: 35218960 DOI: 10.1016/j.mito.2022.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, worldwide. PD neuro-energetically affects the extrapyramidal system, by the progressive loss of striatal dopaminergic neurons in the substantia nigra pars compacta, leading to motor impairment. During the progression of PD, there will be an increase in mitochondrial dysfunction, reactive oxygen species (ROS), stress and accumulation of α-synuclein in neurons. This results in mitochondrial mutations altering their function and fission-fusion mechanisms and central nervous system (CNS) degeneration. Intracellular mitochondrial dysfunction has been studied for a long time in PD due to the decline of mitochondrial dynamics inside neurons. Mitochondrial damage-associated molecular patterns (DAMPs) have been known to contribute to several CNS pathologies especially PD pathogenesis. New and exciting evidence regarding the exchange of mitochondria between healthy to damaged cells in the central nervous system (CNS) and the therapeutic use of the artificial mitochondrial transfer/transplant (AMT) marked a return of this organelle to develop innovative therapeutic procedures for PD. The focus of this review aims to shed light on the role of mitochondria, both intra and extracellularly in PD, and how AMT could be used to generate new potential therapies in the fight against PD. Moreover, we suggest that mitochondrial therapy could work as a preventative measure, motivating the field to move towards this goal.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Luis Noboa
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | | | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; 7 Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| |
Collapse
|
10
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
Dawod PGA, Jancic J, Marjanovic A, Brankovic M, Jankovic M, Samardzic J, Gamil Anwar Dawod A, Novakovic I, Abdel Motaleb FI, Radlovic V, Kostic VS, Nikolic D. Mutational Analysis and mtDNA Haplogroup Characterization in Three Serbian Cases of Mitochondrial Encephalomyopathies and Literature Review. Diagnostics (Basel) 2021; 11:1969. [PMID: 34829316 PMCID: PMC8620769 DOI: 10.3390/diagnostics11111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial encephalomyopathies (MEMP) are heterogeneous multisystem disorders frequently associated with mitochondrial DNA (mtDNA) mutations. Clinical presentation varies considerably in age of onset, course, and severity up to death in early childhood. In this study, we performed molecular genetic analysis for mtDNA pathogenic mutation detection in Serbian children, preliminary diagnosed clinically, biochemically and by brain imaging for mitochondrial encephalomyopathies disorders. Sanger sequencing analysis in three Serbian probands revealed two known pathogenic mutations. Two probands had a heteroplasmic point mutation m.3243A>G in the MT-TL1 gene, which confirmed mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome (MELAS), while a single case clinically manifested for Leigh syndrome had an almost homoplasmic (close to 100%) m.8993T>G mutation in the MT-ATP6 gene. After full mtDNA MITOMASTER analysis and PhyloTree build 17, we report MELAS' association with haplogroups U and H (U2e and H15 subclades); likewise, the mtDNA-associated Leigh syndrome proband shows a preference for haplogroup H (H34 subclade). Based on clinical-genetic correlation, we suggest that haplogroup H may contribute to the mitochondrial encephalomyopathies' phenotypic variability of the patients in our study. We conclude that genetic studies for the distinctive mitochondrial encephalomyopathies should be well-considered for realizing clinical severity and possible outcomes.
Collapse
Affiliation(s)
- Phepy G. A. Dawod
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Jasna Jancic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Clinic of Neurology and Psychiatry of Children and Youth, 11000 Belgrade, Serbia
| | - Ana Marjanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Marija Brankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ayman Gamil Anwar Dawod
- Internal Medicine, Hepatogastroenterology and Endoscopy Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Fayda I. Abdel Motaleb
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Vladimir Radlovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Pediatric Surgery Department, University Children’s Hospital, 11000 Belgrade, Serbia
| | - Vladimir S. Kostic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, Tirsova 10, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Povea-Cabello S, Villanueva-Paz M, Suárez-Rivero JM, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Advances in mt-tRNA Mutation-Caused Mitochondrial Disease Modeling: Patients' Brain in a Dish. Front Genet 2021; 11:610764. [PMID: 33510772 PMCID: PMC7835939 DOI: 10.3389/fgene.2020.610764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of rare genetic disorders that can be caused by mutations in nuclear (nDNA) or mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with several maternally inherited genetic diseases, with mitochondrial dysfunction as a main pathological feature. These diseases, although frequently multisystemic, mainly affect organs that require large amounts of energy such as the brain and the skeletal muscle. In contrast to the difficulty of obtaining neuronal and muscle cell models, the development of induced pluripotent stem cells (iPSCs) has shed light on the study of mitochondrial diseases. However, it is still a challenge to obtain an appropriate cellular model in order to find new therapeutic options for people suffering from these diseases. In this review, we deepen the knowledge in the current models for the most studied mt-tRNA mutation-caused mitochondrial diseases, MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonic epilepsy with ragged red fibers) syndromes, and their therapeutic management. In particular, we will discuss the development of a novel model for mitochondrial disease research that consists of induced neurons (iNs) generated by direct reprogramming of fibroblasts derived from patients suffering from MERRF syndrome. We hypothesize that iNs will be helpful for mitochondrial disease modeling, since they could mimic patient’s neuron pathophysiology and give us the opportunity to correct the alterations in one of the most affected cellular types in these disorders.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marina Villanueva-Paz
- Instituto de Investigación Biomédica de Málaga, Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
13
|
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21:ijms21249661. [PMID: 33352896 PMCID: PMC7765816 DOI: 10.3390/ijms21249661] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stress mechanisms have long been associated with neuronal loss and neurodegenerative diseases. The origin of cell stress and neuronal loss likely stems from multiple pathways. These include (but are not limited to) bioenergetic failure, neuroinflammation, and loss of proteostasis. Cells have adapted compensatory mechanisms to overcome stress and circumvent death. One mechanism is mitophagy. Mitophagy is a form of macroautophagy, were mitochondria and their contents are ubiquitinated, engulfed, and removed through lysosome degradation. Recent studies have implicated mitophagy dysregulation in several neurodegenerative diseases and clinical trials are underway which target mitophagy pathways. Here we review mitophagy pathways, the role of mitophagy in neurodegeneration, potential therapeutics, and the need for further study.
Collapse
Affiliation(s)
- Natalie S. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
14
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
15
|
Menta BW, Swerdlow RH. An Integrative Overview of Non-Amyloid and Non-Tau Pathologies in Alzheimer's Disease. Neurochem Res 2019; 44:12-21. [PMID: 30084096 PMCID: PMC6347553 DOI: 10.1007/s11064-018-2603-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that devastates the lives of its victims, and challenges the family members and health care infrastructures that care for them. Clinically, attempts to understand AD have focused on trying to predict the presence of, and more recently demonstrate the presence of, its characteristic amyloid plaque and neurofibrillary tangle pathologies. Fundamental research has also traditionally focused on understanding the generation, content, and pathogenicity of plaques and tangles, but in addition to this there is now an emerging independent interest in other molecular phenomena including apolipoprotein E, lipid metabolism, neuroinflammation, and mitochondrial function. While studies emphasizing the role of these phenomena have provided valuable AD insights, it is interesting that at the molecular level these entities extensively intertwine and interact. In this review, we provide a brief overview of why apolipoprotein E, lipid metabolism, neuroinflammation, and mitochondrial research have become increasingly ascendant in the AD research field, and present the case for studying these phenomena from an integrated perspective.
Collapse
Affiliation(s)
- Blaise W Menta
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA
- Neuroscience Graduate Program, University of Kansas Medical Center, Lawrence, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Lawrence, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA.
- Neuroscience Graduate Program, University of Kansas Medical Center, Lawrence, KS, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Lawrence, KS, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Lawrence, KS, USA.
- Department of Neurology, University of Kansas Medical Center, Lawrence, KS, USA.
- Landon Center on Aging, MS 2012, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
16
|
Sensi SL, Granzotto A, Siotto M, Squitti R. Copper and Zinc Dysregulation in Alzheimer's Disease. Trends Pharmacol Sci 2018; 39:1049-1063. [PMID: 30352697 DOI: 10.1016/j.tips.2018.10.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia. Despite a wealth of knowledge on the molecular mechanisms involved in AD, current treatments have mainly focused on targeting amyloid β (Aβ) production, but have failed to show significant effects and efficacy. Therefore, a critical reconsideration of the multifactorial nature of the disease is needed. AD is a complex multifactorial disorder in which, along with Aβ and tau, the convergence of polygenic, epigenetic, environmental, vascular, and metabolic factors increases the global susceptibility to the disease and shapes its course. One of the cofactors converging on AD is the dysregulation of brain metals. In this review, we focus on the role of AD-related neurodegeneration and cognitive decline triggered by the imbalance of two endogenous metals: copper and zinc.
Collapse
Affiliation(s)
- Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine, CeSI-MeT, Chieti, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy; Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California, Irvine, Irvine, USA.
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine, CeSI-MeT, Chieti, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | | | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
17
|
Chinnery PF, Gomez-Duran A. Oldies but Goldies mtDNA Population Variants and Neurodegenerative Diseases. Front Neurosci 2018; 12:682. [PMID: 30369864 PMCID: PMC6194173 DOI: 10.3389/fnins.2018.00682] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
mtDNA is transmitted through the maternal line and its sequence variability, which is population specific, is assumed to be phenotypically neutral. However, several studies have shown associations between the variants defining some genetic backgrounds and the susceptibility to several pathogenic phenotypes, including neurodegenerative diseases. Many of these studies have found that some of these variants impact many of these phenotypes, including the ones defining the Caucasian haplogroups H, J, and Uk, while others, such as the ones defining the T haplogroup, have phenotype specific associations. In this review, we will focus on those that have shown a pleiotropic effect in population studies in neurological diseases. We will also explore their bioenergetic and genomic characteristics in order to provide an insight into the role of these variants in disease. Given the importance of mitochondrial population variants in neurodegenerative diseases a deeper analysis of their effects might unravel new mechanisms of disease and help design new strategies for successful treatments.
Collapse
Affiliation(s)
- Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
18
|
Russo E, Nguyen H, Lippert T, Tuazon J, Borlongan CV, Napoli E. Mitochondrial targeting as a novel therapy for stroke. Brain Circ 2018; 4:84-94. [PMID: 30450413 PMCID: PMC6187947 DOI: 10.4103/bc.bc_14_18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
Stroke is a main cause of mortality and morbidity worldwide. Despite the increasing development of innovative treatments for stroke, most are unsuccessful in clinical trials. In recent years, an encouraging strategy for stroke therapy has been identified in stem cells transplantation. In particular, grafting cells and their secretion products are leading with functional recovery in stroke patients by promoting the growth and function of the neurovascular unit – a communication framework between neurons, their supply microvessels along with glial cells – underlying stroke pathology and recovery. Mitochondrial dysfunction has been recently recognized as a hallmark in ischemia/reperfusion neural damage. Emerging evidence of mitochondria transfer from stem cells to ischemic-injured cells points to transfer of healthy mitochondria as a viable novel therapeutic strategy for ischemic diseases. Hence, a more in-depth understanding of the cellular and molecular mechanisms involved in mitochondrial impairment may lead to new tools for stroke treatment. In this review, we focus on the current evidence of mitochondrial dysfunction in stroke, investigating favorable approaches of healthy mitochondria transfer in ischemic neurons, and exploring the potential of mitochondria-based cellular therapy for clinical applications. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed.
Collapse
Affiliation(s)
- Eleonora Russo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Hung Nguyen
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Trenton Lippert
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Julian Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Cruz ACP, Ferrasa A, Muotri AR, Herai RH. Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion 2018; 46:345-360. [PMID: 30218715 DOI: 10.1016/j.mito.2018.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are small cytosolic organelles and the main source of energy production for the cells, especially in the brain. This organelle has its own genome, the mitochondrial DNA (mtDNA), and genetic variants in this molecule can alter the normal energy metabolism in the brain, contributing to the development of a wide assortment of Neurological Disorders (ND), including neurodevelopmental syndromes, neurodegenerative diseases and neuropsychiatric disorders. These ND are comprised by a heterogeneous group of syndromes and diseases that encompass different cognitive phenotypes and behavioral disorders, such as autism, Asperger's syndrome, pervasive developmental disorder, attention deficit hyperactivity disorder, Huntington disease, Leigh Syndrome and bipolar disorder. In this work we carried out a Systematic Literature Review (SLR) to identify and describe the mitochondrial genetic variants associated with the occurrence of ND. Most of genetic variants found in mtDNA were associated with Single Nucleotide Polimorphisms (SNPs), ~79%, with ~15% corresponding to deletions, ~3% to Copy Number Variations (CNVs), ~2% to insertions and another 1% included mtDNA replication problems and genetic rearrangements. We also found that most of the variants were associated with coding regions of mitochondrial proteins but were also found in regulatory transcripts (tRNA and rRNA) and in the D-Loop replication region of the mtDNA. After analysis of mtDNA deletions and CNV, none of them occur in the D-Loop region. This SLR shows that all transcribed mtDNA molecules have mutations correlated with ND. Finally, we describe that all mtDNA variants found were associated with deterioration of cognitive (dementia) and intellectual functions, learning disabilities, developmental delays, and personality and behavior problems.
Collapse
Affiliation(s)
- Ana Carolina P Cruz
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná 84030-900, Brazil
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92037-0695, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Lico Kaesemodel Institute (ILK), Curitiba, Paraná 80240-000, Brazil.
| |
Collapse
|
20
|
Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment. Int J Mol Sci 2018; 19:ijms19072127. [PMID: 30037107 PMCID: PMC6073421 DOI: 10.3390/ijms19072127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Stroke remains a major cause of death and disability in the United States and around the world. Solid safety and efficacy profiles of novel stroke therapeutics have been generated in the laboratory, but most failed in clinical trials. Investigations into the pathology and treatment of the disease remain a key research endeavor in advancing scientific understanding and clinical applications. In particular, cell-based regenerative medicine, specifically stem cell transplantation, may hold promise as a stroke therapy, because grafted cells and their components may recapitulate the growth and function of the neurovascular unit, which arguably represents the alpha and omega of stroke brain pathology and recovery. Recent evidence has implicated mitochondria, organelles with a central role in energy metabolism and stress response, in stroke progression. Recognizing that stem cells offer a source of healthy mitochondria—one that is potentially transferrable into ischemic cells—may provide a new therapeutic tool. To this end, deciphering cellular and molecular processes underlying dysfunctional mitochondria may reveal innovative strategies for stroke therapy. Here, we review recent studies capturing the intimate participation of mitochondrial impairment in stroke pathology, and showcase promising methods of healthy mitochondria transfer into ischemic cells to critically evaluate the potential of mitochondria-based stem cell therapy for stroke patients.
Collapse
|
21
|
Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. J Neurochem 2018; 144:691-709. [PMID: 29341130 PMCID: PMC5897151 DOI: 10.1111/jnc.14308] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.
Collapse
Affiliation(s)
- Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| | - M Lillian Culp
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jason G Craver
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
22
|
Abstract
Increasing research suggests that mitochondrial defects play a major role in Alzheimer's disease (AD) pathogenesis. We aimed to better understand changes in mitochondria with the development and progression of AD. We compared APPsw/PS1dE9 transgenic mice at 3, 6, 9, and 12 months old as an animal model of AD and age-matched C57BL/6 mice as controls. The learning ability and spatial memory ability of APPsw/PS1dE9 mice showed significant differences compared with controls until 9 and 12 months. Mitochondrial morphology was altered in hippocampus tissue of APPsw/PS1dE9 mice beginning from the third month. 'Medullary corpuscle', which is formed by the accumulation of a large amount of degenerative and fragmented mitochondria in neuropils, may be the characteristic change observed on electron microscopy at a late stage of AD. Moreover, levels of mitochondrial fusion proteins (optic atrophy 1 and mitofusin 2) and fission proteins (dynamin-related protein 1 and fission 1) were altered in transgenic mice compared with controls with progression of AD. We found increased levels of fission and fusion proteins in APP/PS1 mice at 3 months, indicating that the presence of abnormal mitochondrial dynamics may be events in early AD progression. Changes in mitochondrial preceded the onset of memory decline as measured by the modified Morris water maze test. Abnormal mitochondrial dynamics could be a marker for early diagnosis of AD and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in AD.
Collapse
|
23
|
Berridge MV, Herst PM, Rowe MR, Schneider R, McConnell MJ. Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Anal Biochem 2017; 552:75-80. [PMID: 29158129 DOI: 10.1016/j.ab.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
Abstract
Interest in the recently discovered phenomenon of mitochondrial transfer between mammalian cells has gained momentum since it was first described in cell culture systems more than a decade ago. Mitochondria-targeting fluorescent dyes have been repurposed and are now widely used in these studies and in acute disease models, sometimes without due consideration of their limitations, while vectors containing mitochondrially-imported fluorescent proteins have complemented the use of mitochondria-targeting dyes. Genetic approaches that use mitochondrial DNA polymorphisms have also been used in some in vitro studies and in tumor models and are particularly useful where mtDNA is damaged or deleted. These approaches can also be used to study the long-term consequences of mitochondrial transfer such as in bone marrow and organ transplantation and in tumour biology where inherent mitochondrial damage is often a key feature. As research on intercellular mitochondrial transfer moves from cell culture into animal models and human diseases it will be important to understand the limitations of the various techniques in order to apply appropriate methodologies to address physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- M V Berridge
- Cancer Cell Biology, Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand.
| | - P M Herst
- Cancer Cell Biology, Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand; Department of Radiation Therapy, University of Otago, PO Box 7343, Wellington 6242, New Zealand
| | - M R Rowe
- Department of Radiation Therapy, University of Otago, PO Box 7343, Wellington 6242, New Zealand; School of Biological Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand
| | - R Schneider
- Department of Radiation Therapy, University of Otago, PO Box 7343, Wellington 6242, New Zealand; School of Biological Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand
| | - M J McConnell
- School of Biological Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
24
|
Hyperglycemia exacerbates downregulation of dynamin-like protein 1 in ischemic cerebral injury. Lab Anim Res 2017; 33:202-208. [PMID: 29046694 PMCID: PMC5645597 DOI: 10.5625/lar.2017.33.3.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke is one of the leading causes of adult disability and death. Hyperglycemia is associated with an increased risk of stroke and poor outcomes after brain injury. Dynamin-like protein I (DLP-1) regulates mitochondrial fission and promotes mitochondrial dynamics. Neurodegenerative diseases are associated with mitochondrial dysfunction, and the downregulation of DLP-1 has been previously identified in a stroke animal model. Here, we investigated the changes in DLP-1 protein expression in an animal model of focal cerebral ischemia with induced hyperglycemia. Streptozotocin (40 mg/kg) was intraperitoneally injected into male rats to induce hyperglycemia, and middle cerebral artery occlusion (MCAO) was surgically induced 4 weeks after streptozotocin treatment. Brain tissue was isolated 24 hours after MCAO, and cerebral cortex samples were used for this study. Proteomics revealed a decrease in DLP-1 expression in MCAO animals when compared with controls, and this downregulation was more prominent in MCAO animals with hyperglycemia. Reverse-transcription polymerase chain reaction and Western blot analyses confirmed that DLP-1 was significantly downregulated in MCAO-injured animals with hyperglycemia compared to those without hyperglycemia. The decrease in DLP-1 indicates mitochondrial morphological changes and dysfunction. Together, these results suggest that the severe decrease of DLP-1 seen after brain injury under hyperglycemic conditions may exacerbate the damage to the brain.
Collapse
|
25
|
Mitochondrial Diseases as Model of Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:129-155. [DOI: 10.1007/978-3-319-60733-7_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
|
27
|
Mitochondria, Cybrids, Aging, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:259-302. [PMID: 28253988 DOI: 10.1016/bs.pmbts.2016.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial and bioenergetic function change with advancing age and may drive aging phenotypes. Mitochondrial and bioenergetic changes are also documented in various age-related neurodegenerative diseases, including Alzheimer's disease (AD). In some instances AD mitochondrial and bioenergetic changes are reminiscent of those observed with advancing age but are greater in magnitude. Mitochondrial and bioenergetic dysfunction could, therefore, link neurodegeneration to brain aging. Interestingly, mitochondrial defects in AD patients are not brain-limited, and mitochondrial function can be linked to classic AD histologic changes including amyloid precursor protein processing to beta amyloid. Also, transferring mitochondria from AD subjects to cell lines depleted of endogenous mitochondrial DNA (mtDNA) creates cytoplasmic hybrid (cybrid) cell lines that recapitulate specific biochemical, molecular, and histologic AD features. Such findings have led to the formulation of a "mitochondrial cascade hypothesis" that places mitochondrial dysfunction at the apex of the AD pathology pyramid. Data pertinent to this premise are reviewed.
Collapse
|
28
|
Nesfatin-1 protects dopaminergic neurons against MPP +/MPTP-induced neurotoxicity through the C-Raf-ERK1/2-dependent anti-apoptotic pathway. Sci Rep 2017; 7:40961. [PMID: 28106099 PMCID: PMC5247731 DOI: 10.1038/srep40961] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/14/2016] [Indexed: 01/16/2023] Open
Abstract
Several brain-gut peptides have been reported to have a close relationship with the central dopaminergic system; one such brain-gut peptide is nesfatin-1. Nesfatin-1 is a satiety peptide that is predominantly secreted by X/A-like endocrine cells in the gastric glands, where ghrelin is also secreted. We previously reported that ghrelin exerted neuroprotective effects on nigral dopaminergic neurons, which implied a role for ghrelin in Parkinson’s disease (PD). In the present study, we aim to clarify whether nesfatin-1 has similar effects on dopaminergic neurons both in vivo and in vitro. We show that nesfatin-1 attenuates the loss of nigral dopaminergic neurons in the 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. In addition, nesfatin-1 antagonized 1-methyl-4-phenylpyridillium ion (MPP+)-induced toxicity by restoring mitochondrial function, inhibiting cytochrome C release and preventing caspase-3 activation in MPP+-treated MES23.5 dopaminergic cells. These neuroprotective effects could be abolished by selective inhibition of C-Raf and the extracellular signal-regulated protein kinase 1/2 (ERK1/2). Our data suggest that C-Raf-ERK1/2, which is involved in an anti-apoptotic pathway, is responsible for the neuroprotective effects of nesfatin-1 in the context of MPTP-induced toxicity. These results imply that nesfatin-1 might have therapeutic potential for PD.
Collapse
|
29
|
Meramat A, Rajab NF, Shahar S, Sharif RA. DNA Damage, Copper and Lead Associates with Cognitive Function among Older Adults. J Nutr Health Aging 2017; 21:539-545. [PMID: 28448084 DOI: 10.1007/s12603-016-0759-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND A cross sectional study was conducted in a group of 317 subjects older than 60 in Malaysia, aimed to determine risk factors associated with cognitive impairment in older adults, focusing on trace elements and DNA damage. METHOD Cognitive decline was determined by Montreal Cognitive Assessment (MoCA). Oxidative stress markers (malondialdehyde-MDA and superoxide dismutase-SOD) were determined and DNA damage was assayed using Alkaline Comet Assay. Toenail samples were taken and analyzed using ICP-MS to determine trace element levels. RESULTS A total of 62.1 % of subjects had cognitive impairment. Subjects with cognitive impairment had significantly higher levels of MDA and DNA damage as compared to the group with normal cognitive function; MDA (2.07 ± 0.05 nmol/L vs 1.85 ± 0.06 nmol/L) (p<0.05) and DNA damage (% Tail Density, 14.52 ± 0.32 vs 10.31 ± 0.42; Tail Moment, 1.79 ± 0.06 vs 1.28 ± 0.06) (p<0.05 for all parameters). However, the level of SOD among subjects with cognitive impairment (6.67 ± 0.33 u.e/min/mg protein) was lower than the level among those with normal cognitive functions (11.36 ± 0.65 u.e/min/mg protein) (p<0.05). Multiple logistic regression revealed the predictors for cognitive impairment among the subjects were DNA damage (Adjusted odd ratio [OR], 1.37; 95% confidence interval [CI], 1.18-1.59), level of trace elements in toenails namely, lead (OR, 2.471; CI, 1.535-3.980) and copper (OR, 1.275; CI, 1.047-1.552) (p<0.05). CONCLUSION High levels of lead and copper can lead to increase in oxidative stress levels and are associated with DNA damage that eventually could be associated with cognitive decline.
Collapse
Affiliation(s)
- A Meramat
- Dr. Razinah Sharif, Programme of Nutritional Science, School of Healthcare Sciences, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia, Telephone: +603-9289-7459, Fax number: +603-2694-7621, Email address:
| | | | | | | |
Collapse
|
30
|
Herst PM, Rowe MR, Carson GM, Berridge MV. Functional Mitochondria in Health and Disease. Front Endocrinol (Lausanne) 2017; 8:296. [PMID: 29163365 PMCID: PMC5675848 DOI: 10.3389/fendo.2017.00296] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing environmental conditions is mandatory for normal cellular function and for cancer progression. Any loss of this adaptive response has the potential to compromise cellular function and render the cell more susceptible to external stressors such as oxidative stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of individual mitochondria into dynamic networks, whereas a decrease in demand results in the removal of superfluous mitochondria through fission and mitophagy. Effective communication between nucleus and mitochondria (mito-nuclear cross talk), involving the generation of different mitochondrial stress signals as well as the nuclear stress response pathways to deal with these stressors, maintains bioenergetic homeostasis under most conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic measures such as acquisition of new mitochondria from donor cells occurs to ensure cell survival. This review starts with a brief discussion of the evolutionary origin of mitochondria and summarizes how mutations in mtDNA lead to mitochondriopathies and other degenerative diseases. Mito-nuclear cross talk, including various stress signals generated by mitochondria and corresponding stress response pathways activated by the nucleus are summarized. We also introduce and discuss a small family of recently discovered hormone-like mitopeptides that modulate body metabolism. Under conditions of severe mitochondrial stress, mitochondria have been shown to traffic between cells, replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding the processes involved in cellular bioenergetics and metabolic adaptation has the potential to generate new knowledge that will lead to improved treatment of many of the metabolic, degenerative, and age-related inflammatory diseases that characterize modern societies.
Collapse
Affiliation(s)
- Patries M. Herst
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| | - Matthew R. Rowe
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Georgia M. Carson
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Michael V. Berridge
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| |
Collapse
|
31
|
Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Lab Anim Res 2016; 32:194-199. [PMID: 28053612 PMCID: PMC5206225 DOI: 10.5625/lar.2016.32.4.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death.
Collapse
|
32
|
Valenzuela R, Costa-Besada MA, Iglesias-Gonzalez J, Perez-Costas E, Villar-Cheda B, Garrido-Gil P, Melendez-Ferro M, Soto-Otero R, Lanciego JL, Henrion D, Franco R, Labandeira-Garcia JL. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis 2016; 7:e2427. [PMID: 27763643 PMCID: PMC5133991 DOI: 10.1038/cddis.2016.327] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
The renin–angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the ‘classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneration.
Collapse
Affiliation(s)
- Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Emma Perez-Costas
- Department of Pediatrics-Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Melendez-Ferro
- Department of Surgery-Pediatric, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ramon Soto-Otero
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Lanciego
- Neuroscience Department, Center for Applied Medical Research (CIMA, IdiSNA), University of Navarra, Pamplona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Henrion
- MITOVASC Institute, INSERM U1083, CNRS UMR6214, University of Angers, Angers, France
| | - Rafael Franco
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
33
|
Swerdlow RH. Bioenergetics and metabolism: a bench to bedside perspective. J Neurochem 2016; 139 Suppl 2:126-135. [PMID: 26968700 PMCID: PMC5851778 DOI: 10.1111/jnc.13509] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022]
Abstract
'Metabolism' refers to the vast collection of chemical processes that occur within a living organism. Within this broad designation, one can identify metabolism events that relate specifically to energy homeostasis, whether they occur at the subcellular, cellular, organ, or whole organism level. This review operationally refers to this type of metabolism as 'energy metabolism' or 'bioenergetics.' Changes in energy metabolism/bioenergetics have been linked to brain aging and a number of neurodegenerative diseases, and research suggests mitochondria may uniquely contribute to this. Interventions that manipulate energy metabolism/bioenergetic function and mitochondria may have therapeutic potential and efforts intended to accomplish this are playing out at basic, translational, and clinical levels. This review follows evolving views of energy metabolism's role in neurodegenerative diseases but especially Alzheimer's disease, with an emphasis on the bench-to-bedside process whose ultimate goal is to develop therapeutic interventions. It further considers challenges encountered during this process, which include linking basic concepts to a medical question at the initial research stage, adapting conceptual knowledge gained to a disease-associated application in the translational stage, extending what has been learned to the clinical arena, and maintaining support for the research at each of these fundamentally linked but functionally distinct stages. A bench-to-bedside biomedical research process is discussed that moves through conceptual, basic, translational, and clinical levels. For example, herein a case was made that bioenergetics is a valid Alzheimer's disease therapeutic target. Following this, a fundamental strategy for manipulating bioenergetics was defined, potential implications studied, and the approach extended to the clinical arena. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center and the departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
34
|
Cardoso S, Carvalho C, Correia SC, Seiça RM, Moreira PI. Alzheimer's Disease: From Mitochondrial Perturbations to Mitochondrial Medicine. Brain Pathol 2016; 26:632-47. [PMID: 27327899 PMCID: PMC8028979 DOI: 10.1111/bpa.12402] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023] Open
Abstract
Age-related neurodegenerative diseases such as Alzheimer's disease (AD) are distressing conditions causing countless levels of suffering for which treatment is often insufficient or inexistent. Considered to be the most common cause of dementia and an incurable, progressive neurodegenerative disorder, the intricate pathogenic mechanisms of AD continue to be revealed and, consequently, an effective treatment needs to be developed. Among the diverse hypothesis that have been proposed to explain AD pathogenesis, the one concerning mitochondrial dysfunction has raised as one of the most discussed with an actual acceptance in the field. It posits that manipulating mitochondrial function and understanding the deficits that result in mitochondrial injury may help to control and/or limit the development of AD. To achieve such goal, the concept of mitochondrial medicine places itself as a promising gathering of strategies to directly manage the major insidious disturbances of mitochondrial homeostasis as well as attempts to directly or indirectly manage its consequences in the context of AD. The aim of this review is to summarize the evolution that occurred from the establishment of mitochondrial homeostasis perturbation as masterpieces in AD pathogenesis up until the development of mitochondrial medicine. Following a brief glimpse in the past and current hypothesis regarding the triad of aging, mitochondria and AD, this manuscript will address the major mechanisms currently believed to participate in above mentioned events. Both pharmacological and lifestyle interventions will also be reviewed as AD-related mitochondrial therapeutics.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Cristina Carvalho
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Sónia C. Correia
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Raquel M. Seiça
- Laboratory of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- IBILI‐Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of CoimbraCoimbraPortugal
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Laboratory of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
35
|
Pahrudin Arrozi A, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S. Antioxidant modulation in restoring mitochondrial function in neurodegeneration. Int J Neurosci 2016; 127:218-235. [PMID: 27074540 DOI: 10.1080/00207454.2016.1178261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of disability associated with neurodegeneration worldwide. These diseases are influenced by multiple genetic and environmental factors and share similar mechanisms as both are characterized by accumulation and aggregation of misfolded proteins - amyloid-beta (Aβ) in AD and α-synuclein in PD. Over the past decade, increasing evidence has shown that mitochondrial dysfunction and the generation of reactive oxygen species (ROS) are involved in the pathology of these diseases, and the contributions of these defects to the cellular and molecular changes that eventually cause neuronal death have been explored. Using mitochondrial protective agents, such as antioxidants, to combat ROS provides a new strategy for neurodegenerative treatment. In this review, we highlight the potential of multiple types of antioxidants, including vitamins, phytochemicals, fatty acids and minerals, as well as synthetic antioxidants specifically targeting the mitochondria, which can restore mitochondrial function, in the treatment of neurodegenerative disorders at both the pre-clinical and clinical stages by focusing on AD and PD.
Collapse
Affiliation(s)
- Aslina Pahrudin Arrozi
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | - Wan Zurinah Wan Ngah
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | - Yasmin Anum Mohd Yusof
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | | | - Suzana Makpol
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| |
Collapse
|
36
|
Maglioni S, Ventura N. C. elegans as a model organism for human mitochondrial associated disorders. Mitochondrion 2016; 30:117-25. [PMID: 26906059 DOI: 10.1016/j.mito.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/16/2022]
Abstract
Mitochondria are small cytoplasmic organelles whose most important function is to provide the energy required by our cells and organism to live. To maintain an adequate mitochondrial homeostasis cells possess numerous mitochondrial quality controls and protective compensatory pathways, which can be activated to cope with a certain degree of mitochondrial dysfunction. However, when the mitochondrial damage is too severe and these defensive mechanisms are not anymore sufficient to deal with it, pathological signs arise. In the past few decades numerous genetic disorders ascribed to severe mitochondrial defects have been recognized with variable onset and symptomatology ranging from neuromuscular degeneration to cancer syndromes. Unfortunately, to date, only symptomatic and no curative therapies exist for most of these devastating, life-threatening disorders. Model organisms, and especially the nematode Caenorhabditis elegans, with its sequenced and highly conserved genome, and a simple but well-characterized nervous system, have enormously contributed in the past years to gain insight into the pathogenesis and treatment of different diseases. Here, we will summarize some of the advantages offered by the nematode system to model neurodegenerative diseases associated with mitochondrial electron transport chain defects and screen for therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Maglioni
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
37
|
Sorrentino L, Calogero AM, Pandini V, Vanoni MA, Sevrioukova IF, Aliverti A. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor. Biochemistry 2015; 54:6996-7009. [PMID: 26535916 DOI: 10.1021/acs.biochem.5b00898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide.
Collapse
Affiliation(s)
- Luca Sorrentino
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | | | - Vittorio Pandini
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | - Maria Antonietta Vanoni
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States
| | - Alessandro Aliverti
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
38
|
The complex crosstalk between mitochondria and the nucleus: What goes in between? Int J Biochem Cell Biol 2015; 63:10-5. [DOI: 10.1016/j.biocel.2015.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
|
39
|
Fernández-Moriano C, González-Burgos E, Gómez-Serranillos MP. Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:408927. [PMID: 26064418 PMCID: PMC4429198 DOI: 10.1155/2015/408927] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022]
Abstract
Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis of ageing-related neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. Mitochondria-targeted protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of mitochondrial dysfunction in Parkinson's and Alzheimer's diseases, with particular attention to in vitro and in vivo studies on promising endogenous and exogenous mitochondria-targeted protective compounds.
Collapse
Affiliation(s)
- Carlos Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Elena González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
40
|
Inconsistency between manganese superoxide dismutase expression and its activity involved in the degeneration of recognition function induced by chronic aluminum overloading in mice. Hum Exp Toxicol 2015; 35:63-8. [DOI: 10.1177/0960327115577522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manganese (Mn) superoxide dismutase (SOD) is mainly located in mitochondrial matrix and is responsible for scavenging about 80% free radicals from oxidative and phospharylative process in mitochondria. It was reported that the insufficiency of Mn SOD expression or activity was connected to the development of neurodegenerative diseases. In this article, we investigated the time course related to the changes of Mn SOD expression and its activity from mouse brain as well as the recognition dysfunction in chronic aluminum (Al) overloading mice. Aluminum gluconate solution (equal to Al 400 mg/kg) was given to mice once a day, 6 days per week for 12 weeks via intragastric gavage. The learning and memory function, malondialdehyde (MDA) level as well as expression and activity of Mn SOD in cortex were determined. It was found that function of passive learning and memory and spatial recognition decreased, MDA level and Mn SOD expression increased during the period of chronic Al loading, but the Mn SOD activity rose from the 4th week and then decreased from the 8th week in cortex in Al overloading mice compared with the control. The results indicated that the inconsistency between Mn SOD expression and its activity might contribute to the development of recognition dysfunction induced by chronic Al overload.
Collapse
|
41
|
Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:189239. [PMID: 25788961 PMCID: PMC4348598 DOI: 10.1155/2015/189239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/11/2015] [Accepted: 01/16/2015] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production.
Collapse
|
42
|
Neuroprotective effects of 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone in MPTP induced Parkinsonism model in mice. Neuropharmacology 2015; 93:209-18. [PMID: 25680233 DOI: 10.1016/j.neuropharm.2015.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by degeneration of nigrostriatal dopaminergic (DAergic) system. Present treatment targeting to DAergic system solely ameliorated the symptoms but failed to retard the DAergic neuron degeneration, therefore new therapeutic methods aiming at preventing or delaying the neurodegenerative process are urgently needed. In the present study, we found that 5-(4-hydroxy-3-dimethoxybenzylidene)-2-thioxo-4-thiazolidinone (RD-1), a compound derived from rhodanine, protected DAergicneurons from neurotoxicity of MPTP/MPP(+). Firstly, RD-1 significantly improved the locomotor ability in the MPTP mice model, and elevated the tyrosine hydroxylase (TH) positive cell numbers in substantianigra pars compacta (SNpc) and the integrated optical density (IOD) of TH-positive nerve fibers in striatum respectively. Since mitochondrial dysfunction plays an important role in pathogenesis of PD, thereby we investigated the molecular mechanisms of RD-1 against MPTP/MPP(+) neurotoxicity, focusing on its effects on the mitochondrial dysfunction. Immunoblotting analysis showed that RD-1 significantly elevated the Parkin and Miro2 expression levels in acute MPTP treated mice, and improved mitochondrial membrane potential and ATP synthesis in MPP(+)-treated Neuro-2a cells. Moreover, RD-1attenuated impaired mitochondrial transport and vesicle release dysfunction evoked by MPP(+) cytotoxicity in cultured primary mesencephalic neurons. Taken together, these results indicate that improving the mitochondrial dysfunction may be a good choice to delay the neurodegenerative progression commonly associated with PD.
Collapse
|
43
|
Eskandari MR, Mashayekhi V, Aslani M, Hosseini MJ. Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening. ENVIRONMENTAL TOXICOLOGY 2015; 30:232-241. [PMID: 23996974 DOI: 10.1002/tox.21900] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Thallium(I) is a highly toxic heavy metal; however, up to now, its mechanisms are poorly understood. The authors' previous studies showed that this compound could induce reactive oxygen species (ROS) formation, reduced glutathione (GSH) oxidation, membrane lipid peroxidation, and mitochondrial membrane potential (MMP) collapse in isolated rat hepatocyte. Because the liver is the storage site of thallium, it seems that the liver mitochondria are one of the important targets for hepatotoxicity. In this investigation, the effects of thallium on mitochondria were studied to investigate its mechanisms of toxicity. Mitochondria were isolated from rat liver and incubated with different concentrations of thallium (25-200 µM). Thallium(I)-treated mitochondria showed a marked elevation in oxidative stress parameters accompanied by MMP collapse when compared with the control group. These results showed that different concentrations of thallium (25-200 µM) induced a significant (P < 0.05) increase in mitochondrial ROS formation, ATP depletion, GSH oxidation, mitochondrial outer membrane rupture, mitochondrial swelling, MMP collapse, and cytochrome c release. In general, these data strongly supported that the thallium(I)-induced liver toxicity is a result of the disruptive effect of this metal on the mitochondrial respiratory complexes (I, II, and IV), which are the obvious causes of metal-induced ROS formation and ATP depletion. The latter two events, in turn, trigger cell death signaling via opening of mitochondrial permeability transition pore and cytochrome c expulsion.
Collapse
Affiliation(s)
- M R Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | |
Collapse
|
44
|
Meramat A, Rajab NF, Shahar S, Sharif R. Cognitive impairment, genomic instability and trace elements. J Nutr Health Aging 2015; 19:48-57. [PMID: 25560816 DOI: 10.1007/s12603-014-0489-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cognitive impairments are often related to aging and micronutrient deficiencies. Various essential micronutrients in the diet are involved in age-altered biological functions such as, zinc, copper, iron, and selenium that play pivotal roles either in maintaining and reinforcing the antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for biological functions. Genomic stability is one of the leading causes of cognitive decline and deficiencies or excess in trace elements are two of the factors relating to it. In this review, we report and discuss the role of micronutrients in cognitive impairment in relation to genomic stability in an aging population. Telomere integrity will also be discussed in relation to aging and cognitive impairment, as well as, the micronutrients related to these events. This review will provide an understanding on how these three aspects can relate with each other and why it is important to keep a homeostasis of micronutrients in relation to healthy aging. Micronutrient deficiencies and aging process can lead to genomic instability.
Collapse
Affiliation(s)
- A Meramat
- Dr Razinah Sharif, Email address: razinah.fsk.ukm.my, Telephone: +603-9289 7459, Fax number: +60326947621
| | | | | | | |
Collapse
|
45
|
Swerdlow RH. Bioenergetic medicine. Br J Pharmacol 2014; 171:1854-69. [PMID: 24004341 DOI: 10.1111/bph.12394] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/17/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Here we discuss a specific therapeutic strategy we call 'bioenergetic medicine'. Bioenergetic medicine refers to the manipulation of bioenergetic fluxes to positively affect health. Bioenergetic medicine approaches rely heavily on the law of mass action, and impact systems that monitor and respond to the manipulated flux. Since classically defined energy metabolism pathways intersect and intertwine, targeting one flux also tends to change other fluxes, which complicates treatment design. Such indirect effects, fortunately, are to some extent predictable, and from a therapeutic perspective may also be desirable. Bioenergetic medicine-based interventions already exist for some diseases, and because bioenergetic medicine interventions are presently feasible, new approaches to treat certain conditions, including some neurodegenerative conditions and cancers, are beginning to transition from the laboratory to the clinic.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Departments of Neurology, Molecular and Integrative Physiology, Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA; Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, USA
| |
Collapse
|
46
|
Selfridge JE, Wilkins HM, E L, Carl SM, Koppel S, Funk E, Fields T, Lu J, Tang EP, Slawson C, Wang W, Zhu H, Swerdlow RH. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr 2014; 47:1-11. [PMID: 25104046 DOI: 10.1007/s10863-014-9570-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022]
Abstract
Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain's aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated.
Collapse
Affiliation(s)
- J Eva Selfridge
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stroh M, Swerdlow RH, Zhu H. Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): a paradigm worth exploring. Biochem Pharmacol 2014; 88:573-83. [PMID: 24361914 PMCID: PMC3972369 DOI: 10.1016/j.bcp.2013.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic 'smoking gun' has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology and treatment of these diseases seem reasonable, including the correlation of a systems' predisposed sensitivity to particular influence. In the cases of diabetes mellitus and neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the influence of mitochondrial function and iron homeostasis on diabetes mellitus and neurodegenerative disease, namely Alzheimer's disease. Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease.
Collapse
Affiliation(s)
- Matthew Stroh
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hao Zhu
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
48
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
49
|
Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 2014; 35:8-30. [PMID: 23994581 PMCID: PMC4024050 DOI: 10.1016/j.yfrne.2013.08.001] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023]
Abstract
Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions.
Collapse
Affiliation(s)
- Jamaica R Rettberg
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| | - Roberta Diaz Brinton
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
50
|
Wang YH, Yu HT, Pu XP, Du GH. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 2013; 18:14726-38. [PMID: 24288000 PMCID: PMC6270380 DOI: 10.3390/molecules181214726] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction is involved in the mechanism of cell damage in Parkinson’s disease (PD). 6-Hydroxydopamine (6-OHDA) is a dopamine analog which specifically damages dopaminergic neurons. Baicalein has been previously reported to have potential in the treatment of PD. The purpose of the present study was to investigate the mechanism of action of baicalein against 6-OHDA injury in SH-SY5Y cells. The results showed that baicalein significantly alleviated alterations of mitochondrial redox activity and mitochondrial membrane potential induced by 6-OHDA in a dose-dependent manner in SH-SY5Y cells compared with vehicle group. Futhermore, baicalein decreased the production of ROS and upregulated the DJ-1 protein expression in SH-SY5Y cells. In addition, baicalein also inhibited ROS production and lipid peroxidation (IC50 = 6.32 ± 0.03 μM) in rat brain mitochondia. In summary, the underlying mechanisms of baicalein against 6-OHDA-induced mitochondrial dysfunction may involve inhibition of mitochondrial oxidation and upregulation of DJ-1 protein expression.
Collapse
Affiliation(s)
- Yue-Hua Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University; Beijing 100191, China
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-H.W.); (X.-P.P.); (G.-H.D.); Tel.: +86-10-6316-5313 (Y.-H.W.); +86-10-8280-2431 (X.-P.P.); +86-10-6316-5184 (G.-H.D.)
| | - Hai-Tao Yu
- Jiangsu Kanon Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Xiao-Ping Pu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University; Beijing 100191, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-H.W.); (X.-P.P.); (G.-H.D.); Tel.: +86-10-6316-5313 (Y.-H.W.); +86-10-8280-2431 (X.-P.P.); +86-10-6316-5184 (G.-H.D.)
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-H.W.); (X.-P.P.); (G.-H.D.); Tel.: +86-10-6316-5313 (Y.-H.W.); +86-10-8280-2431 (X.-P.P.); +86-10-6316-5184 (G.-H.D.)
| |
Collapse
|