1
|
Khan RN, Saporito AF, Zenon J, Goodman L, Zelikoff JT. Traffic-related air pollution in marginalized neighborhoods: a community perspective. Inhal Toxicol 2024; 36:343-354. [PMID: 38618680 DOI: 10.1080/08958378.2024.2331259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Marginalized communities are exposed to higher levels of traffic-related air pollution (TRAP) than the general population. TRAP exposure is linked to pulmonary toxicity, neurotoxicity, and cardiovascular toxicity often through mechanisms of inflammation and oxidative stress. Early life exposure to TRAP is also implicated in higher rates of asthma in these same communities. There is a critical need for additional epidemiological, in vivo, and in vitro studies to define the health risks of TRAP exposure affecting the most vulnerable groups to set strict, protective air pollution standards in these communities. MATERIALS AND METHODS A literature review was conducted to summarize recent findings (2010-2024) concerning TRAP exposure and toxic mechanisms that are relevant to the most affected underserved communities. CONCLUSIONS Guided by the perspectives of NYC community scientists, this contemporary review of toxicological and epidemiological studies considers how the exposome could lead to disproportionate exposures and health effects in underserved populations.
Collapse
Affiliation(s)
- Rahanna N Khan
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Antonio F Saporito
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Jania Zenon
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Judith T Zelikoff
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, Marusak HA. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022; 93:272-300. [PMID: 36280190 PMCID: PMC10015654 DOI: 10.1016/j.neuro.2022.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accumulating data suggest that air pollution increases the risk of internalizing psychopathology, including anxiety and depressive disorders. Moreover, the link between air pollution and poor mental health may relate to neurostructural and neurofunctional changes. We systematically reviewed the MEDLINE database in September 2021 for original articles reporting effects of air pollution on 1) internalizing symptoms and behaviors (anxiety or depression) and 2) frontolimbic brain regions (i.e., hippocampus, amygdala, prefrontal cortex). One hundred and eleven articles on mental health (76% human, 24% animals) and 92 on brain structure and function (11% human, 86% animals) were identified. For literature search 1, the most common pollutants examined were PM2.5 (64.9%), NO2 (37.8%), and PM10 (33.3%). For literature search 2, the most common pollutants examined were PM2.5 (32.6%), O3 (26.1%) and Diesel Exhaust Particles (DEP) (26.1%). The majority of studies (73%) reported higher internalizing symptoms and behaviors with higher air pollution exposure. Air pollution was consistently associated (95% of articles reported significant findings) with neurostructural and neurofunctional effects (e.g., increased inflammation and oxidative stress, changes to neurotransmitters and neuromodulators and their metabolites) within multiple brain regions (24% of articles), or within the hippocampus (66%), PFC (7%), and amygdala (1%). For both literature searches, the most studied exposure time frames were adulthood (48% and 59% for literature searches 1 and 2, respectively) and the prenatal period (26% and 27% for literature searches 1 and 2, respectively). Forty-three percent and 29% of studies assessed more than one exposure window in literature search 1 and 2, respectively. The extant literature suggests that air pollution is associated with increased depressive and anxiety symptoms and behaviors, and alterations in brain regions implicated in risk of psychopathology. However, there are several gaps in the literature, including: limited studies examining the neural consequences of air pollution in humans. Further, a comprehensive developmental approach is needed to examine windows of susceptibility to exposure and track the emergence of psychopathology following air pollution exposure.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Patrick Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Autumm Heeter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, USA.
| | - Jeffrey R Strawn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
3
|
Adivi A, JoAnn L, Simpson N, McDonald JD, Lund AK. Traffic-generated air pollution - Exposure mediated expression of factors associated with demyelination in a female apolipoprotein E -/- mouse model. Neurotoxicol Teratol 2022; 90:107071. [PMID: 35016995 PMCID: PMC8904307 DOI: 10.1016/j.ntt.2022.107071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
Epidemiology studies suggest that exposure to ambient air pollution is associated with demyelinating diseases in the central nervous system (CNS), including multiple sclerosis (MS). The pathophysiology of MS results from an autoimmune response involving increased inflammation and demyelination in the CNS, which is higher in young (adult) females. Exposure to traffic-generated air pollution is associated with neuroinflammation and other detrimental outcomes in the CNS; however, its role in the progression of pathologies associated with demyelinating diseases has not yet been fully characterized in a female model. Thus, we investigated the effects of inhalation exposure to mixed vehicle emissions (MVE) in the brains of both ovary-intact (ov+) and ovariectomized (ov-) female Apolipoprotein (ApoE-/-) mice. Ov + and ov- ApoE-/- mice were exposed via whole-body inhalation to either filtered air (FA, controls) or mixed gasoline and diesel vehicle emissions (MVE: 200 PM μg/m3) for 6 h/d, 7 d/wk., for 30 d. We then analyzed MVE-exposure mediated alterations in myelination, the presence of CD4+ and CD8+ T cells, reactive oxygen species (ROS), myelin oligodendrocyte protein (MOG), and expression of estrogen (ERα and ERβ) and progesterone (PROA/B) receptors in the CNS. MVE-exposure mediated significant alterations in myelination across multiple regions in the cerebrum, as well as increased CD4+ and CD8+ staining. There was also an increase in ROS production in the CNS of MVE-exposed ov- and ov + ApoE-/- mice. Ov- mice displayed a reduction in cerebral ERα mRNA expression, compared to ov + mice; however, MVE exposure resulted in an even further decrease in ERα expression, while ERβ and PRO A/B were unchanged across groups. These findings collectively suggest that inhaled MVE-exposure may mediate estrogen receptor expression alterations associated with increased CD4+/CD8+ infiltration, regional demyelination, and ROS production in the CNS of female ApoE-/- mice.
Collapse
Affiliation(s)
- Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Lucero JoAnn
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Nicholas Simpson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 87108
| | - Amie K. Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201.,Corresponding author at: University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76201,
| |
Collapse
|
4
|
Mazzoccoli G, Kvetnoy I, Mironova E, Yablonskiy P, Sokolovich E, Krylova J, Carbone A, Anderson G, Polyakova V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother 2021; 137:111397. [PMID: 33761613 DOI: 10.1016/j.biopha.2021.111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders. This article reviews the role of melatonin in the regulation of respiratory system functions under normal and pathological conditions. Melatonin can normalize the structural and functional organization of damaged lung tissues, by a number of mechanisms, including the regulation of signaling molecules, oxidant status, lipid raft function, optimized mitochondrial function and reseting of the immune response over the circadian rhythm. Consequently, melatonin has potential clinical utility for bronchial asthma, chronic obstructive pulmonary disease, lung cancer, lung vascular diseases, as well as pulmonary and viral infections. The integration of melatonin's effects with the alpha 7 nicotinic receptor and the aryl hydrocarbon receptor in the regulation of mitochondrial function are proposed as a wider framework for understanding the role of melatonin across a wide array of diverse pulmonary disorders.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Igor Kvetnoy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Department of Pathology, Saint Petersburg State University, University Embankment, 7/9, Saint Petersburg 199034, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, Saint Petersburg 197110, Russian Federation
| | - Petr Yablonskiy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Evgenii Sokolovich
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Julia Krylova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str. 6-8, Saint Petersburg 197022, Russian Federation
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | | | - Victoria Polyakova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaia str. 2, Saint-Petersburg 194100, Russian Federation
| |
Collapse
|