1
|
Chen ZQ, Wang MT, Tan CR, Huang S, Zhou FY, Shen YY, Zeng GH, Fan DY, Wang YJ. Clinical relevance of plasma ADAM-17 with cognition and neurodegeneration in Alzheimer's disease. J Alzheimers Dis 2025:13872877251317659. [PMID: 39956967 DOI: 10.1177/13872877251317659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND A disintegrin and metalloproteinase 17 (ADAM-17) has multiple pathophysiological functions in Alzheimer's disease (AD). However, the clinical relevance of ADAM-17 in AD is not clear yet. OBJECTIVE This study aims to investigate the levels of circulating ADAM-17 and their association with AD. METHODS This cross-sectional study recruited 40 normal cognition (NC) participants and 36 AD patients. Plasma ADAM-17 and biomarkers of neurodegeneration were determined. The association of plasma ADAM-17 with cognitive functions and biomarkers of neurodegeneration was analyzed. RESULTS Plasma ADAM-17 levels were elevated in AD patients in comparison with NC subjects. Plasma ADAM-17 was positively associated with Clinical Dementia Rating (CDR) scores, but negatively associated with the Mini-Mental State Examination scores and Montreal Cognitive Assessment scores. Plasma ADAM-17 levels were positively associated with the levels of Aβ40, Aβ42, and p-Tau181. CONCLUSIONS These findings suggest a link between ADAM-17 and the pathogenesis of AD from a clinical perspective.
Collapse
Affiliation(s)
- Zu-Qi Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Meng-Ting Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Cheng-Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Fa-Ying Zhou
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying-Ying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Yu Fan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| |
Collapse
|
2
|
Cantón-Habas V, Rich-Ruiz M, Martínez-Martos JM, Ramírez-Expósito MJ, Carrera-González MP. Determination of soluble tumor necrosis factor receptor II and secretory immunoglobulin A in saliva of patients with dementia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1689-1696. [PMID: 37838644 DOI: 10.1007/s00406-023-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
The prevalence of pain and dementia increases with age, affecting a significant percentage of the population due to aging. Both pathologies are connected through the inflammatory process, specifically through the tumor necrosis factor. The effect of this cytokine is mediated through the modulation of its TNFRI and TNFRII receptors, which are linked to the dementia process. In addition, immunoglobulins such as secretory immunoglobulin A (sIgA) have been recognized as one of the main biomarkers of pain in saliva. sTNFRII and sIgA levels were determined in saliva samples by ELISA from healthy people and patients with dementia in GDS stages 5-7. The concentrations of these markers were also correlated with the GDS stage and sex. We observed a significant decrease (*** p ≤ 0.001) in the levels of sTNFRII (pg/mL) and a significant increase (** p ≤ 0.01) in the levels of sIgA (ng/mL) in the saliva of patients with dementia compared to the healthy control group. We did not observe a correlation with the data of the biomarkers regarding the GDS stage and sex. The results obtained for sTNFRII are consistent with those obtained by other authors on brain tissue, who conclude that unopposed neuronal TNFRI signaling, when TNFRII is selectively downregulated, leads to a more severe course of AD pathogenesis. Regarding sIgA, the elevated values of sIgA may reflect the immune status of these patients. Therefore, these biomarkers can provide us with relevant information through a non-invasive method such as saliva analysis.
Collapse
Affiliation(s)
- V Cantón-Habas
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina, Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004, Córdoba, Spain
| | - M Rich-Ruiz
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina, Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - J M Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Campus Universitario Las Lagunillas, 23071, Jaén, Spain
| | - M J Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Campus Universitario Las Lagunillas, 23071, Jaén, Spain
| | - M P Carrera-González
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina, Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004, Córdoba, Spain.
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Campus Universitario Las Lagunillas, 23071, Jaén, Spain.
| |
Collapse
|
3
|
Turnbull A, Kim Y, Zhang K, Jiang X, He Z, Henderson VW, Lin FV. Age-associated proteins explain the role of medial temporal lobe networks in Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01291-0. [PMID: 39080151 DOI: 10.1007/s11357-024-01291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 02/07/2025] Open
Abstract
The structural connectivity (SC) of the medial temporal lobe and its associated cortical anterior temporal and posterior medial networks (MTL-AT-PM) is linked to pathologies and memory decline in Alzheimer's disease (AD). However, neuroimaging analyses cannot tell us how SC changes occur in AD at the molecular level and do not provide a means of intervening to slow/prevent pathology-related changes in MTL-AT-PM SC. The current study aimed to understand how and where AD-related changes occur within MTL-AT-PM using proteomics. We used a 4-step approach in 101 older adults from a local sample, aiming to understand how proteins and SC in combination at the multivariate level predict AD pathology, and to identify specific proteins related to SC and AD pathology. Separately, we validated the discovered proteins in relation to SC and AD pathology using ADNI sample. We identified 12 latent factors linking proteins and SC; five showed significant relationships with AD pathology and/or episodic memory. Insulin-like growth factor binding proteins and tumor necrosis factor receptors, and hippocampal/parahippocampal edges contributed most to AD-related latent factors. Fast causal inference found protein-protein, protein-SC, and protein-pathology pathways, with seven proteins showing directional links to SC and AD-related neurodegeneration. We validated these results by identifying significant relationships between six available proteins with SC and amyloid-beta and phosphorylated tau in ADNI. We identified multivariate relationships between proteins and MTL-AT-PM networks that add to our understanding of AD pathology and suggest specific non-pathological proteins that warrant further study in relation to brain networks and AD pathology as possible therapeutic targets.
Collapse
Affiliation(s)
- Adam Turnbull
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Yejin Kim
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kai Zhang
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoqian Jiang
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - F Vankee Lin
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Dobrynina LA, Makarova AG, Shabalina AA, Burmak AG, Shlapakova PS, Shamtieva KV, Tsypushtanova MM, Kremneva EI, Zabitova MR, Filatov AS, Gnedovskaya EV. The Role of Changes in the Expression of Inflammation-Associated Genes in the Variants of Cerebral Small Vessel Disease. Int J Mol Sci 2024; 25:8113. [PMID: 39125683 PMCID: PMC11311284 DOI: 10.3390/ijms25158113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Age-dependent cerebral small vessel disease (CSVD) is a common disease with a high social burden characterized by heterogeneity of forms and frequent comorbidity with Alzheimer's disease (AD). Previously, we identified two MRI types of CSVD with specific clinical presentation and, probably, different mechanisms. The present study included 34 patients with CSVD and white matter hyperintensity (WMH) of stage Fazekas (F) 3 (mean age 61.7 ± 8.9) and 11 volunteers (mean age 57.3 ± 9.7). Total RNA was isolated from peripheral blood leukocytes. The expression of 58 protein-coding genes associated with CSVD and/or AD and 4 reference genes were assessed as part of the original panel for the NanoString nCounter analyzer. Testing results were validated by real-time PCR. There was a significant decrease in the expression levels of the ACOX1, CD33, CD2AP, TNFR1, and VEGFC genes in MRI type 2 relative to the control group as well as a decrease in the expression level of the CD33 gene in MRI type 2 compared to MRI type 1. Processes associated with inflammatory pathways with decreased expression of the identified genes are important in the development of MRI type 2 of CSVD. Given the direct connection of the established genes with AD, the importance of this form of CSVD in comorbidity with AD has been assumed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maryam R. Zabitova
- Research Center of Neurology, 80 Volokolamskoe Shosse, 125367 Moscow, Russia; (L.A.D.); (A.G.M.); (A.A.S.); (A.G.B.); (P.S.S.); (K.V.S.); (M.M.T.); (E.I.K.); (A.S.F.); (E.V.G.)
| | | | | |
Collapse
|
5
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Gao Y, Cai L, Wu Y, Jiang M, Zhang Y, Ren W, Song Y, Li L, Lei Z, Wu Y, Zhu L, Li J, Li D, Li G, Luo C, Tao L. Emerging functions and therapeutic targets of IL-38 in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14550. [PMID: 38334236 PMCID: PMC10853902 DOI: 10.1111/cns.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
Interleukin (IL)-38 is a newly discovered cytokine of the IL-1 family, which binds various receptors (i.e., IL-36R, IL-1 receptor accessory protein-like 1, and IL-1R1) in the central nervous system (CNS). The hallmark physiological function of IL-38 is competitive binding to IL-36R, as does the IL-36R antagonist. Emerging research has shown that IL-38 is abnormally expressed in the serum and brain tissue of patients with ischemic stroke (IS) and autism spectrum disorder (ASD), suggesting that IL-38 may play an important role in neurological diseases. Important advances include that IL-38 alleviates neuromyelitis optica disorder (NMOD) by inhibiting Th17 expression, improves IS by protecting against atherosclerosis via regulating immune cells and inflammation, and reduces IL-1β and CXCL8 release through inhibiting human microglial activity post-ASD. In contrast, IL-38 mRNA is markedly increased and is mainly expressed in phagocytes in spinal cord injury (SCI). IL-38 ablation attenuated SCI by reducing immune cell infiltration. However, the effect and underlying mechanism of IL-38 in CNS diseases remain inadequately characterized. In this review, we summarize the biological characteristics, pathophysiological role, and potential mechanisms of IL-38 in CNS diseases (e.g., NMOD, Alzheimer's disease, ASD, IS, TBI, and SCI), aiming to explore the therapeutic potential of IL-38 in the prevention and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Lili Li
- Department of Child and Adolescent HealthcareChildren's Hospital of Soochow UniversitySuzhouChina
| | - Ziguang Lei
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Youzhuang Wu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwen Zhu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Dongya Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guohong Li
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
7
|
Decandia D, Gelfo F, Landolfo E, Balsamo F, Petrosini L, Cutuli D. Dietary Protection against Cognitive Impairment, Neuroinflammation and Oxidative Stress in Alzheimer's Disease Animal Models of Lipopolysaccharide-Induced Inflammation. Int J Mol Sci 2023; 24:ijms24065921. [PMID: 36982996 PMCID: PMC10051444 DOI: 10.3390/ijms24065921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
8
|
Salai KHT, Wu LY, Chong JR, Chai YL, Gyanwali B, Robert C, Hilal S, Venketasubramanian N, Dawe GS, Chen CP, Lai MKP. Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease. Biomolecules 2023; 13:biom13030525. [PMID: 36979460 PMCID: PMC10046240 DOI: 10.3390/biom13030525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Tumor necrosis factor-receptor 1 (TNF-R1)-mediated signaling is critical to the regulation of inflammatory responses. TNF-R1 can be proteolytically released into systemic blood circulation in a soluble form (sTNF-R1), where it binds to circulating TNF and functions to attenuate TNF-mediated inflammation. Increases of peripheral sTNF-R1 have been reported in both Alzheimer’s disease (AD) dementia and vascular dementia (VaD). However, the status of sTNF-R1 in predementia subjects (cognitive impairment, no dementia, CIND) is unknown, and putative associations with cerebral small vessel disease (CSVD), as well as with longitudinal changes in cognitive functions are unclear. We measured baseline serum sTNF-R1 in a longitudinally assessed cohort of 93 controls and 103 CIND, along with neuropsychological evaluations and neuroimaging assessments. Serum sTNF-R1 levels were increased in CIND compared with controls (p < 0.001). Higher baseline sTNF-R1 levels were specifically associated with lacunar infarcts (rate ratio = 6.91, 95% CI 3.19–14.96, p < 0.001), as well as lower rates of cognitive decline in the CIND subgroup. Our data suggest that sTNF-R1 interacts with vascular cognitive impairment in a complex manner at predementia stages, with elevated levels associated with more severe CSVD at baseline, but which may subsequently be protective against cognitive decline.
Collapse
Affiliation(s)
- Kaung H. T. Salai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Joyce R. Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Bibek Gyanwali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Caroline Robert
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
- Departments of Epidemiology and Radiology & Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Gavin S. Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Neurobiology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Mitchell K. P. Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
- Correspondence:
| |
Collapse
|
9
|
Foudah AI, Devi S, Alam A, Salkini MA, Ross SA. Anticholinergic effect of resveratrol with vitamin E on scopolamine-induced Alzheimer's disease in rats: Mechanistic approach to prevent inflammation. Front Pharmacol 2023; 14:1115721. [PMID: 36817151 PMCID: PMC9932024 DOI: 10.3389/fphar.2023.1115721] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The most common form of dementia, Alzheimer's disease (AD), is characterized by gradual declines in cognitive abilities and behavior. It is caused by a combination of factors, including amyloid-β (Aβ) accumulation, acetylcholine (ACh) loss, oxidative stress, and inflammation. Phenolic compounds have a variety of health benefits, including antioxidant activities. Thus, the purpose of this study was to investigate how resveratrol (RES) alone and in combination with vitamin E affected rats with AD using scopolamine (SCO). Animals are categorized into groups; (i) control, (ii) SCO (1 mg/kg i.p.), (iii) SCO + donepezil, (iv) SCO + RES (50 mg/kg, p.o.), (v) SCO + RES (75 mg/kg, p.o.), (vi) SCO + RES (50 mg/kg + vitamin E 1 mg/kg, p.o.) for 17 days. In rats, studied behavioural (NOR and EPM) and biochemical characteristics. In addition, brain histopathology was examined to investigate any damage to the hippocampus and neuroprotection. SCO-induced changes in acetylcholinesterase, protein carbonyl, and TNF-α improved after resveratrol treatment. RES increased antioxidant levels, decreased SCO-induced lipid peroxidation, and reversed SCO-mediated changes compared with the drug donepezil. The results indicated that RES and vitamin E had nootropic action in the NOR and EPM tests, measured by the recognition index and the inflection ratio. This study supports the efficacy of RES as a preventive and treatment agent for AD. Vitamin E showed a synergistic effect on RES, which helps in managing cognitive impairment AD.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia,*Correspondence: Ahmed I. Foudah, ,
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, United States,Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, United States
| |
Collapse
|
10
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
11
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
12
|
Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, Nistor-Cseppentö DC. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants (Basel) 2022; 11:2167. [PMID: 36358538 PMCID: PMC9686795 DOI: 10.3390/antiox11112167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, has increasing incidence, increasing mortality rates, and poses a huge burden on healthcare. None of the currently approved drugs for the treatment of AD influence disease progression. Many clinical trials aiming at inhibiting amyloid plaque formation, increasing amyloid beta clearance, or inhibiting neurofibrillary tangle pathology yielded inconclusive results or failed. Meanwhile, research has identified many interlinked vicious cascades implicating oxidative stress, mitochondrial dysfunction, and chronic neuroinflammation, and has pointed to novel therapeutic targets such as improving mitochondrial bioenergetics and quality control, diminishing oxidative stress, or modulating the neuroinflammatory pathways. Many novel molecules tested in vitro or in animal models have proven efficient, but their translation into clinic needs further research regarding appropriate doses, delivery routes, and possible side effects. Cell-based therapies and extracellular vesicle-mediated delivery of messenger RNAs and microRNAs seem also promising strategies allowing to target specific signaling pathways, but need further research regarding the most appropriate harvesting and culture methods as well as control of the possible tumorigenic side effects. The rapidly developing area of nanotechnology could improve drug delivery and also be used in early diagnosis.
Collapse
Affiliation(s)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Ţiț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Nicoleta Pașcalău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
13
|
Winstone JK, Pathak KV, Winslow W, Piras IS, White J, Sharma R, Huentelman MJ, Pirrotte P, Velazquez R. Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: implications for neurodegenerative disorders. J Neuroinflammation 2022; 19:193. [PMID: 35897073 PMCID: PMC9331154 DOI: 10.1186/s12974-022-02544-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Herbicides are environmental contaminants that have gained much attention due to the potential hazards they pose to human health. Glyphosate, the active ingredient in many commercial herbicides, is the most heavily applied herbicide worldwide. The recent rise in glyphosate application to corn and soy crops correlates positively with increased death rates due to Alzheimer's disease and other neurodegenerative disorders. Glyphosate has been shown to cross the blood-brain barrier in in vitro models, but has yet to be verified in vivo. Additionally, reports have shown that glyphosate exposure increases pro-inflammatory cytokines in blood plasma, particularly TNFα. METHODS Here, we examined whether glyphosate infiltrates the brain and elevates TNFα levels in 4-month-old C57BL/6J mice. Mice received either 125, 250, or 500 mg/kg/day of glyphosate, or a vehicle via oral gavage for 14 days. Urine, plasma, and brain samples were collected on the final day of dosing for analysis via UPLC-MS and ELISAs. Primary cortical neurons were derived from amyloidogenic APP/PS1 pups to evaluate in vitro changes in Aβ40-42 burden and cytotoxicity. RNA sequencing was performed on C57BL/6J brain samples to determine changes in the transcriptome. RESULTS Our analysis revealed that glyphosate infiltrated the brain in a dose-dependent manner and upregulated TNFα in both plasma and brain tissue post-exposure. Notably, glyphosate measures correlated positively with TNFα levels. Glyphosate exposure in APP/PS1 primary cortical neurons increases levels of soluble Aβ40-42 and cytotoxicity. RNAseq revealed over 200 differentially expressed genes in a dose-dependent manner and cell-type-specific deconvolution analysis showed enrichment of key biological processes in oligodendrocytes including myelination, axon ensheathment, glial cell development, and oligodendrocyte development. CONCLUSIONS Collectively, these results show for the first time that glyphosate infiltrates the brain, elevates both the expression of TNFα and soluble Aβ, and disrupts the transcriptome in a dose-dependent manner, suggesting that exposure to this herbicide may have detrimental outcomes regarding the health of the general population.
Collapse
Affiliation(s)
- Joanna K Winstone
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Khyatiben V Pathak
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
| | - Ignazio S Piras
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jennifer White
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Matthew J Huentelman
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
14
|
Gnanaraj C, Sekar M, Fuloria S, Swain SS, Gan SH, Chidambaram K, Rani NNIM, Balan T, Stephenie S, Lum PT, Jeyabalan S, Begum MY, Chandramohan V, Thangavelu L, Subramaniyan V, Fuloria NK. In Silico Molecular Docking Analysis of Karanjin against Alzheimer's and Parkinson's Diseases as a Potential Natural Lead Molecule for New Drug Design, Development and Therapy. Molecules 2022; 27:2834. [PMID: 35566187 PMCID: PMC9100660 DOI: 10.3390/molecules27092834] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski's drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer's animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development.
Collapse
Affiliation(s)
- Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (C.G.); (N.N.I.M.R.); (T.B.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia;
| | - Shivkanya Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Malaysia
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar 751023, India;
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (C.G.); (N.N.I.M.R.); (T.B.)
| | - Tavamani Balan
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (C.G.); (N.N.I.M.R.); (T.B.)
| | - Sarah Stephenie
- School of Biological Sciences, Faculty of Science and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, Ipoh 30250, Malaysia;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia;
| | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru 572103, India;
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India;
| |
Collapse
|
15
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
16
|
Abu-Elfotuh K, Ragab GM, Salahuddin A, Jamil L, Abd Al Haleem EN. Attenuative Effects of Fluoxetine and Triticum aestivum against Aluminum-Induced Alzheimer's Disease in Rats: The Possible Consequences on Hepatotoxicity and Nephrotoxicity. Molecules 2021; 26:molecules26216752. [PMID: 34771159 PMCID: PMC8588015 DOI: 10.3390/molecules26216752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurological illness that causes considerable cognitive impairment. Hepatic and renal dysfunction may worsen AD by disrupting β-amyloid homeostasis at the periphery and by causing metabolic dysfunction. Wheatgrass (Triticum aestivum) has been shown to have antioxidant and anti-inflammatory properties. This work aims to study the effect of aluminum on neuronal cells, its consequences on the liver and kidneys, and the possible role of fluoxetine and wheatgrass juice in attenuating these pathological conditions. METHOD Rats were divided into five groups. Control, AD (AlCl3), Fluoxetine (Fluoxetine and AlCl3), Wheatgrass (Wheatgrass and AlCl3), and combination group (fluoxetine, wheatgrass, and AlCl3). All groups were assigned daily to different treatments for five weeks. CONCLUSIONS AlCl3 elevated liver and kidney enzymes, over-production of oxidative stress, and inflammatory markers. Besides, accumulation of tau protein and Aβ, the elevation of ACHE and GSK-3β, down-regulation of BDNF, and β-catenin expression in the brain. Histopathological examinations of the liver, kidney, and brain confirmed this toxicity, while treating AD groups with fluoxetine, wheatgrass, or a combination alleviates toxic insults. CONCLUSION Fluoxetine and wheatgrass combination demonstrated a more significant neuroprotective impact in treating AD than fluoxetine alone and has protective effects on liver and kidney tissues.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| | - Ghada M. Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
- Correspondence: ; Tel.: +20-100-518-2320
| | - Lubna Jamil
- Department of Histology, Faculty of Medicine, October 6 University, Giza 12585, Egypt;
| | - Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| |
Collapse
|
17
|
Zhang J, Hao Y, Wang Y, Han Y, Zhang S, Niu Q. Relationship between the expression of TNFR1-RIP1/RIP3 in peripheral blood and cognitive function in occupational Al-exposed workers: A mediation effect study. CHEMOSPHERE 2021; 278:130484. [PMID: 33838418 DOI: 10.1016/j.chemosphere.2021.130484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Aluminium (Al), not essential for biological activities, accumulates in the tissues. It exerts toxic effects on the nervous system, inducing in humans' irreversible cognitive impairment. In this study, a cluster sampling method was used to observe the cognitive function of long-term occupational Al-exposed workers in a large Al factory, and determine the expression of peripheral blood tumour necrosis factor receptor 1 (TNFR1), receptor-interacting protein 1 (RIP1), and RIP3. TNF-alpha, expressed in blood macrophages and microglia, with its receptors TNFR1, TR1 and TR3, enhances the necroptosis of neurons. Additionally, the relationship between the expression of TNFR1, RIP1, and RIP3 in the peripheral blood of long-term occupational Al-exposed workers and changes in their cognitive function was explored. The differences in the distributions of clock drawing test (CDT) scores among the three groups were statistically significant (P < 0.05). The results of correlation analysis showed that RIP1 and RIP3 protein contents were negatively correlated with mini-mental state examination (MMSE) and CDT scores (P < 0.05). Plasma Al content was positively correlated with other biological indicators (P < 0.05), and negatively correlated with MMSE and CDT scores (P < 0.05). Results showed that RIP3 protein had an incomplete mediation effect between plasma Al content and cognitive function. This suggests that Al may affect cognitive function by influencing the expression of TNFR1, RIP1, and RIP3 in the nervous system.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yanxia Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yanni Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Yingchao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Shuhui Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
18
|
Moon S, Lee H. JDSNMF: Joint Deep Semi-Non-Negative Matrix Factorization for Learning Integrative Representation of Molecular Signals in Alzheimer's Disease. J Pers Med 2021; 11:jpm11080686. [PMID: 34442330 PMCID: PMC8400727 DOI: 10.3390/jpm11080686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
High dimensional multi-omics data integration can enhance our understanding of the complex biological interactions in human diseases. However, most studies involving unsupervised integration of multi-omics data focus on linear integration methods. In this study, we propose a joint deep semi-non-negative matrix factorization (JDSNMF) model, which uses a hierarchical non-linear feature extraction approach that can capture shared latent features from the complex multi-omics data. The extracted latent features obtained from JDSNMF enabled a variety of downstream tasks, including prediction of disease and module analysis. The proposed model is applicable not only to sample-matched multiple data (e.g., multi-omics data from one cohort) but also to feature-matched multiple data (e.g., omics data from multiple cohorts), and therefore it can be flexibly applied to various cases. We demonstrate the capabilities of JDSNMF using sample-matched simulated data and feature-matched multi-omics data from Alzheimer’s disease cohorts, evaluating the feature extraction performance in the context of classification. In a test application, we identify AD- and age-related modules from the latent matrices using an explainable artificial intelligence and regression model. These results show that the JDSNMF model is effective in identifying latent features having a complex interplay of potential biological signatures.
Collapse
|
19
|
Delaby C, Julian A, Page G, Ragot S, Lehmann S, Paccalin M. NFL strongly correlates with TNF-R1 in the plasma of AD patients, but not with cognitive decline. Sci Rep 2021; 11:10283. [PMID: 33986423 PMCID: PMC8119968 DOI: 10.1038/s41598-021-89749-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Peripheral inflammation mechanisms involved in Alzheimer's disease (AD) have yet to be accurately characterized and the identification of blood biomarker profiles could help predict cognitive decline and optimize patient care. Blood biomarkers described to date have failed to provide a consensus signature, which is mainly due to the heterogeneity of the methods used or the cohort. The present work aims to describe the potential informativity of peripheral inflammation in AD, focusing in particular on the potential association between the level of plasma neurofilament light (NFL), peripheral inflammation (by quantifying IL-1β, IL-6, TNFα, CCL5, TNF-R1, sIL-6R, TIMP-1, IL-8 in blood) and cognitive decline (assessed by the MMSE and ADAScog scales) through a 2-year follow-up of 40 AD patients from the Cytocogma cohort (CHU Poitiers, Pr M. Paccalin). Our results show for the first time a strong correlation between plasma NFL and TNF-R1 at each time of follow-up (baseline, 12 and 24 months), thus opening an interesting perspective for the prognosis of AD patients.
Collapse
Affiliation(s)
- Constance Delaby
- Laboratoire de Biochimie Protéomique, INM, Université de Montpellier, INSERM, CHU Montpellier, IRMB, Montpellier, France. .,Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - A Julian
- EA3808-NEUVACOD Neurovascular Unit and Cognitive Disorders, University of Poitiers, Poitiers, France.,Memory Centers for Resources and Research, Poitiers University Hospital, Poitiers, France.,Centre d'Investigation Clinique CIC1402, INSERM, Poitiers University Hospital, Poitiers, France
| | - G Page
- EA3808-NEUVACOD Neurovascular Unit and Cognitive Disorders, University of Poitiers, Poitiers, France
| | - S Ragot
- Centre d'Investigation Clinique CIC1402, INSERM, Poitiers University Hospital, Poitiers, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique, INM, Université de Montpellier, INSERM, CHU Montpellier, IRMB, Montpellier, France.
| | - M Paccalin
- EA3808-NEUVACOD Neurovascular Unit and Cognitive Disorders, University of Poitiers, Poitiers, France.,Memory Centers for Resources and Research, Poitiers University Hospital, Poitiers, France.,Centre d'Investigation Clinique CIC1402, INSERM, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
20
|
Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021; 6:167-192. [PMID: 33782649 PMCID: PMC7990465 DOI: 10.3233/bpl-200098] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Attempts to develop a disease modifying intervention for Alzheimer's disease (AD) through targeting amyloid β (Aβ) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as Aβ and tau pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current lack of success of anti-Aβ targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored. By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles, this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as therapeutic interventions for AD.
Collapse
Affiliation(s)
- Katriona L. Hole
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | - Robert J. Williams
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
21
|
Wang Y, Meagher RB, Ambati S, Ma P, Phillips BG. Patients with obstructive sleep apnea have suppressed levels of soluble cytokine receptors involved in neurodegenerative disease, but normal levels with airways therapy. Sleep Breath 2020; 25:1641-1653. [PMID: 33037528 PMCID: PMC8376707 DOI: 10.1007/s11325-020-02205-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/13/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Purpose Obstructive sleep apnea (OSA) results in systemic intermittent hypoxia. By one model, hypoxic stress signaling in OSA patients alters the levels of inflammatory soluble cytokines TNF and IL6, damages the blood brain barrier, and activates microglial targeting of neuronal cell death to increase the risk of neurodegenerative disorders and other diseases. However, it is not yet clear if OSA significantly alters the levels of the soluble isoforms of TNF receptors TNFR1 and TNFR2 and IL6 receptor (IL6R) and co-receptor gp130, which have the potential to modulate TNF and IL6 signaling. Methods Picogram per milliliter levels of the soluble isoforms of these four cytokine receptors were estimated in OSA patients, in OSA patients receiving airways therapy, and in healthy control subjects. Triplicate samples were examined using Bio-Plex fluorescent bead microfluidic technology. The statistical significance of cytokine data was estimated using the nonparametric Wilcoxon rank-sum test. The clustering of these high-dimensional data was visualized using t-distributed stochastic neighbor embedding (t-SNE). Results OSA patients had significant twofold to sevenfold reductions in the soluble serum isoforms of all four cytokine receptors, gp130, IL6R, TNFR1, and TNFR2, as compared with control individuals (p = 1.8 × 10−13 to 4 × 10−8). Relative to untreated OSA patients, airways therapy of OSA patients had significantly higher levels of gp130 (p = 2.8 × 10−13), IL6R (p = 1.1 × 10−9), TNFR1 (p = 2.5 × 10−10), and TNFR2 (p = 5.7 × 10−9), levels indistinguishable from controls (p = 0.29 to 0.95). The data for most airway-treated patients clustered with healthy controls, but the data for a few airway-treated patients clustered with apneic patients. Conclusions Patients with OSA have aberrantly low levels of four soluble cytokine receptors associated with neurodegenerative disease, gp130, IL6R, TNFR1, and TNFR2. Most OSA patients receiving airways therapy have receptor levels indistinguishable from healthy controls, suggesting a chronic intermittent hypoxia may be one of the factors contributing to low receptor levels in untreated OSA patients. Electronic supplementary material The online version of this article (10.1007/s11325-020-02205-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Wang
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, 30602, USA.,Clinical and Translational Research Unit, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
22
|
Wang H, Shen Y, Chuang H, Chiu C, Ye Y, Zhao L. Neuroinflammation in Alzheimer's Disease: Microglia, Molecular Participants and Therapeutic Choices. Curr Alzheimer Res 2020; 16:659-674. [PMID: 31580243 DOI: 10.2174/1567205016666190503151648] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/21/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is the world's most common dementing illness. It is pathologically characterized by β-amyloid accumulation, extracellular senile plaques and intracellular neurofibrillary tangles formation, and neuronal necrosis and apoptosis. Neuroinflammation has been widely recognized as a crucial process that participates in AD pathogenesis. In this review, we briefly summarized the involvement of microglia in the neuroinflammatory process of Alzheimer's disease. Its roles in the AD onset and progression are also discussed. Numerous molecules, including interleukins, tumor necrosis factor alpha, chemokines, inflammasomes, participate in the complex process of AD-related neuroinflammation and they are selectively discussed in this review. In the end of this paper from an inflammation- related perspective, we discussed some potential therapeutic choices.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Shen
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haoyu Chuang
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital, Tainan, Taiwan.,Department of Neurosurgery, China Medical University Bei-Gang Hospital, Yun-Lin, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chengdi Chiu
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Shen XN, Lu Y, Tan CTY, Liu LY, Yu JT, Feng L, Larbi A. Identification of inflammatory and vascular markers associated with mild cognitive impairment. Aging (Albany NY) 2020; 11:2403-2419. [PMID: 31039131 PMCID: PMC6520012 DOI: 10.18632/aging.101924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Biochemical processes have been associated with the pathogenesis of mild cognitive impairment (MCI) and dementia, including chronic inflammation, dysregulation of membrane lipids and disruption of neurotransmitter pathways. However, research investigating biomarkers of these processes in MCI remained sparse and inconsistent. To collect fresh evidence, we evaluated the performance of several potential markers in a cohort of 57 MCI patients and 57 cognitively healthy controls. MCI patients showed obviously increased levels of plasma TNF-α (p = 0.045) and C-peptide (p = 0.004) as well as decreased levels of VEGF-A (p = 0.042) and PAI-1 (p = 0.019), compared with controls. In addition, our study detected significant correlations of plasma sTNFR-1 (MCI + Control: B = -6.529, p = 0.020; MCI: B = -9.865, p = 0.011) and sIL-2Rα (MCI + Control: B = -7.010, p = 0.007; MCI: B = -11.834, p = 0.003) levels with MoCA scores in the whole cohort and the MCI group. These findings corroborate the inflammatory and vascular hypothesis for dementia. Future studies are warranted to determine their potential as early biomarkers for cognitive deficits and explore the related mechanisms.
Collapse
Affiliation(s)
- Xue-Ning Shen
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanxia Lu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Crystal Tze Ying Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling-Yun Liu
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
24
|
Lucas-Ruiz F, Galindo-Romero C, Salinas-Navarro M, González-Riquelme MJ, Vidal-Sanz M, Agudo Barriuso M. Systemic and Intravitreal Antagonism of the TNFR1 Signaling Pathway Delays Axotomy-Induced Retinal Ganglion Cell Loss. Front Neurosci 2019; 13:1096. [PMID: 31680831 PMCID: PMC6803525 DOI: 10.3389/fnins.2019.01096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Here, we have blocked the signaling pathway of tumor necrosis factor α (TNFα) in a mouse model of traumatic neuropathy using a small cell permeable molecule (R7050) that inhibits TNFα/TNF receptor 1 (TNFR1) complex internalization. Adult pigmented mice were subjected to intraorbital optic nerve crush (ONC). Animals received daily intraperitoneal injections of R7050, and/or a single intravitreal administration the day of the surgery. Some animals received a combinatorial treatment with R7050 (systemic or local) and a single intravitreal injection of brain derived neurotrophic factor (BDNF). As controls, untreated animals were used. Retinas were analyzed for RGC survival 5 and 14 days after the lesion i.e., during the quick and slow phase of axotomy-induced RGC death. qPCR analyses were done to verify that Tnfr1 and TNFα were up-regulated after ONC. At 5 days post-lesion, R7050 intravitreal or systemic treatment neuroprotected RGCs as much as BDNF alone. At 14 days, RGC rescue by systemic or intravitreal administration of R7050 was similar. At this time point, intravitreal treatment with BDNF was significantly better than intravitreal R7050. Combinatory treatment was not better than BDNF alone, although at both time points, the mean number of surviving RGCs was higher. In conclusion, antagonism of the extrinsic pathway of apoptosis rescues axotomized RGCs as it does the activation of survival pathways by BDNF. However, manipulation of both pathways at the same time, does not improve RGC survival.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Manuel Salinas-Navarro
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - María Josefa González-Riquelme
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
25
|
Adalimumab improves cognitive impairment, exerts neuroprotective effects and attenuates neuroinflammation in an Aβ1-40-injected mouse model of Alzheimer's disease. Cytotherapy 2019; 21:671-682. [DOI: 10.1016/j.jcyt.2019.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023]
|
26
|
Inoue T, Hashimoto M, Katakura M, Hossain S, Matsuzaki K, Shido O. Effect of chronic administration of arachidonic acid on the performance of learning and memory in aged rats. Food Nutr Res 2019; 63:1441. [PMID: 30941000 PMCID: PMC6436162 DOI: 10.29219/fnr.v63.1441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Background Arachidonic acid (AA, C20:4, ω-6) is a ω-6 polyunsaturated fatty acid (PUFA) and plays diverse roles in cell signaling. Numerous reports on the effects of ω-3 PUFAs, such as docosahexaenoic acid (DHA, C22:6, ω-3) and eicosapentaenoic acid (EPA, C20:5, ω-3) on learning and memory impairments of rats are available, however, the role of AA on brain cognition is largely unknown. Objective In this study, our aim was to investigate the effect of oral administration of AA on spatial memory-related learning ability in aged (100 weeks) male rats. Design One group was per orally administered 240 mg/kg per day AA oil and the other group was administered the similar volume of control oil. Five weeks after the start of the administration, rats were tested with the partially baited eight-arm radial maze to evaluate two types of spatial memory-related learning ability displayed by reference memory errors (RMEs) and working memory errors (WMEs). Also, the time required to complete the task was recorded. The levels of lipid peroxide (LPO) and reactive oxygen species (ROS) were measured, as an indicator oxidative stress in the plasma and brain corticohippocampal brain tissues. Results The scores of RMEs and WMEs, which are analogous to long-term and short-term memory, respectively, were not affected, however, the trial time was shorter in the AA-administered rats than that of the controls. AA also significantly increased the degree of oxidative stress both in the plasma and corticohippocampal brain tissues. Conclusions Our results suggest that though AA deposition in the corticohippocampal tissues of senescent rats caused a faster performance activity, which is reminiscent to hyperactive behavior of animals, the spatial learning ability-related memory of the rats, however, was not improved.
Collapse
Affiliation(s)
- Takayuki Inoue
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Masanori Katakura
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Shahdat Hossain
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.,Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
27
|
Steeland S, Gorlé N, Vandendriessche C, Balusu S, Brkic M, Van Cauwenberghe C, Van Imschoot G, Van Wonterghem E, De Rycke R, Kremer A, Lippens S, Stopa E, Johanson CE, Libert C, Vandenbroucke RE. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer's disease. EMBO Mol Med 2019; 10:emmm.201708300. [PMID: 29472246 PMCID: PMC5887909 DOI: 10.15252/emmm.201708300] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and neuroinflammation is an important hallmark of the pathogenesis. Tumor necrosis factor (TNF) might be detrimental in AD, though the results coming from clinical trials on anti‐TNF inhibitors are inconclusive. TNFR1, one of the TNF signaling receptors, contributes to the pathogenesis of AD by mediating neuronal cell death. The blood–cerebrospinal fluid (CSF) barrier consists of a monolayer of choroid plexus epithelial (CPE) cells, and AD is associated with changes in CPE cell morphology. Here, we report that TNF is the main inflammatory upstream mediator in choroid plexus tissue in AD patients. This was confirmed in two murine AD models: transgenic APP/PS1 mice and intracerebroventricular (icv) AβO injection. TNFR1 contributes to the morphological damage of CPE cells in AD, and TNFR1 abrogation reduces brain inflammation and prevents blood–CSF barrier impairment. In APP/PS1 transgenic mice, TNFR1 deficiency ameliorated amyloidosis. Ultimately, genetic and pharmacological blockage of TNFR1 rescued from the induced cognitive impairments. Our data indicate that TNFR1 is a promising therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Sophie Steeland
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nina Gorlé
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sriram Balusu
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marjana Brkic
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anneke Kremer
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core, Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core, Ghent, Belgium
| | - Edward Stopa
- Department of Pathology, Rhode Island Hospital, Providence, Rhode Island, USA.,Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Conrad E Johanson
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Claude Libert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, Ghent, Belgium .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Ortí-Casañ N, Wu Y, Naudé PJW, De Deyn PP, Zuhorn IS, Eisel ULM. Targeting TNFR2 as a Novel Therapeutic Strategy for Alzheimer's Disease. Front Neurosci 2019; 13:49. [PMID: 30778285 PMCID: PMC6369349 DOI: 10.3389/fnins.2019.00049] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Accumulating experimental evidence shows the important linkage between tumor necrosis factor-α (TNF) and AD, but the exact role of TNF in AD is still not completely understood. Although TNF-inhibitors are successfully used for treating several diseases, total inhibition of TNF can cause side effects, particularly in neurological diseases. This is attributed to the opposing roles of the two TNF receptors. TNF receptor 1 (TNFR1) predominantly mediates inflammatory and pro-apoptotic signaling pathways, whereas TNF receptor 2 (TNFR2) is neuroprotective and promotes tissue regeneration. Therefore, the specific activation of TNFR2 signaling, either by directly targeting TNFR2 via TNFR2 agonists or by blocking TNFR1 signaling with TNFR1-selective antagonists, seems a promising strategy for AD therapy. This mini-review discusses the involvement of TNFR2 and its signaling pathway in AD and outlines its potential application as therapeutic target. A better understanding of the function of TNFR2 may lead to the development of a treatment for AD.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Petrus J W Naudé
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands.,Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
Monteiro AFM, Viana JDO, Nayarisseri A, Zondegoumba EN, Mendonça Junior FJB, Scotti MT, Scotti L. Computational Studies Applied to Flavonoids against Alzheimer's and Parkinson's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7912765. [PMID: 30693065 PMCID: PMC6332933 DOI: 10.1155/2018/7912765] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's and Alzheimer's, are understood as occurring through genetic, cellular, and multifactor pathophysiological mechanisms. Several natural products such as flavonoids have been reported in the literature for having the capacity to cross the blood-brain barrier and slow the progression of such diseases. The present article reports on in silico enzymatic target studies and natural products as inhibitors for the treatment of Parkinson's and Alzheimer's diseases. In this study we evaluated 39 flavonoids using prediction of molecular properties and in silico docking studies, while comparing against 7 standard reference compounds: 4 for Parkinson's and 3 for Alzheimer's. Osiris analysis revealed that most of the flavonoids presented no toxicity and good absorption parameters. The Parkinson's docking results using selected flavonoids as compared to the standards with four proteins revealed similar binding energies, indicating that the compounds 8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, capensinidin, and rosinidin are potential leads with the necessary pharmacological and structural properties to be drug candidates. The Alzheimer's docking results suggested that seven of the 39 flavonoids studied, being those with the best molecular docking results, presenting no toxicity risks, and having good absorption rates (8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, aspalathin, butin, and norartocarpetin) for the targets analyzed, are the flavonoids which possess the most adequate pharmacological profiles.
Collapse
Affiliation(s)
- Alex France M. Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Jéssika De O. Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Inodre - 452010, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences, Indore - 452010, Madhya Pradesh, India
| | - Ernestine N. Zondegoumba
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaoundé, Cameroon
| | | | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
- Teaching and Research Management-University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
30
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
31
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
32
|
Prieto GA, Tong L, Smith ED, Cotman CW. TNFα and IL-1β but not IL-18 Suppresses Hippocampal Long-Term Potentiation Directly at the Synapse. Neurochem Res 2018; 44:49-60. [PMID: 29619614 DOI: 10.1007/s11064-018-2517-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
Abstract
CNS inflammatory responses are linked to cognitive impairment in humans. Research in animal models supports this connection by showing that inflammatory cytokines suppress long-term potentiation (LTP), the best-known cellular correlate of memory. Cytokine-induced modulation of LTP has been previously studied in vivo or in brain slices, two experimental approaches containing multiple cell populations responsive to cytokines. In their target cells, cytokines commonly increase the expression of multiple cytokines, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Whether cytokines suppress LTP by direct effects on neurons or by indirect mechanisms is still an open question. Here, we evaluated the effect of a major set of inflammatory cytokines including tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β) and interleukin-18 (IL-18) on chemically-induced LTP (cLTP) in isolated hippocampal synaptosomes of mice, using fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). We found that TNFα and IL-1β suppress synaptosomal cLTP. In contrast, cLTP was not affected by IL-18, at a concentration previously shown to block LTP in hippocampal slices. We also found that IL-18 does not impair cLTP or brain-derived neurotrophic factor (BDNF) signaling in primary hippocampal neuronal cultures. Thus, using both synaptosomes and neuron cultures, our data suggest that IL-18 impairs LTP by indirect mechanisms, which may depend on non-neuronal cells, such as glia. Notably, our results demonstrate that TNFα and IL-1β directly suppress hippocampal plasticity via neuron-specific mechanisms. A better understanding of the brain's cytokine networks and their final molecular effectors is crucial to identify specific targets for intervention.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Erica D Smith
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
33
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
34
|
Kim YS, Lee KJ, Kim H. Serum tumour necrosis factor-α and interleukin-6 levels in Alzheimer's disease and mild cognitive impairment. Psychogeriatrics 2017; 17:224-230. [PMID: 28130814 DOI: 10.1111/psyg.12218] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/29/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neuroinflammation has been recognized as a feature of Alzheimer's disease (AD), and mild cognitive impairment (MCI) is believed to share several pathological features with AD. The aim of the present study was to compare serum cytokine levels between patients with AD, subjects with MCI, and healthy controls, and to assess the correlation between cytokine levels and cognitive performance in these subjects. METHODS Participants included 35 patients with AD, 29 subjects with MCI, and 28 healthy controls from the Department of Psychiatry of IIlsan Paik Hospital in South Korea. Demographic and neuropsychological information were obtained, and peripheral cytokine levels, specifically tumour necrosis factor (TNF)-α and interleukin (IL)-6 levels, were measured for all subjects. RESULTS After adjustment for age, a significant difference in IL-6 levels (P = 0.045), but not in TNF-α (P = 0.082) levels, was observed among the three groups. IL-6 levels were higher in patients with AD than in subjects with MCI and healthy controls. TNF-α and IL-6 levels negatively and positively correlated with Mini-Mental State Examination and Global Deterioration Scale scores, respectively. TNF-α and IL-6 levels were also positively correlated with each other. CONCLUSIONS The present study suggests that serum IL-6 levels of patients with AD might be higher than those of subjects with MCI and healthy controls. Serum TNF-α and IL-6 levels might be negatively correlated with cognitive function, and we suspect that serum IL-6 levels could be biomarkers for AD.
Collapse
Affiliation(s)
- Yo Sup Kim
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Kang Joon Lee
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hyun Kim
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
35
|
Chang R, Yee KL, Sumbria RK. Tumor necrosis factor α Inhibition for Alzheimer's Disease. J Cent Nerv Syst Dis 2017; 9:1179573517709278. [PMID: 28579870 PMCID: PMC5436834 DOI: 10.1177/1179573517709278] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer's disease (AD). Food and Drug Administration-approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.
Collapse
Affiliation(s)
- Rudy Chang
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA
| | - Kei-Lwun Yee
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA
| | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA
| |
Collapse
|
36
|
Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer's disease progression and diagnosis. J Neurol Sci 2017; 376:242-254. [PMID: 28431620 DOI: 10.1016/j.jns.2017.03.031] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a complex disorder and the most common form of neurodegenerative dementia. Several genetic, environmental, and physiological factors, including inflammations and metabolic influences, are involved in the progression of AD. Inflammations are composed of complicated networks of many chemokines and cytokines with diverse cells. Inflammatory molecules are needed for the protection against pathogens, and maintaining their balances is important for normal physiological function. Recent studies demonstrated that inflammation may be involved in neurodegenerative dementia. Cellular immune components, such as microglia or astrocytes, mediate the release of inflammatory molecules, including tumor necrosis factor, growth factors, adhesion molecules, or chemokines. Over- and underexpression of pro- and anti-inflammatory molecules, respectively, may result in neuroinflammation and thus disease initiation and progression. In addition, levels of several inflammatory factors were reported to be altered in the brain or bodily fluids of patients with AD, reflecting their neuropathological changes. Therefore, simultaneous detection of several inflammatory molecules in the early or pre-symptomatic stage may improve the early diagnosis of AD. Further studies are needed to determine, how induction or inhibition of inflammatory factors could be used for AD therapies. This review summarizes the role or possible role of immune cells and inflammatory molecules in disease progression or prevention.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Vo Van Giau
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Shim
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
37
|
Gao H, Danzi MC, Choi CS, Taherian M, Dalby-Hansen C, Ellman DG, Madsen PM, Bixby JL, Lemmon VP, Lambertsen KL, Brambilla R. Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Cell Rep 2017; 18:198-212. [PMID: 28052249 PMCID: PMC5218601 DOI: 10.1016/j.celrep.2016.11.083] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
In multiple sclerosis (MS), soluble tumor necrosis factor (TNF) is detrimental via activation of TNF receptor 1 (TNFR1), whereas transmembrane TNF is beneficial primarily by activating TNF receptor 2 (TNFR2). Here, we investigate the role of TNFR2 in microglia and monocytes/macrophages in experimental autoimmune encephalomyelitis (EAE), a model of MS, by cell-specific gene targeting. We show that TNFR2 ablation in microglia leads to early onset of EAE with increased leukocyte infiltration, T cell activation, and demyelination in the central nervous system (CNS). Conversely, TNFR2 ablation in monocytes/macrophages results in EAE suppression with impaired peripheral T cell activation and reduced CNS T cell infiltration and demyelination. Our work uncovers a dichotomy of function for TNFR2 in myeloid cells, with microglial TNFR2 providing protective signals to contain disease and monocyte/macrophagic TNFR2 driving immune activation and EAE initiation. This must be taken into account when targeting TNFR2 for therapeutic purposes in neuroinflammatory diseases.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/metabolism
- Cell Proliferation
- Chronic Disease
- Demyelinating Diseases/genetics
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Deletion
- Gene Expression Regulation
- Homeostasis/genetics
- Inflammation/pathology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Microglia/metabolism
- Myelin Sheath/metabolism
- Neuroprotection
- Phenotype
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sequence Analysis, RNA
- Spinal Cord/pathology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcriptome/genetics
Collapse
Affiliation(s)
- Han Gao
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matt C Danzi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Mehran Taherian
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Camilla Dalby-Hansen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - Ditte G Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - Pernille M Madsen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - John L Bixby
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cellular and Molecular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark; Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense C 5000, Denmark; Department of Neurology, Odense University Hospital, Odense C 5000, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
38
|
Abstract
Cytokines provide cells with the ability to communicate with one another and orchestrate complex multicellular behaviour. There is an emerging understanding of the role that cytokines play in normal homeostatic tissue function and how dysregulation of these cytokine networks is associated with pathological conditions. The central nervous system (CNS), where few blood-borne immune cells circulate, seems to be particularly vulnerable to dysregulated cytokine networks. In degenerative diseases, such as proteopathies, CNS-resident cells are the predominant producers of pro-inflammatory cytokines. By contrast, in classical neuroinflammatory diseases, such as multiple sclerosis and encephalitides, pro-inflammatory cytokines are mainly produced by tissue-invading leukocytes. Whereas the effect of dysregulated cytokine networks in proteopathies is controversial, cytokines delivered to the CNS by invading immune cells are in general detrimental to the tissue. Here, we summarize recent observations on the impact of dysregulated cytokine networks in neuroinflammation.
Collapse
|
39
|
Inflammatory Cytokines and Alzheimer's Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci Bull 2016; 32:469-80. [PMID: 27568024 DOI: 10.1007/s12264-016-0055-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/03/2016] [Indexed: 12/30/2022] Open
Abstract
Neuroinflammatory processes are a central feature of Alzheimer's disease (AD) in which microglia are over-activated, resulting in the increased production of pro-inflammatory cytokines. Moreover, deficiencies in the anti-inflammatory system may also contribute to neuroinflammation. Recently, advanced methods for the analysis of genetic polymorphisms have further supported the relationship between neuroinflammatory factors and AD risk because a series of polymorphisms in inflammation-related genes have been shown to be associated with AD. In this review, we summarize the polymorphisms of both pro- and anti-inflammatory cytokines related to AD, primarily interleukin-1 (IL-1), IL-6, tumor necrosis factor alpha, IL-4, IL-10, and transforming growth factor beta, as well as their functional activity in AD pathology. Exploration of the relationship between inflammatory cytokine polymorphisms and AD risk may facilitate our understanding of AD pathogenesis and contribute to improved treatment strategies.
Collapse
|
40
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
41
|
Wardill HR, Mander KA, Van Sebille YZA, Gibson RJ, Logan RM, Bowen JM, Sonis ST. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer 2016; 139:2635-2645. [PMID: 27367824 DOI: 10.1002/ijc.30252] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity.
Collapse
Affiliation(s)
- Hannah R Wardill
- School of Medicine, University of Adelaide, South Australia. .,Centre for Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia.
| | - Kimberley A Mander
- School of Medicine, University of Adelaide, South Australia.,Adelaide Centre for Neuroscience Research and Discipline of Anatomy and Pathology, University of Adelaide, Adelaide, South Australia
| | | | - Rachel J Gibson
- Division of Health Sciences, University of South Australia, Australia
| | - Richard M Logan
- School of Dentistry, University of Adelaide, Adelaide, South Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, South Australia
| | - Stephen T Sonis
- Brigham and Women's Hospital, Boston, MA.,Biomodels, LLC, Watertown, MA
| |
Collapse
|
42
|
Jiang S, Tang L, Zhao N, Yang W, Qiu Y, Chen HZ. A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer's Disease. Front Aging Neurosci 2016; 8:171. [PMID: 27462267 PMCID: PMC4941795 DOI: 10.3389/fnagi.2016.00171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and accounts for 50-65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers' module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson's disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes, whereas AD in APOE ε4 non-carriers shares more common pathways with other types of diseases. The study reveals differential genetic bases and pathogenic and pathological processes between carriers and non-carriers, providing new insight into the mechanisms of the differences between APOE ε4 carriers and non-carriers in AD.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Ling Tang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Na Zhao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong
| | - Yu Qiu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| |
Collapse
|
43
|
CX3CL1/CX3CR1 in Alzheimer's Disease: A Target for Neuroprotection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8090918. [PMID: 27429982 PMCID: PMC4939332 DOI: 10.1155/2016/8090918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022]
Abstract
CX3C chemokine ligand 1 (CX3CL1) is an intriguing chemokine belonging to the CX3C family. CX3CL1 is secreted by neurons and plays an important role in modulating glial activation in the central nervous system after binding to its sole receptor CX3CR1 which mainly is expressed on microglia. Emerging data highlights the beneficial potential of CX3CL1-CX3CR1 in the pathogenesis of Alzheimer's disease (AD), a common progressive neurodegenerative disease, and in the progression of which neuroinflammation plays a vital role. Even so, the importance of CX3CL1/CX3CR1 in AD is still controversial and needs further clarification. In this review, we make an attempt to present a concise map of CX3CL1-CX3CR1 associated with AD to find biomarkers for early diagnosis or therapeutic interventions.
Collapse
|
44
|
Rizzi L, Roriz-Cruz M. Cerebrospinal fluid inflammatory markers in amnestic mild cognitive impairment. Geriatr Gerontol Int 2016; 17:239-245. [PMID: 26818250 DOI: 10.1111/ggi.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
AIMS Inflammatory processes might play a significant role at the pathophysiology of Alzheimer's disease (AD). Neuroinflammation is characterized by activation of microglia and the release of inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. Although, it is unknown what the real contribution of these inflammatory markers in the development of AD is. The purpose of the present study was to assess the possible relationship between inflammatory markers in the cerebrospinal fluid (CSF) of amnestic mild cognitive impairment patients (aMCI), aged 60 years or older, and compare with aged healthy controls. METHODS We examined concentrations of IL-1β, IL-6 and tumor necrosis factor-α in the CSF of aMCI patients and controls by enzyme immunoassay. aMCI diagnoses were based on anamnesis and Petersen criteria, corroborated by the Clinical Dementia Rating. Cognitive function was assessed by neuropsychological tests. RESULTS CSF levels of IL-1β (13.735 vs 22.932 pg/mL; P < 0.001) and tumor necrosis factor-α (1.913 vs 2.627 pg/mL; P = 0.002), but not IL-6 (4.178 vs 5.689 pg/mL; P = 0.106), were significantly reduced in the aMCI samples as compared with controls. Individuals with IL-1β < 17 pg/mL were at a 7.2 (CI 1.5-36; P: 0.016) increased odds of aMCI. There was a positive correlation between IL-1β levels and the Consortium to Establish a Registry for Alzheimer's Disease word list score (rs = 0.299; P = 0.046). Linear regression analysis showed that IL-1β levels might explain 13.7% (β = 24.545; P = 0.012) of the variance on this Consortium to Establish a Registry for Alzheimer's Disease subscore. CONCLUSION The present results show a pattern of cytokines expression in the CSF of aMCI patients that might be relevant to the pathogeny of prodromal AD. Geriatr Gerontol Int 2017; 17: 239-245.
Collapse
Affiliation(s)
- Liara Rizzi
- Division of Geriatric Neurology, Service of Neurology, Clinical Hospital of Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Matheus Roriz-Cruz
- Division of Geriatric Neurology, Service of Neurology, Clinical Hospital of Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
45
|
Targeting of Tumor Necrosis Factor Alpha Receptors as a Therapeutic Strategy for Neurodegenerative Disorders. Antibodies (Basel) 2015. [DOI: 10.3390/antib4040369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
46
|
Abstract
The past two decades of research into the pathogenesis of Alzheimer disease (AD) have been driven largely by the amyloid hypothesis; the neuroinflammation that is associated with AD has been assumed to be merely a response to pathophysiological events. However, new data from preclinical and clinical studies have established that immune system-mediated actions in fact contribute to and drive AD pathogenesis. These insights have suggested both novel and well-defined potential therapeutic targets for AD, including microglia and several cytokines. In addition, as inflammation in AD primarily concerns the innate immune system - unlike in 'typical' neuroinflammatory diseases such as multiple sclerosis and encephalitides - the concept of neuroinflammation in AD may need refinement.
Collapse
|
47
|
Christensen A, Pike CJ. Menopause, obesity and inflammation: interactive risk factors for Alzheimer's disease. Front Aging Neurosci 2015. [PMID: 26217222 PMCID: PMC4493396 DOI: 10.3389/fnagi.2015.00130] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, the development of which is regulated by several environmental and genetic risk factors. Two factors theorized to contribute to the initiation and/or progression of AD pathogenesis are age-related increases in inflammation and obesity. These factors may be particularly problematic in women. The onset of menopause in mid-life elevates the vulnerability of women to AD, an increased risk that is likely associated with the depletion of estrogens. Menopause is also linked with an abundance of additional changes, including increased central adiposity and inflammation. Here, we review the current literature to explore the interactions between obesity, inflammation, menopause and AD.
Collapse
Affiliation(s)
- Amy Christensen
- Davis School of Gerontology, University of Southern California Los Angeles, CA, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
48
|
Wang MX, Cheng XY, Jin M, Cao YL, Yang YP, Wang JD, Li Q, Wang F, Hu LF, Liu CF. TNF compromises lysosome acidification and reduces α-synuclein degradation via autophagy in dopaminergic cells. Exp Neurol 2015; 271:112-21. [PMID: 26001614 DOI: 10.1016/j.expneurol.2015.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor-α (TNF) is increasingly implicated as a critical pro-inflammatory cytokine involved in chronic inflammation and neurodegeneration of Parkinson's disease (PD). However, the cellular and molecular events that lead to dopaminergic neuron degeneration are not fully understood. In this study, we demonstrated that microglia-released and recombinant TNF disrupted α-synuclein (α-SYN) degradation and caused its accumulation in PC12 cells and midbrain neurons. At subtoxic doses, recombinant TNF was found to increase the number of LC3 puncta dots and LC3II protein level, associated with the increases of P62 protein level. Inhibition of lysosomal degradation with Bafilomycin A1 pretreatment abrogated the TNF-induced elevation in LC3II protein level whereas autophagy inhibitor 3-methyladenine did not affect it. Moreover, TNF led to a marked increase in the number of yellow LC3 dots with a marginal elevation in red-only dots in RFP-GFP-tandem fluorescent LC3 (tf-LC3) transfected PC12 cells, implying the impairment in autophagic flux. Furthermore, TNF treatment reduced lysosomal acidification, as LysoTracker Red fluorescence and LysoSensor fluorescence shift from blue to yellow was markedly decreased in TNF-treated PC12 cells. Co-treatment with mammalian target of rapamycin kinase complex 1 (mTORC1) inhibitor PP242, which activated transcription factor EB (TFEB) signaling and lysosome biogenesis, partially rescued the accumulation of α-SYN in PC12 cells and midbrain neurons. Taken together, our results demonstrated that at subtoxic levels, TNF was able to impair autophagic flux and result in α-SYN accumulation by compromising lysosomal acidification in dopaminergic cells. This may represent a novel mechanism for TNF-induced dopaminergic neuron degeneration in PD.
Collapse
Affiliation(s)
- Mei-Xia Wang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Xiao-Yu Cheng
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Mengmeng Jin
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yu-Lan Cao
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Ya-Ping Yang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China; Beijing Key Laboratory for Parkinson's Disease, Beijing 100053, China
| | - Jian-Da Wang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Qian Li
- Institute of Neuroscience, Soochow University, Suzhou 215123, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Li-Fang Hu
- Institute of Neuroscience, Soochow University, Suzhou 215123, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Chun-Feng Liu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China; Beijing Key Laboratory for Parkinson's Disease, Beijing 100053, China.
| |
Collapse
|
49
|
Sarvaiya J, Agrawal Y. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72:454-65. [DOI: 10.1016/j.ijbiomac.2014.08.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
|
50
|
Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2221-38. [PMID: 25422582 PMCID: PMC4232043 DOI: 10.2147/dddt.s67655] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brain is very actively involved in immune-inflammatory processes, and the response to several trigger factors such as trauma, hemorrhage, or ischemia causes the release of active inflammatory substances such as cytokines, which are the basis of second-level damage. During brain ischemia and after brain trauma, the intrinsic inflammatory mechanisms of the brain, as well as those of the blood, are mediated by leukocytes that communicate with each other through cytokines. A neuroinflammatory cascade has been reported to be activated after a traumatic brain injury (TBI) and this cascade is due to the release of pro- and anti-inflammatory cytokines and chemokines. Microglia are the first sources of this inflammatory cascade in the brain setting. Also in an ischemic stroke setting, an important mediator of this inflammatory reaction is tumor necrosis factor (TNF)-α, which seems to be involved in every phase of stroke-related neuronal damage such as inflammatory and prothrombotic events. TNF-α has been shown to have an important role within the central nervous system; its properties include activation of microglia and astrocytes, influence on blood–brain barrier permeability, and influences on glutamatergic transmission and synaptic plasticity. TNF-α increases the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor density on the cell surface and simultaneously decreases expression of γ-aminobutyric acid receptor cells, and these effects are related to a direct neurotoxic effect. Several endogenous mechanisms regulate TNF-α activity during inflammatory responses. Endogenous inhibitors of TNF include prostaglandins, cyclic adenosine monophosphate, and glucocorticoids. Etanercept, a biologic TNF antagonist, has a reported effect of decreasing microglia activation in experimental models, and it has been used therapeutically in animal models of ischemic and traumatic neuronal damage. In some studies using animal models, researchers have reported a limitation of TBI-induced cerebral ischemia due to etanercept action, amelioration of brain contusion signs, as well as motor and cognitive dysfunction. On this basis, it appears that etanercept may improve outcomes of TBI by penetrating into the cerebrospinal fluid in rats, although further studies in humans are needed to confirm these interesting and suggestive experimental findings.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| | - Rosaria Pecoraro
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| | - Antonio Pinto
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|