1
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
2
|
Bera T, Mondal A, Kar S, Mukherjee A, Banerjee S, Guha S. A mitochondria targeting, de novo designed, aggregation-induced emission probe for selective detection of neurotoxic amyloid-β aggregates. J Mater Chem B 2024. [PMID: 39387696 DOI: 10.1039/d4tb01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A striking issue is the scarcity of imaging probes for the early diagnosis of Alzheimer's disease. For the development of Aβ biomarkers, a mitochondria targeting, de novo designed, aggregation-induced emission (AIE) probe Cou-AIE-TPP+ is constructed by engineering the aromatic coumarin framework into the bridge of electron donor-acceptor-donor tethered with a lipophilic cationic triphenylphosphonium (TPP+) group. The synthesized Cou-AIE-TPP+ probe exhibits biocompatibility, noncytotoxicity, and a huge Stokes shift (124 nm in PBS). Cou-AIE-TPP+ has respectable fluorescence augmentation inside the aggregated Aβ40 in comparison with monomeric Aβ40 with a high binding affinity (Kd = 83 nM) to Aβ40 aggregates, is capable of detecting the kinetics of amyloid aggregation, and is superior to the gold standard probe thioflavin T. Fluorescence lifetime and brightness are also augmented when the probe Cou-AIE-TPP+ binds with Aβ aggregates in PBS. Cou-AIE-TPP+ (λem 604 nm) selectively targets and images neuronal cell mitochondria, is useful to monitor mitochondrial morphology alteration and damage during Aβ40-induced neurotoxicity, recognizes neurotoxic Aβ fibrils, and is highly colocalized with thioflavin T, showing a decent Pearson correlation coefficient of 0.91 in the human neuroblastoma SH-SY5Y cell line. These findings indicate that the mitochondria targeting, de novo designed, functional AIE-based solvatofluorochromic Cou-AIE-TPP+ probe is a promising switch on biomarkers for fluorescence imaging of Aβ aggregates and to monitor mitochondrial morphology change and dysfunction during Aβ-induced neurotoxicity, which may offer imperative direction for the advancement of compelling AIE biomarkers for targeted early stage Aβ diagnosis in the future.
Collapse
Affiliation(s)
- Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Aniruddha Mondal
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Somenath Banerjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
3
|
Nešić N, Heiligenstein X, Zopf L, Blüml V, Keuenhof KS, Wagner M, Höög JL, Qi H, Li Z, Tsaramirsis G, Peddie CJ, Stojmenović M, Walter A. Automated segmentation of cell organelles in volume electron microscopy using deep learning. Microsc Res Tech 2024; 87:1718-1732. [PMID: 38501891 DOI: 10.1002/jemt.24548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Recent advances in computing power triggered the use of artificial intelligence in image analysis in life sciences. To train these algorithms, a large enough set of certified labeled data is required. The trained neural network is then capable of producing accurate instance segmentation results that will then need to be re-assembled into the original dataset: the entire process requires substantial expertise and time to achieve quantifiable results. To speed-up the process, from cell organelle detection to quantification across electron microscopy modalities, we propose a deep-learning based approach for fast automatic outline segmentation (FAMOUS), that involves organelle detection combined with image morphology, and 3D meshing to automatically segment, visualize and quantify cell organelles within volume electron microscopy datasets. From start to finish, FAMOUS provides full segmentation results within a week on previously unseen datasets. FAMOUS was showcased on a HeLa cell dataset acquired using a focused ion beam scanning electron microscope, and on yeast cells acquired by transmission electron tomography. RESEARCH HIGHLIGHTS: Introducing a rapid, multimodal machine-learning workflow for the automatic segmentation of 3D cell organelles. Successfully applied to a variety of volume electron microscopy datasets and cell lines. Outperforming manual segmentation methods in time and accuracy. Enabling high-throughput quantitative cell biology.
Collapse
Affiliation(s)
- Nebojša Nešić
- Department of Computer Science and Electrical Engineering, Singidunum University, Belgrade, Serbia
| | | | - Lydia Zopf
- Austrian BioImaging, Vienna BioCenter Core Facilities, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria
| | - Valentin Blüml
- Austrian BioImaging, Vienna BioCenter Core Facilities, Vienna, Austria
| | - Katharina S Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michael Wagner
- Centre for Optical Technologies, Aalen University, Aalen, Germany
| | - Johanna L Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Heng Qi
- Department of Computer Science, Dalian University of Technology, Dalian, China
| | - Zhiyang Li
- Department of Computer Science, Dalian Maritime University, Dalian, China
| | - Georgios Tsaramirsis
- Faculty of Computer Information, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | | | - Miloš Stojmenović
- Department of Computer Science and Electrical Engineering, Singidunum University, Belgrade, Serbia
| | - Andreas Walter
- Centre for Optical Technologies, Aalen University, Aalen, Germany
| |
Collapse
|
4
|
Liao Z, Zhang Q, Ren N, Zhao H, Zheng X. Progress in mitochondrial and omics studies in Alzheimer's disease research: from molecular mechanisms to therapeutic interventions. Front Immunol 2024; 15:1418939. [PMID: 39040111 PMCID: PMC11260616 DOI: 10.3389/fimmu.2024.1418939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease (Alzheimer's disease, AD) is a progressive neurological disorder characterized by memory loss and cognitive impairment. It is characterized by the formation of tau protein neurofibrillary tangles and β-amyloid plaques. Recent studies have found that mitochondria in neuronal cells of AD patients exhibit various dysfunctions, including reduced numbers, ultrastructural changes, reduced enzyme activity, and abnormal kinetics. These abnormal mitochondria not only lead to the loss of normal neuronal cell function, but are also a major driver of AD progression. In this review, we will focus on the advances of mitochondria and their multi-omics in AD research, with particular emphasis on how mitochondrial dysfunction in AD drives disease progression. At the same time, we will focus on summarizing how mitochondrial genomics technologies have revealed specific details of these dysfunctions and how therapeutic strategies targeting mitochondria may provide new directions for future AD treatments. By delving into the key mechanisms of mitochondria in AD related to energy metabolism, altered kinetics, regulation of cell death, and dysregulation of calcium-ion homeostasis, and how mitochondrial multi-omics technologies can be utilized to provide us with a better understanding of these processes. In the future, mitochondria-centered therapeutic strategies will be a key idea in the treatment of AD.
Collapse
Affiliation(s)
- Zuning Liao
- Department of Neurology, Fourth People’s Hospital of Jinan, Jinan, China
| | - Qiying Zhang
- Department of Internal Medicine, Jinan Municipal Government Hospital, Jinan, China
| | - Na Ren
- Pharmacy Department, Jinan Municipal People’s Government Organs Outpatient Department, Jinan, China
| | - Haiyan Zhao
- Department of Pharmacy, Qihe County People’s Hospital, Dezhou, China
| | - Xueyan Zheng
- Department of Pharmacy, Jinan Second People’s Hospital, Jinan, China
| |
Collapse
|
5
|
Yan J, Ton H, Yan J, Dong Y, Xie Z, Jiang H. Anesthetic Sevoflurane Induces Enlargement of Dendritic Spine Heads in Mouse Neurons via Tau-Dependent Mechanisms. Anesth Analg 2024:00000539-990000000-00796. [PMID: 38507523 DOI: 10.1213/ane.0000000000006941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Sevoflurane induces neuronal dysfunction and cognitive impairment. However, the underlying mechanism remains largely to be determined. Tau, cyclophilin D, and dendritic spine contribute to cognitive function. But whether changes in dendritic spines are involved in the effects of sevoflurane and the potential association with tau and cyclophilin D is not clear. METHODS We harvested hippocampal neurons from wild-type mice, tau knockout mice, and cyclophilin D knockout mice. We treated these neurons with sevoflurane at day in vitro 7 and measured the diameter of dendritic spine head and the number of dendritic spines. Moreover, we determined the effects of sevoflurane on the expression of excitatory amino acid transporter 3 (EAAT3), extracellular glutamate levels, and miniature excitatory postsynaptic currents (mEPSCs). Finally, we used lithium, cyclosporine A, and overexpression of EAAT3 in the interaction studies. RESULTS Sevoflurane-induced tau phosphgorylation increased the diameter of dendritic spine head and decreased the number of dendritic spines in neurons harvested from wild-type and cyclophilin D knockout mice, but not tau knockout mice. Sevoflurane decreased the expression of EAAT3, increased extracellular glutamate levels, and decreased the frequency of mEPSCs in the neurons. Overexpression of EAAT3 mitigated the effects of sevoflurane on dendritic spines. Lithium, but not cyclosporine A, attenuated the effects of sevoflurane on dendritic spines. Lithium also inhibited the effects of sevoflurane on EAAT3 expression and mEPSCs. CONCLUSIONS These data suggest that sevoflurane induces a tau phosphorylation-dependent demtrimental effect on dendritic spine via decreasing EAAT3 expression and increasing extracellular glutamate levels, leading to neuronal dysfunction.
Collapse
Affiliation(s)
- Jia Yan
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hoai Ton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jing Yan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hong Jiang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang JF, Fang ZT, Zhao JN, Liu GP, Shen X, Jiang GF, Liu Q. Acetylated tau exacerbates apoptosis by disturbing mitochondrial dynamics in HEK293 cells. J Neurochem 2024; 168:288-302. [PMID: 38275215 DOI: 10.1111/jnc.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
An increase in tau acetylation at K274 and K281 and abnormal mitochondrial dynamics have been observed in the brains of Alzheimer's disease (AD) patients. Here, we constructed three types of tau plasmids, TauKQ (acetylated tau mutant, by mutating its K274/K281 into glutamine to mimic disease-associated lysine acetylation), TauKR (non-acetylated tau mutant, by mutating its K274/K281 into arginine), and TauWT (wild-type human full-length tau). By transfecting these tau plasmids in HEK293 cells, we found that TauWT and TauKR induced mitochondrial fusion by increasing the level of mitochondrial fusion proteins. Conversely, TauKQ induced mitochondrial fission by reducing mitochondrial fusion proteins, exacerbating mitochondrial dysfunction and apoptosis. BGP-15 ameliorated TauKQ-induced mitochondrial dysfunction and apoptosis by improving mitochondrial dynamics. Our findings suggest that acetylation of K274/281 represents an important post-translational modification site regulating mitochondrial dynamics, and that BGP-15 holds potential as a therapeutic agent for mitochondria-associated diseases such as AD.
Collapse
Affiliation(s)
- Jun-Fei Zhang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Ting Fang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Ning Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Shen
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Gao-Feng Jiang
- Center for Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Atlante A, Valenti D. Mitochondrial Complex I and β-Amyloid Peptide Interplay in Alzheimer's Disease: A Critical Review of New and Old Little Regarded Findings. Int J Mol Sci 2023; 24:15951. [PMID: 37958934 PMCID: PMC10650435 DOI: 10.3390/ijms242115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity. On the other hand, if it is true that the accumulation of Aβ in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aβ production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aβ aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aβ, in order to understand how their interplay is implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | | |
Collapse
|
8
|
Srivastava A, Johnson M, Renna HA, Sheehan KM, Ahmed S, Palaia T, Pinkhasov A, Gomolin IH, De Leon J, Reiss AB. Therapeutic Potential of P110 Peptide: New Insights into Treatment of Alzheimer's Disease. Life (Basel) 2023; 13:2156. [PMID: 38004296 PMCID: PMC10672680 DOI: 10.3390/life13112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-β accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-β generation and improving neuronal health by maintaining mitochondrial function in neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.S.); (M.J.); (H.A.R.); (K.M.S.); (S.A.); (T.P.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
9
|
Holubiec MI, Alloatti M, Bianchelli J, Greloni F, Arnaiz C, Gonzalez Prinz M, Fernandez Bessone I, Pozo Devoto V, Falzone TL. Mitochondrial vulnerability to oxidation in human brain organoids modelling Alzheimer's disease. Free Radic Biol Med 2023; 208:394-401. [PMID: 37657763 DOI: 10.1016/j.freeradbiomed.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Reactive Oxygen Species (ROS) and mitochondrial dysfunction are implicated in the pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disorder characterized by abnormal metabolism of the amyloid precursor protein (APP) in brain tissue. However, the exact mechanism by which abnormal APP leads to oxidative distress remains unclear. Damage to mitochondrial membrane and inhibition of mitochondrial respiration are thought to contribute to the progression of the disease. However, the lack of suitable human models that replicate pathological features, together with impaired cellular pathways, constitutes a major challenge in AD studies. In this work, we induced pluripotency in patient-derived skin fibroblasts carrying the Swedish mutation in App (APPswe), to generate human brain organoids that model AD, and studied redox regulation and mitochondrial homeostasis. We found time-dependent increases in AD-related pathological hallmarks in APPswe brain organoids, including elevated Aβ levels, increased extracellular amyloid deposits, and enhanced tau phosphorylation. Interestingly, using live-imaging spinning-disk confocal microscopy, we found an increase in mitochondrial fragmentation and a significant loss of mitochondrial membrane potential in APPswe brain organoids when subjected to oxidative conditions. Moreover, ratiometric dyes in a live imaging setting revealed a selective increase in mitochondrial superoxide anion and hydrogen peroxide levels in APPswe brain organoids that were coupled to impairments in cytosolic and mitochondrial redoxin protein expression. Our results suggest a selective increase in mitochondrial vulnerability to oxidative conditions in APPswe organoids, indicating that the abnormal metabolism of APP leads to specific changes in mitochondrial homeostasis that enhance the vulnerability to oxidation in AD.
Collapse
Affiliation(s)
- Mariana I Holubiec
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Matias Alloatti
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Julieta Bianchelli
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina
| | - Francisco Greloni
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Cayetana Arnaiz
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina
| | - Melina Gonzalez Prinz
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina
| | - Ivan Fernandez Bessone
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Victorio Pozo Devoto
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Tomas L Falzone
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Reddy PH, Kshirsagar S, Bose C, Pradeepkiran JA, Hindle A, Singh SP, Reddy AP. Rlip overexpression reduces oxidative stress and mitochondrial dysfunction in Alzheimer's disease: Mechanistic insights. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166759. [PMID: 37225106 DOI: 10.1016/j.bbadis.2023.166759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects a large proportion of the aging population. RalBP1 (Rlip) is a stress-activated protein that plays a crucial role in oxidative stress and mitochondrial dysfunction in aging and neurodegenerative diseases but its precise role in the progression of AD is unclear. The purpose of our study is to understand the role of Rlip in the progression and pathogenesis of AD in mutant APP/amyloid beta (Aβ)-expressed mouse primary hippocampal (HT22) hippocampal neurons. In the current study, we used HT22 neurons that express mAPP, transfected with Rlip-cDNA and/or RNA silenced, and studied cell survival, mitochondrial respiration, mitochondrial function, immunoblotting & immunofluorescence analysis of synaptic and mitophagy protein's and colocalization of Rlip and mutant APP/Aβ proteins and mitochondrial length and number. We also assessed Rlip levels in autopsy brains from AD patients and control subjects. We found cell survival was decreased in mAPP-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mAPP-HT22 cells. Oxygen consumption rate (OCR) was decreased in mAPP-HT22 cells and RNA-silenced Rlip-HT22 cells. OCR was increased in Rlip-overexpressed in mAPP-HT22 cells. Mitochondrial function was defective in mAPP-HT22 cells and RNA silenced Rlip in HT22 cells, however, it was rescued in Rlip overexpressed mAPP-HT22 cells. Synaptic and mitophagy proteins were decreased in mAPP-HT22 cells, further reducing RNA-silenced Rlip-HT22 cells. However, these were increased in mAPP+Rlip-HT22 cells. Colocalization analysis revealed Rlip is colocalized with mAPP/Aβ. An increased number of mitochondria and decreased mitochondrial length were found in mAPP-HT22 cells. These were rescued in Rlip overexpressed mAPP-HT22 cells. Reduced Rlip levels were found in autopsy brains from AD patients. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reduced these defects.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| |
Collapse
|
11
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
12
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
13
|
Costa-Laparra I, Juárez-Escoto E, Vicario C, Moratalla R, García-Sanz P. APOE ε4 allele, along with G206D- PSEN1 mutation, alters mitochondrial networks and their degradation in Alzheimer's disease. Front Aging Neurosci 2023; 15:1087072. [PMID: 37455931 PMCID: PMC10340123 DOI: 10.3389/fnagi.2023.1087072] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease remains the most common neurodegenerative disorder, depicted mainly by memory loss and the presence in the brain of senile plaques and neurofibrillary tangles. This disease is related to several cellular alterations like the loss of synapses, neuronal death, disruption of lipid homeostasis, mitochondrial fragmentation, or raised oxidative stress. Notably, changes in the autophagic pathway have turned out to be a key factor in the early development of the disease. The aim of this research is to determine the impact of the APOE allele ε4 and G206D-PSEN1 on the underlying mechanisms of Alzheimer's disease. Methods Fibroblasts from Alzheimer's patients with APOE 3/4 + G206D-PSEN1 mutation and homozygous APOE ε4 were used to study the effects of APOE polymorphism and PSEN1 mutation on the autophagy pathway, mitochondrial network fragmentation, superoxide anion levels, lysosome clustering, and p62/SQSTM1 levels. Results We observed that the APOE allele ε4 in homozygosis induces mitochondrial network fragmentation that correlates with an increased colocalization with p62/SQSTM1, probably due to an inefficient autophagy. Moreover, G206D-PSEN1 mutation causes an impairment of the integrity of mitochondrial networks, triggering high superoxide anion levels and thus making APOE 3/4 + PSEN1 fibroblasts more vulnerable to cell death induced by oxidative stress. Of note, PSEN1 mutation induces accumulation and clustering of lysosomes that, along with an increase of global p62/SQSTM1, could compromise lysosomal function and, ultimately, its degradation. Conclusion The findings suggest that all these modifications could eventually contribute to the neuronal degeneration that underlies the pathogenesis of Alzheimer's disease. Further research in this area may help to develop targeted therapies for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Costa-Laparra
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Juárez-Escoto
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Vicario
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Stem Cells, Neurogenesis and Neurodegeneration Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Rosario Moratalla
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Bastola T, Perkins GA, Kim KY, Choi S, Kwon JW, Shen Z, Strack S, Ju WK. Role of A-Kinase Anchoring Protein 1 in Retinal Ganglion Cells: Neurodegeneration and Neuroprotection. Cells 2023; 12:1539. [PMID: 37296658 PMCID: PMC10252895 DOI: 10.3390/cells12111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A-Kinase anchoring protein 1 (AKAP1) is a multifunctional mitochondrial scaffold protein that regulates mitochondrial dynamics, bioenergetics, and calcium homeostasis by anchoring several proteins, including protein kinase A, to the outer mitochondrial membrane. Glaucoma is a complex, multifactorial disease characterized by a slow and progressive degeneration of the optic nerve and retinal ganglion cells (RGCs), ultimately resulting in vision loss. Impairment of the mitochondrial network and function is linked to glaucomatous neurodegeneration. Loss of AKAP1 induces dynamin-related protein 1 dephosphorylation-mediated mitochondrial fragmentation and loss of RGCs. Elevated intraocular pressure triggers a significant reduction in AKAP1 protein expression in the glaucomatous retina. Amplification of AKAP1 expression protects RGCs from oxidative stress. Hence, modulation of AKAP1 could be considered a potential therapeutic target for neuroprotective intervention in glaucoma and other mitochondria-associated optic neuropathies. This review covers the current research on the role of AKAP1 in the maintenance of mitochondrial dynamics, bioenergetics, and mitophagy in RGCs and provides a scientific basis to identify and develop new therapeutic strategies that could protect RGCs and their axons in glaucoma.
Collapse
Affiliation(s)
- Tonking Bastola
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Jin-Woo Kwon
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Ophthalmology and Visual Science, St. Vincent’s Hospital, Jungbu-daero 93, Paldal-gu, Suwon 16247, Republic of Korea
| | - Ziyao Shen
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Stefan Strack
- Department of Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| |
Collapse
|
15
|
Danışman B, Ercan Kelek S, Aslan M. Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. PSYCHIAT CLIN PSYCH 2023; 33:147-155. [PMID: 38765928 PMCID: PMC11082578 DOI: 10.5152/pcp.2023.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/23/2023] [Indexed: 05/22/2024] Open
Abstract
Neurodegeneration is a process leading to the progressive loss of structure and functions of neurons. Many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease have shown many common points at the subcellular level. Neurons are metabolically active cells and need a high amount of energy. Mitochondria are known as the energy synthesis center for cells, involved in the synthesis of adenosine triphosphate by oxidative phosphorylation. Rather than just being an energy synthesis center, it has critical importance for many cellular functions such as calcium homeostasis, cell proliferation, cell growth, and apoptosis. In the process of mitochondrial dysfunction, cellular functions are disrupted and cells enter the apoptotic or necrotic pathway. Resveratrol (trans-3,5,4-trihydoxystilbene), a plant-derived polyphenol found in the seed of grapes, berries, peanuts, and wine, has many biological effects such as inhibition of lipid peroxidation, scavenging of free radicals, changes in eicosanoid synthesis, inhibition of platelet aggregation, anti-inflammatory and anticancer activity, and regulation of lipid metabolism. Through the reviewed literature, the current study investigated the protective role of resveratrol in neurodegenerative diseases. Studies show that resveratrol moderates mitochondrial function, redox status, and cellular dynamics in both in vivo and in vitro experimental models of neurodegeneration. Resveratrol suppresses reactive oxygen species production by reducing the activity of complex III due to its competition effect with coenzyme Q. In the present work, we discussed the protective effects of resveratrol on neurodegeneration, neurodegenerative diseases, and the redox biology of the mitochondria.
Collapse
Affiliation(s)
- Betül Danışman
- Department of Biophysics, Atatürk University, Faculty of Medicine, Erzurum, Turkey
| | - Sevim Ercan Kelek
- Akdeniz University, Vocational School of Health Services, Antalya, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
16
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Ramesh M, Govindaraju T. Multipronged diagnostic and therapeutic strategies for Alzheimer's disease. Chem Sci 2022; 13:13657-13689. [PMID: 36544728 PMCID: PMC9710308 DOI: 10.1039/d2sc03932j] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a major contributor to dementia cases worldwide. AD is clinically characterized by learning, memory, and cognitive deficits. The accumulation of extracellular amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) of tau are the pathological hallmarks of AD and are explored as targets for clinical diagnosis and therapy. AD pathology is poorly understood and there are no fully approved diagnosis and treatments. Notwithstanding the gap, decades of research in understanding disease mechanisms have revealed the multifactorial nature of AD. As a result, multipronged and holistic approaches are pertinent to targeting multiple biomarkers and targets for developing effective diagnosis and therapeutics. In this perspective, recent developments in Aβ and tau targeted diagnostic and therapeutic tools are discussed. Novel indirect, combination, and circulating biomarkers as potential diagnostic targets are highlighted. We underline the importance of multiplexing and multimodal detection of multiple biomarkers to generate biomarker fingerprints as a reliable diagnostic strategy. The classical therapeutics targeting Aβ and tau aggregation pathways are described with bottlenecks in the strategy. Drug discovery efforts targeting multifaceted toxicity involving protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation are highlighted. Recent efforts focused on multipronged strategies to rationally design multifunctional modulators targeting multiple pathological factors are presented as future drug development strategies to discover potential therapeutics for AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
18
|
Sloat SR, Hoppins S. A dominant negative mitofusin causes mitochondrial perinuclear clusters because of aberrant tethering. Life Sci Alliance 2022; 6:6/1/e202101305. [PMID: 36229071 PMCID: PMC9568670 DOI: 10.26508/lsa.202101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
In vertebrates, mitochondrial outer membrane fusion is mediated by two mitofusin paralogs, Mfn1 and Mfn2, conserved dynamin superfamily proteins. Here, we characterize a variant of mitofusin reported in patients with CMT2A where a serine is replaced with a proline (Mfn2-S350P and the equivalent in Mfn1, S329P). This serine is in a hinge domain (Hinge 2) that connects the globular GTPase domain to the adjacent extended helical bundle. We find that expression of this variant results in prolific and stable mitochondrial tethering that also blocks mitochondrial fusion by endogenous wild-type mitofusin. The formation of mitochondrial perinuclear clusters by this CMT2A variant requires normal GTPase domain function and formation of a mitofusin complex across two membranes. We propose that conformational dynamics mediated by Hinge 2 and regulated by GTP hydrolysis are disrupted by the substitution of proline at S329/S350 and this prevents progression from tethering to membrane fusion. Thus, our data are consistent with a model for mitofusin-mediated membrane fusion where Hinge 2 supports a power stroke to progress from the tethering complex to membrane fusion.
Collapse
|
19
|
Li Y, Xia X, Wang Y, Zheng JC. Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer's disease. J Neuroinflammation 2022; 19:248. [PMID: 36203194 PMCID: PMC9535890 DOI: 10.1186/s12974-022-02613-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly globally. Emerging evidence has demonstrated microglia-driven neuroinflammation as a key contributor to the onset and progression of AD, however, the mechanisms that mediate neuroinflammation remain largely unknown. Recent studies have suggested mitochondrial dysfunction including mitochondrial DNA (mtDNA) damage, metabolic defects, and quality control (QC) disorders precedes microglial activation and subsequent neuroinflammation. Therefore, an in-depth understanding of the relationship between mitochondrial dysfunction and microglial activation in AD is important to unveil the pathogenesis of AD and develop effective approaches for early AD diagnosis and treatment. In this review, we summarized current progress in the roles of mtDNA, mitochondrial metabolism, mitochondrial QC changes in microglial activation in AD, and provide comprehensive thoughts for targeting microglial mitochondria as potential therapeutic strategies of AD.
Collapse
Affiliation(s)
- Yun Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China.,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Wang Q, Xue H, Yue Y, Hao S, Huang SH, Zhang Z. Role of mitophagy in the neurodegenerative diseases and its pharmacological advances: A review. Front Mol Neurosci 2022; 15:1014251. [PMID: 36267702 PMCID: PMC9578687 DOI: 10.3389/fnmol.2022.1014251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are a class of incurable and debilitating diseases characterized by progressive degeneration and death of cells in the central nervous system. They have multiple underlying mechanisms; however, they all share common degenerative features, such as mitochondrial dysfunction. According to recent studies, neurodegenerative diseases are associated with the accumulation of dysfunctional mitochondria. Selective autophagy of mitochondria, called mitophagy, can specifically degrade excess or dysfunctional mitochondria within cells. In this review, we highlight recent findings on the role of mitophagy in neurodegenerative disorders. Multiple studies were collected, including those related to the importance of mitochondria, the mechanism of mitophagy in protecting mitochondrial health, and canonical and non-canonical pathways in mitophagy. This review elucidated the important function of mitophagy in neurodegenerative diseases, discussed the research progress of mitophagy in neurodegenerative diseases, and summarized the role of mitophagy-related proteins in neurological diseases. In addition, we also highlight pharmacological advances in neurodegeneration.
Collapse
|
21
|
Jiang C, Okazaki T. Control of mitochondrial dynamics and apoptotic pathways by peroxisomes. Front Cell Dev Biol 2022; 10:938177. [PMID: 36158224 PMCID: PMC9500405 DOI: 10.3389/fcell.2022.938177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisomes are organelles containing different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. Peroxisome biogenesis is controlled by a family of proteins called peroxins, which are required for peroxisomal membrane formation, matrix protein transport, and division. Mutations of peroxins cause metabolic disorders called peroxisomal biogenesis disorders, among which Zellweger syndrome (ZS) is the most severe. Although patients with ZS exhibit severe pathology in multiple organs such as the liver, kidney, brain, muscle, and bone, the pathogenesis remains largely unknown. Recent findings indicate that peroxisomes regulate intrinsic apoptotic pathways and upstream fission-fusion processes, disruption of which causes multiple organ dysfunctions reminiscent of ZS. In this review, we summarize recent findings about peroxisome-mediated regulation of mitochondrial morphology and its possible relationship with the pathogenesis of ZS.
Collapse
Affiliation(s)
- Chenxing Jiang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Okazaki
- Laboratory of Molecular Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- *Correspondence: Tomohiko Okazaki,
| |
Collapse
|
22
|
Exosome mediated Tom40 delivery protects against hydrogen peroxide-induced oxidative stress by regulating mitochondrial function. PLoS One 2022; 17:e0272511. [PMID: 35951602 PMCID: PMC9371349 DOI: 10.1371/journal.pone.0272511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of neurodegeneration. The expression level of Tom40, a crucial mitochondrial membrane protein, is significantly reduced in neurodegenerative disease subjects. Tom40 overexpression studies have shown to protect the neurons against oxidative stress by improving mitochondrial function. Thus, successful delivery of Tom40 protein to the brain could lead to a novel therapy for neurodegenerative diseases. However, delivering protein to the cell may be difficult. Especially the blood-brain barrier (BBB) is a big hurdle to clear in order to deliver the protein to the brain. In the current study, we engineered exosomes, which are the extracellular vesicles of endosomal origin, and able to cross BBB as delivery vehicles packing human Tom40. We found Tom40 protein delivery by the exosome successfully protected the cells against hydrogen peroxide-induced oxidative stress. This result suggests that exosome-mediated delivery of Tom40 may potentially be useful in restoring mitochondrial functions and alleviating oxidative stress in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases.
Collapse
|
23
|
Early Changes in Transcriptomic Profiles in Synaptodendrosomes Reveal Aberrant Synaptic Functions in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23168888. [PMID: 36012153 PMCID: PMC9408306 DOI: 10.3390/ijms23168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders characterized by the progressive decline of cognitive functions, and is closely associated with the dysfunction of synapses, which comprise the basic structure that mediates the communication between neurons. Although the protein architecture and machinery for protein translation at synapses are extensively studied, the impact that local changes in the mRNA reservoir have on AD progression is largely unknown. Here, we investigated the changes in transcriptomic profiles in the synaptodendrosomes purified from the cortices of AD mice at ages 3 and 6 months, a stage when early signatures of synaptic dysfunction are revealed. The transcriptomic profiles of synaptodendrosomes showed a greater number of localized differentially expressed genes (DEGs) in 6-month-old AD mice compared with mice 3 months of age. Gene Ontology (GO) analysis showed that these DEGs are majorly enriched in mitochondrial biogenesis and metabolic activity. More specifically, we further identified three representative DEGs in mitochondrial and metabolic pathways—Prnp, Cst3, and Cox6c—that regulate the dendritic spine density and morphology in neurons. Taken together, this study provides insights into the transcriptomic changes in synaptodendrosomes during AD progression, which may facilitate the development of intervention strategies targeting local translation to ameliorate the pathological progression of AD.
Collapse
|
24
|
Epremyan KK, Goleva TN, Zvyagilskaya RA. Effect of Tau Protein on Mitochondrial Functions. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:689-701. [PMID: 36171651 DOI: 10.1134/s0006297922080028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is the most common age-related progressive neurodegenerative disorder of brain cortex and hippocampus leading to cognitive impairment. Accumulation of extracellular amyloid plaques and intraneuronal neurofibrillary tangles are believed to be the main hallmarks of the disease. Origin of Alzheimer's disease is not totally clear, multiple initiator factors are likely to exist. Intracellular impacts of Alzheimer's disease include mitochondrial dysfunction, oxidative stress, ER-stress, disruption of autophagy, severe metabolic challenges leading to massive neuronal apoptosis. Mitochondria are the key players in all these processes. This formed the basis for the so-called mitochondrial cascade hypothesis. This review provides current data on the molecular mechanisms of the development of Alzheimer's disease associated with mitochondria. Special attention was paid to the interaction between Tau protein and mitochondria, as well as to the promising therapeutic approaches aimed at preventing development of neurodegeneration.
Collapse
Affiliation(s)
- Khoren K Epremyan
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Tatyana N Goleva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Renata A Zvyagilskaya
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
25
|
Effects of pramipexole on beta-amyloid 1-42 memory deficits and evaluation of oxidative stress and mitochondrial function markers in the hippocampus of Wistar rat. Neurotoxicology 2022; 92:91-101. [PMID: 35868426 DOI: 10.1016/j.neuro.2022.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2022]
Abstract
Oxidative damage and mitochondrial dysfunction are two prominent pathological features and gradually understood as important pathogenic events for neurodegenerative diseases, including aging and Alzheimer's disease (AD). The present study was aimed to explore the prolonged treatment of pramipexole (PPX) following amyloid beta (Aβ1-42)-induced cognitive deficits, oxidative stress, and mitochondrial dysfunction in Wistar rat model. We have found that PPX (1.0mg/kg, b.wt.) can rescue cognitive impairments of Aβ1-42-infused rats in Morris water maze. At the same time, PPX attenuated Aβ1-42-induced oxidative damage and increased reduced-glutathione content level, decreased lipid peroxidation rate and suppressed the activity of acetylcholinesterase and shows antioxidant effects. Additionally, PPX treatment has shown inhibition of mitochondrial reactive oxygen species production and restored mitochondrial membrane potential, oxidative phosphorylation, and enhanced ATP levels in Aβ1-42 rats. Furthermore, PPX treatment reduced bioenergetics loss and dynamics alterations by regulating PGC-1α protein level and mitigating translocation of Bax and Drp-1 to mitochondria and cytochrome-c release into the cytoplasm. PPX also increased mitofusin-2 protein expression, a basic element of mitochondrial fusion process. We conclude that remedial role of PPX in mitigating oxidative damage and mitochondrial perturbation that are modulated in Aβ1-42 rats may have the propensity in AD pathogenesis.
Collapse
|
26
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
27
|
Chen H, Chen F, Jiang Y, Zhang L, Hu G, Sun F, Zhang M, Ji Y, Chen Y, Che G, Zhou X, Zhang Y. A Review of ApoE4 Interference Targeting Mitophagy Molecular Pathways for Alzheimer's Disease. Front Aging Neurosci 2022; 14:881239. [PMID: 35669462 PMCID: PMC9166238 DOI: 10.3389/fnagi.2022.881239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is one of the major worldwide causes of dementia that is characterized by irreversible decline in learning, memory loss, and behavioral impairments. Mitophagy is selective autophagy through the clearance of aberrant mitochondria, specifically for degradation to maintain energy generation and neuronal and synaptic function in the brain. Accumulating evidence shows that defective mitophagy is believed to be as one of the early and prominent features in AD pathogenesis and has drawn attention in the recent few years. APOE ε4 allele is the greatest genetic determinant for AD and is widely reported to mediate detrimental effects on mitochondria function and mitophagic process. Given the continuity of the physiological process, this review takes the mitochondrial dynamic and mitophagic core events into consideration, which highlights the current knowledge about the molecular alterations from an APOE-genotype perspective, synthesizes ApoE4-associated regulations, and the cross-talk between these signaling, along with the focuses on general autophagic process and several pivotal processes of mitophagy, including mitochondrial dynamic (DRP1, MFN-1), mitophagic induction (PINK1, Parkin). These may shed new light on the link between ApoE4 and AD and provide novel insights for promising mitophagy-targeted therapeutic strategies for AD.
Collapse
Affiliation(s)
- Huiyi Chen
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Jiang
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Lu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guizhen Hu
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Che
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejian University School of Medicine, Hangzhou, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
28
|
Rhein Ameliorates Cognitive Impairment in an APP/PS1 Transgenic Mouse Model of Alzheimer's Disease by Relieving Oxidative Stress through Activating the SIRT1/PGC-1 α Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2524832. [PMID: 35360200 PMCID: PMC8964225 DOI: 10.1155/2022/2524832] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/08/2022] [Indexed: 01/05/2023]
Abstract
Mitochondrial oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). Recently, antioxidant therapy has been considered an effective strategy for the treatment of AD. Our previous work discovered that rhein relieved mitochondrial oxidative stress in β-amyloid (Aβ) oligomer-induced primary neurons by improving the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha- (PGC-1α-) regulated mitochondrial biogenesis. While encouraging results have been provided, mechanisms underlying the beneficial effect of rhein on AD are yet to be elucidated in vivo. In this study, we evaluated the therapeutic effect of rhein on an APP/PS1 transgenic (APP/PS1) mouse model of AD and explored its antioxidant mechanisms. As a result, rhein significantly reduced Aβ burden and neuroinflammation and eventually ameliorated cognitive impairment in APP/PS1 mice. Moreover, rhein reversed oxidative stress in the brain of APP/PS1 mice and protected neurons from oxidative stress-associated apoptosis. Further study revealed that rhein promoted mitochondrial biogenesis against oxidative stress by upregulating SIRT1 and its downstream PGC-1α as well as nuclear respiratory factor 1. Improved mitochondrial biogenesis not only increased the activity of superoxide dismutase to scavenge excess reactive oxygen species (ROS) but also repaired mitochondria by mitochondrial fusion to inhibit the production of ROS from the electron transport chain. Notably, the exposure of rhein in the brain analyzed by tissue distribution study indicated that rhein could permeate into the brain to exert its therapeutic effects. In conclusion, these findings drive rhein to serve as a promising therapeutic antioxidant for the treatment of AD. Our research highlights the therapeutic efficacy for AD through regulating mitochondrial biogenesis via the SIRT1/PGC-1α pathway.
Collapse
|
29
|
Onukwufor JO, Dirksen RT, Wojtovich AP. Iron Dysregulation in Mitochondrial Dysfunction and Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11040692. [PMID: 35453377 PMCID: PMC9027385 DOI: 10.3390/antiox11040692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating progressive neurodegenerative disease characterized by neuronal dysfunction, and decreased memory and cognitive function. Iron is critical for neuronal activity, neurotransmitter biosynthesis, and energy homeostasis. Iron accumulation occurs in AD and results in neuronal dysfunction through activation of multifactorial mechanisms. Mitochondria generate energy and iron is a key co-factor required for: (1) ATP production by the electron transport chain, (2) heme protein biosynthesis and (3) iron-sulfur cluster formation. Disruptions in iron homeostasis result in mitochondrial dysfunction and energetic failure. Ferroptosis, a non-apoptotic iron-dependent form of cell death mediated by uncontrolled accumulation of reactive oxygen species and lipid peroxidation, is associated with AD and other neurodegenerative diseases. AD pathogenesis is complex with multiple diverse interacting players including Aβ-plaque formation, phosphorylated tau, and redox stress. Unfortunately, clinical trials in AD based on targeting these canonical hallmarks have been largely unsuccessful. Here, we review evidence linking iron dysregulation to AD and the potential for targeting ferroptosis as a therapeutic intervention for AD.
Collapse
Affiliation(s)
- John O. Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Correspondence:
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
| | - Andrew P. Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
30
|
Yang L, Wu C, Li Y, Dong Y, Wu CYC, Lee RHC, Brann DW, Lin HW, Zhang Q. Long-term exercise pre-training attenuates Alzheimer's disease-related pathology in a transgenic rat model of Alzheimer's disease. GeroScience 2022; 44:1457-1477. [PMID: 35229257 DOI: 10.1007/s11357-022-00534-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Despite enormous efforts around the world, there remains no effective cure for AD. This study was performed to investigate the effects of long-term exercise pretreatment on the typical pathology of AD in a novel transgenic AD rat model. Male 2-month-old animals were divided into the following groups: wild-type (WT) rats, AD rats, and AD rats with treadmill exercise pretreatment (AD-Exe). After exercise pretreatment, the Barnes maze task, passive avoidance task, and cued fear conditioning test were performed to test learning and memory function. The elevated plus maze, open field test, sucrose preference test, and forced swim test were conducted to measure anxious-depressive-like behavior. Immunofluorescence staining, Golgi staining, transmission electron microscopy, Western blot analysis, F-Jade C staining, TUNEL staining, and related assay kits were conducted to measure Aβ plaques, tau hyperphosphorylation, neuronal damage, neuronal degeneration, dendritic spine density, synapses, synaptic vesicles, mitochondrial morphology, mitochondrial dynamic, oxidative stress, and neuroinflammation. Behavioral tests revealed that long-term exercise pretreatment significantly alleviated learning and memory dysfunction and anxious-depressive-like behaviors in AD animals. In addition, exercise pretreatment attenuated amyloid-β deposition and tau hyperphosphorylation and preserved spine density, synapses, and presynaptic vesicles. Exercise also inhibited neuronal damage, neuronal apoptosis, and neuronal degeneration. Additional studies revealed the imbalance of mitochondrial dynamics was significantly inhibited by exercise pretreatment accompanied by a remarkable suppression of oxidative stress and neuroinflammation. Our findings suggest that long-term exercise pretreatment alleviated behavioral deficits and typical pathologies of the AD rat model, supporting long-term exercise pretreatment as a potential approach to delay the progression of AD.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
31
|
Kshirsagar S, Sawant N, Morton H, Reddy AP, Reddy PH. Protective effects of mitophagy enhancers against amyloid beta-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum Mol Genet 2022; 31:423-439. [PMID: 34505123 PMCID: PMC8825310 DOI: 10.1093/hmg/ddab262] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
The purpose of our study is to determine the protective effects of mitophagy enhancers against mutant APP and amyloid beta (Aβ)-induced mitochondrial and synaptic toxicities in Alzheimer's disease (ad). Over two decades of research from our lab and others revealed that mitochondrial abnormalities are largely involved in the pathogenesis of both early-onset and late-onset ad. Emerging studies from our lab and others revealed that impaired clearance of dead or dying mitochondria is an early event in the disease process. Based on these changes, it has been proposed that mitophagy enhancers are potential therapeutic candidates to treat patients with ad. In the current study, we optimized doses of mitophagy enhancers urolithin A, actinonin, tomatidine, nicotinamide riboside in immortalized mouse primary hippocampal (HT22) neurons. We transfected HT22 cells with mutant APP cDNA and treated with mitophagy enhancers and assessed mRNA and protein levels of mitochondrial dynamics, biogenesis, mitophagy and synaptic genes, cell survival; assessed mitochondrial respiration in mAPP-HT22 cells treated and untreated with mitophagy enhancers. We also assessed mitochondrial morphology in mAPP-HT22 cells treated and untreated with mitophagy enhancers. Mutant APP-HT22 cells showed increased fission, decreased fusion, synaptic & mitophagy genes, reduced cell survival and defective mitochondrial respiration, and excessively fragmented and reduced length of mitochondria. However, these events were reversed in mitophagy-enhancers-treated mutant mAPP-HT22 cells. Cell survival was significantly increased, mRNA and protein levels of mitochondrial fusion, synaptic and mitophagy genes were increased, mitochondrial number is reduced, and mitochondrial length is increased, and mitochondrial fragmentation is reduced in mitophagy-enhancers-treated mutant APP-HT22 cells. Further, urolithin A showed strongest protective effects against mutant APP and Aβ-induced mitochondrial and synaptic toxicities in ad. Based on these findings, we cautiously propose that mitophagy enhancers are promising therapeutic drugs to treat mitophagy in patients with ad.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
32
|
Wang Y, Xia B, Huang Q, Luo T, Zhang Y, Timashev P, Guo W, Li F, Liang X. Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. Adv Healthc Mater 2021; 10:e2100945. [PMID: 34418321 DOI: 10.1002/adhm.202100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Considerable efforts have been made into developing aggregation-induced emission fluorogens (AIEgens)-containing nano-therapeutic systems due to the excellent properties of AIEgens. Compared to other fluorescent molecules, AIEgens have advantages including low background, high signal-to-noise ratio, good sensitivity, and resistance to photobleaching, in addition to being exempt from concentration quenching or aggregation-caused quenching effects. The present review outlines the major developments in the biomedical applications of AIEgens-containing systems. From a literature survey, the recent AIE works are reviewed and the reasons why AIEgens are chosen in various biomedical applications are highlighted. The research activities on AIEgens-containing systems are increasing rapidly, therefore, the present review is timely.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Luo
- School of Medicine Nankai University Tianjin 300071 China
- Department of Interventional Ultrasound Chinese PLA General Hospital Beijing 100853 China
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Weisheng Guo
- Translational Medicine Center Key Laboratory of Molecular Target and Clinical Pharmacology School of Pharmaceutical Sciences and The Second Affiliated Hospital Guangzhou Medical University Guangzhou 510260 China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
33
|
Kshirsagar S, Sawant N, Morton H, Reddy AP, Reddy PH. Mitophagy enhancers against phosphorylated Tau-induced mitochondrial and synaptic toxicities in Alzheimer disease. Pharmacol Res 2021; 174:105973. [PMID: 34763094 PMCID: PMC8670983 DOI: 10.1016/j.phrs.2021.105973] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The purpose of our study is to determine the protective effects of mitophagy enhancers against phosphorylated tau (P-tau)-induced mitochondrial and synaptic toxicities in Alzheimer's disease (AD). Mitochondrial abnormalities, including defective mitochondrial dynamics, biogenesis, axonal transport and impaired clearance of dead mitochondria are linked to P-tau in AD. Mitophagy enhancers are potential therapeutic candidates to clear dead mitochondria and improve synaptic and cognitive functions in AD. We recently optimized the doses of mitophagy enhancers urolithin A, actinonin, tomatidine, nicotinamide riboside in immortalized mouse primary hippocampal (HT22) neurons. In the current study, we treated mutant Tau expressed in HT22 (mTau-HT22) cells with mitophagy enhancers and assessed mRNA and protein levels of mitochondrial/synaptic genes, cell survival and mitochondrial respiration. We also assessed mitochondrial morphology in mTau-HT22 cells treated and untreated with mitophagy enhancers. Mutant Tau-HT22 cells showed increased fission, decreased fusion, synaptic & mitophagy genes, reduced cell survival and defective mitochondrial respiration. However, these events were reversed in mitophagy enhancers treated mTau-HT22 cells. Cell survival was increased, mRNA and protein levels of mitochondrial fusion, synaptic and mitophagy genes were increased, and mitochondrial fragmentation is reduced in mitophagy enhancers treated mTau-HT22 cells. Further, urolithin A showed strongest protective effects among all enhancers tested in AD. Our combination treatments of urolithin A + EGCG, addition to urolithin A and EGCG individual treatment revealed that combination treatments approach is even stronger than urolithin A treatment. Based on these findings, we cautiously propose that mitophagy enhancers are promising therapeutic drugs to treat mitophagy in patients with AD.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
34
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Banerjee R, Mukherjee A, Nagotu S. Mitochondrial dynamics and its impact on human health and diseases: inside the DRP1 blackbox. J Mol Med (Berl) 2021; 100:1-21. [PMID: 34657190 DOI: 10.1007/s00109-021-02150-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential organelles that play a significant role in various cellular processes apart from providing energy in eukaryotic cells. An intricate link between mitochondrial structure and function is now unequivocally accepted. Several molecular players have been identified, which are important in maintaining the structure of the organelle. Dynamin-related protein 1 (DRP1) is one such conserved protein that is a vital regulator of mitochondrial dynamics. Multidisciplinary studies have helped elucidate the structure of the protein and its mechanism of action in great detail. Mutations in various domains of the protein have been identified that are associated with debilitating conditions in patients. The involvement of the protein in disease conditions such as neurodegeneration, cancer, and cardiovascular disorders is also gaining attention. The purpose of this review is to highlight recent findings on the role of DRP1 in human disease conditions and address its importance as a therapeutic target.
Collapse
Affiliation(s)
- Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Agradeep Mukherjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
36
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
37
|
Song Z, Luo D, Wang Y, Zheng Y, Chen P, Xia X, He C, Yu W, Li P, Xiao C, Cheng S. Neuroprotective Effect of Danggui Shaoyao San via the Mitophagy-Apoptosis Pathway in a Rat Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3995958. [PMID: 34621321 PMCID: PMC8492282 DOI: 10.1155/2021/3995958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease. While the main pathological characteristic of AD is widely believed to be the accumulation of amyloid-beta (Aβ) in neurons around neurofibrillary plaques, the molecular mechanism of pathological changes is not clear. Traditional Chinese medicine offers many treatments for AD. Among these, Danggui Shaoyao San (DSS) is a classic prescription. In this study, an AD model was established by injecting Aβ 1-42 into the brains of rats, which were then treated with different concentrations of Danggui Shaoyao San (sham operation; model; and Danggui Shaoyao San high-dose, medium-dose, and low-dose intervention groups). The Morris water maze test was used to assess the learning and memory abilities of the animals in each group. Nissl staining was used to detect neurons. Mitophagy was evaluated by transmission electron microscopy and immunofluorescence colocalization. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression levels of autophagy- and apoptosis-related proteins were measured by western blot. Compared to the model group, the groups of AD rats administered medium and high doses of Danggui Shaoyao San showed significantly increased learning and memory abilities (P < 0.05), as well as significantly increased autophagosomes in the hippocampus. Moreover, the expression of PTEN-induced kinase 1 (PINK1), Parkin, and microtubule-associated protein light chain 3 (LC3-I/LC3-II) was increased, while that of p62 was significantly decreased (P < 0.05). The neuronal apoptosis rate was also significantly decreased, the Bcl-2/Bax ratio was significantly increased, and the cleaved caspase-3 protein expression was significantly decreased (P < 0.05). Therefore, Danggui Shaoyao San inhibited neuronal apoptosis in AD rats via a mechanism that may be related to the activation of the PINK1-Parkin-mediated mitophagy signaling pathway.
Collapse
Affiliation(s)
- Zhenyan Song
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Deyong Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuke Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yushan Zheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Peiying Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaofang Xia
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chunxiang He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenjing Yu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Ping Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chen Xiao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
38
|
Eran S, Ronit PK. APOE4 expression is associated with impaired autophagy and mitophagy in astrocytes. Neural Regen Res 2021; 17:777-778. [PMID: 34472467 PMCID: PMC8530113 DOI: 10.4103/1673-5374.322452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Schmukler Eran
- Department of Neurobiology, School of Neurobiology Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, Israel
| | - Pinkas-Kramarski Ronit
- Department of Neurobiology, School of Neurobiology Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, Israel
| |
Collapse
|
39
|
Dougherty RJ, Ramachandran J, Liu F, An Y, Wanigatunga AA, Tian Q, Bilgel M, Simonsick EM, Ferrucci L, Resnick SM, Schrack JA. Association of walking energetics with amyloid beta status: Findings from the Baltimore Longitudinal Study of Aging. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12228. [PMID: 34458552 PMCID: PMC8377776 DOI: 10.1002/dad2.12228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Higher energetic costs for mobility predict gait speed decline. Slow gait is linked to cognitive decline and Alzheimer's disease (AD). Whether the energetic cost of walking is linked to AD pathology is unknown. We investigated the cross-sectional association between the energetic cost of walking, gait speed, and amyloid beta (Aβ) status (+/-) in older adults. METHODS One hundred forty-nine cognitively normal adults (56% women, mean age 77.5 ± 8.4 years) completed customary-paced walking assessments with indirect calorimetry and 11C-Pittsburgh compound B positron emission tomography. Logistic regression models examined associations adjusted for demographics, body composition, comorbid conditions, and apolipoprotein E ε4. RESULTS Each 0.01 mL/kg/m greater energy cost was associated with 18% higher odds of being Aβ+ (odds ratio [OR] = 1.18; 95% confidence interval [CI]: 1.04 to 1.34; P = .011). These findings were not observed when investigating gait speed (OR = 0.99; 95% CI: 0.97 to 1.01; P = .321). DISCUSSION High energetic cost of walking is linked to AD pathology and may be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Ryan J. Dougherty
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Janani Ramachandran
- Departments of Epidemiology and BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Fangyu Liu
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Yang An
- Intramural Research Program, National Institute on AgingBaltimoreMarylandUSA
| | - Amal A. Wanigatunga
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Qu Tian
- Intramural Research Program, National Institute on AgingBaltimoreMarylandUSA
| | - Murat Bilgel
- Intramural Research Program, National Institute on AgingBaltimoreMarylandUSA
| | | | - Luigi Ferrucci
- Intramural Research Program, National Institute on AgingBaltimoreMarylandUSA
| | - Susan M. Resnick
- Intramural Research Program, National Institute on AgingBaltimoreMarylandUSA
| | - Jennifer A. Schrack
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Intramural Research Program, National Institute on AgingBaltimoreMarylandUSA
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
40
|
Morton H, Kshirsagar S, Orlov E, Bunquin LE, Sawant N, Boleng L, George M, Basu T, Ramasubramanian B, Pradeepkiran JA, Kumar S, Vijayan M, Reddy AP, Reddy PH. Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse. Free Radic Biol Med 2021; 172:652-667. [PMID: 34246776 DOI: 10.1016/j.freeradbiomed.2021.07.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. AD is marked by multiple cellular changes, including deregulation of microRNAs, activation of glia and astrocytes, hormonal imbalance, defective mitophagy, synaptic degeneration, in addition to extracellular neuritic amyloid-beta (Aβ) plaques, phosphorylated tau (P-tau), and intracellular neurofibrillary tangles (NFTs). Recent research in AD revealed that defective synaptic mitophagy leads to synaptic degeneration and cognitive dysfunction in AD neurons. Our critical analyses of mitochondria and Aβ and P-tau revealed that increased levels of Aβ and P-Tau, and abnormal interactions between Aβ and Drp1, P-Tau and Drp1 induced increased mitochondrial fragmentation and proliferation of dysfunctional mitochondria in AD neurons and depleted Parkin and PINK1 levels. These events ultimately lead to impaired clearance of dead and/or dying mitochondria in AD neurons. The purpose of our article is to highlight the recent research on mitochondria and synapses in relation to Aβ and P-tau, focusing on recent developments.
Collapse
Affiliation(s)
- Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Erika Orlov
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lloyd E Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lauren Boleng
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - Mathew George
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
41
|
Cheng D, Su L, Wang X, Li X, Li L, Hu M, Lu Y. Extract of Cynomorium songaricum ameliorates mitochondrial ultrastructure impairments and dysfunction in two different in vitro models of Alzheimer's disease. BMC Complement Med Ther 2021; 21:206. [PMID: 34372842 PMCID: PMC8351341 DOI: 10.1186/s12906-021-03375-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
Background Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, but there is still no effective way to stop or slow its progression. Our previous studies demonstrated that extract of Cynomorium songaricum (ECS), a Chinese herbal medicine, had neuroprotective effects in AD models in vivo. However, the pharmacological mechanism of ECS in AD is still unclear. Methods To study the mechanisms of action of the effects of ECS on AD, we used Aβ25–35- and H2O2-exposed HT22 cells to mimic specific stages of AD in vitro. The mitochondrial membrane potential (MMP), intracellular ATP, intracellular reactive oxygen species (ROS), and expression levels of mitochondrial dynamics-related proteins in each group were examined. Furthermore, we explored the mechanisms by which ECS reduces the phosphorylation of Drp1 at Ser637 and the changes in the concentrations of intracellular calcium ions in the two models after FK506 intervention. Results The results showed that ECS significantly enhanced the MMP (P < 0.05), increased intracellular ATP levels (P < 0.05) and decreased intracellular ROS levels in the Aβ- and H2O2-induced cell models (P < 0.05). Additionally, ECS regulated the expression levels of mitochondrial dynamics-related proteins by reducing the phosphorylation of Drp1 at Ser637 (P < 0.05) and decreasing the expression of Fis1 in the H2O2-induced models (P < 0.05). Further study indicated that ECS reduced the overload of intracellular calcium (P < 0.05). Conclusion Our study results suggest that ECS protects the mitochondrial ultrastructure, ameliorates mitochondrial dysfunction, and maintains mitochondrial dynamics in AD models. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03375-2.
Collapse
Affiliation(s)
- Dan Cheng
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Su
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinjie Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyuan Hu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Lu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
42
|
Nguyen H, Tran D, Galazka JM, Costes SV, Beheshti A, Petereit J, Draghici S, Nguyen T. CPA: a web-based platform for consensus pathway analysis and interactive visualization. Nucleic Acids Res 2021; 49:W114-W124. [PMID: 34037798 PMCID: PMC8262702 DOI: 10.1093/nar/gkab421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
In molecular biology and genetics, there is a large gap between the ease of data collection and our ability to extract knowledge from these data. Contributing to this gap is the fact that living organisms are complex systems whose emerging phenotypes are the results of multiple complex interactions taking place on various pathways. This demands powerful yet user-friendly pathway analysis tools to translate the now abundant high-throughput data into a better understanding of the underlying biological phenomena. Here we introduce Consensus Pathway Analysis (CPA), a web-based platform that allows researchers to (i) perform pathway analysis using eight established methods (GSEA, GSA, FGSEA, PADOG, Impact Analysis, ORA/Webgestalt, KS-test, Wilcox-test), (ii) perform meta-analysis of multiple datasets, (iii) combine methods and datasets to accurately identify the impacted pathways underlying the studied condition and (iv) interactively explore impacted pathways, and browse relationships between pathways and genes. The platform supports three types of input: (i) a list of differentially expressed genes, (ii) genes and fold changes and (iii) an expression matrix. It also allows users to import data from NCBI GEO. The CPA platform currently supports the analysis of multiple organisms using KEGG and Gene Ontology, and it is freely available at http://cpa.tinnguyen-lab.com.
Collapse
Affiliation(s)
- Hung Nguyen
- University of Nevada Reno, Department of Computer Science and Engineering, Reno, NV 89557, USA
| | - Duc Tran
- University of Nevada Reno, Department of Computer Science and Engineering, Reno, NV 89557, USA
| | - Jonathan M Galazka
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
| | - Juli Petereit
- University of Nevada Reno, Nevada Bioinformatics Center, Reno, NV 89557, USA
| | - Sorin Draghici
- Wayne State University, Department of Computer Science, Detroit, MI 48202, USA
| | - Tin Nguyen
- University of Nevada Reno, Department of Computer Science and Engineering, Reno, NV 89557, USA
| |
Collapse
|
43
|
Zhao W, Hou Y, Song X, Wang L, Zhang F, Zhang H, Yu H, Zhou Y. Estrogen Deficiency Induces Mitochondrial Damage Prior to Emergence of Cognitive Deficits in a Postmenopausal Mouse Model. Front Aging Neurosci 2021; 13:713819. [PMID: 34335235 PMCID: PMC8319728 DOI: 10.3389/fnagi.2021.713819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Estrogen deficiency contributes to the development of Alzheimer's disease (AD) in menopausal women. In the current study, we examined the impact of estrogen deficiency on mitochondrial function and cognition using a postmenopausal mouse model. Methods: Bilateral ovariectomy was conducted in adult females C57BL/6J. Cognitive function was examined using the Morris water maze (MWM) test at 2 weeks, 1, 2, and 3 months after ovariectomy. Neurodegeneration was assessed using an immunofluorescence assay of microtubule-associated protein 2 (MAP2) in the hippocampus and immunoblotting against postsynaptic density-95 (PSD95). Mitochondrial function in the hippocampus was assessed using immunoblotting for NDUFB8, SDHB, UQCRC2, MTCO1, and ATP5A1. Mitochondrial biogenesis was examined using immunoblotting for PGC-1α, NRF1, and mtTFA. Mitochondrion fission was assessed with immunoblotting for Drp1, whereas mitochondrion fusion was analyzed with immunoblotting for OPA1 and Mfn2. Mitophagy was examined with immunoblotting for PINK1 and LC3B. Mice receiving sham surgery were used as controls. Results: Ovariectomy resulted in significant learning and memory deficits in the MWM test at 3 months, but not at any earlier time points. At 2 weeks after ovariectomy, levels of Drp1 phosphorylated at Ser637 decreased in the hippocampus. At 1 month after ovariectomy, hippocampal levels of NDUFB8, SDHB, PGC-1α, mtTFA, OPA1, and Mfn2 were significantly reduced. At 2 months after ovariectomy, hippocampal levels of MAP2, PSD95, MTCO1, NRF1, and Pink1 were also reduced. At 3 months, levels of LC3B-II were reduced. Conclusions: The cognitive decline associated with estrogen deficiency is preceded by mitochondrial dysfunction, abnormal mitochondrial biogenesis, irregular mitochondrial dynamics, and decreased mitophagy. Thus, mitochondrial damage may contribute to cognitive impairment associated with estrogen deficiency.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinxin Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Lei Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Fangfang Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Hanting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
44
|
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1069. [PMID: 34356302 PMCID: PMC8301100 DOI: 10.3390/antiox10071069] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress. Accumulative evidence suggests that the transcriptional factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a vital defensive role orchestrating the antioxidant response in the brain. Nrf2 activation promotes the expression of several antioxidant enzymes that exert cytoprotective effects against oxidative damage and mitochondrial impairment. In this context, several studies have proposed a role of Nrf2 in the pathogenesis of PD and AD. Thus, we consider it important to summarize the ongoing literature related to the effects of the Nrf2 pathway in the context of these diseases. Therefore, in this review, we discuss the mechanisms involved in Nrf2 activity and its connection with mitochondria, energy supply, and antioxidant response in the brain. Furthermore, we will lead our discussion to identify the participation of the Nrf2 pathway in mitochondrial impairment and neurodegeneration present in PD and AD. Finally, we will discuss the therapeutic effects that the Nrf2 pathway activation could have on the cognitive impairment, neurodegeneration, and mitochondrial failure present in PD and AD.
Collapse
Affiliation(s)
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
45
|
Cheng J, Liu HP, Lin WY, Tsai FJ. Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer's disease. Sci Rep 2021; 11:13704. [PMID: 34211065 PMCID: PMC8249453 DOI: 10.1038/s41598-021-93085-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder causing 70% of dementia cases. However, the mechanism of disease development is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of AD's mechanism from machine learning (ML) is so far unrealized, majorly due to the lack of needed data density. To harness the AD mechanism's knowledge from the expression profiles of postmortem prefrontal cortex samples of 310 AD and 157 controls, we used seven predictive operators or combinations of RapidMiner Studio operators to establish predictive models from the input matrix and to assign a weight to each attribute. Besides, conventional fold-change methods were also applied as controls. The identified genes were further submitted to enrichment analysis for KEGG pathways. The average accuracy of ML models ranges from 86.30% to 91.22%. The overlap ratio of the identified genes between ML and conventional methods ranges from 19.7% to 21.3%. ML exclusively identified oxidative phosphorylation genes in the AD pathway. Our results highlighted the deficiency of oxidative phosphorylation in AD and suggest that ML should be considered as complementary to the conventional fold-change methods in transcriptome studies.
Collapse
Affiliation(s)
- Jack Cheng
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| | - Hsin-Ping Liu
- grid.254145.30000 0001 0083 6092Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan
| | - Wei-Yong Lin
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092Brain Diseases Research Center, China Medical University, Taichung, 40402 Taiwan
| | - Fuu-Jen Tsai
- grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Laboratory and Biotechnology, Asia University, Taichung, 41354 Taiwan ,grid.254145.30000 0001 0083 6092Division of Pediatric Genetics, Children’s Hospital of China Medical University, Taichung, 40447 Taiwan
| |
Collapse
|
46
|
Jurcau A, Simion A. Oxidative Stress in the Pathogenesis of Alzheimer's Disease and Cerebrovascular Disease with Therapeutic Implications. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:94-108. [PMID: 32124703 DOI: 10.2174/1871527319666200303121016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
The significant gain in life expectancy led to an increase in the incidence and prevalence of dementia. Although vascular risk factors have long and repeatedly been shown to increase the risk of Alzheimer's Disease (AD), translating these findings into effective preventive measures has failed. In addition, the finding that incident ischemic stroke approximately doubles the risk of a patient to develop AD has been recently reinforced. Current knowledge and pathogenetic hypotheses of AD are discussed. The implication of oxidative stress in the development of AD is reviewed, with special emphasis on its sudden burst in the setting of acute ischemic stroke and the possible link between this increase in oxidative stress and consequent cognitive impairment. Current knowledge and future directions in the prevention and treatment of AD are discussed outlining the hypothesis of a possible beneficial effect of antioxidant treatment in acute ischemic stroke in delaying the onset/progression of dementia.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurology Ward, Oradea, Romania
| | - Aurel Simion
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurological Rehabilitation Ward, Oradea, Romania
| |
Collapse
|
47
|
Han R, Liang J, Zhou B. Glucose Metabolic Dysfunction in Neurodegenerative Diseases-New Mechanistic Insights and the Potential of Hypoxia as a Prospective Therapy Targeting Metabolic Reprogramming. Int J Mol Sci 2021; 22:5887. [PMID: 34072616 PMCID: PMC8198281 DOI: 10.3390/ijms22115887] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Glucose is the main circulating energy substrate for the adult brain. Owing to the high energy demand of nerve cells, glucose is actively oxidized to produce ATP and has a synergistic effect with mitochondria in metabolic pathways. The dysfunction of glucose metabolism inevitably disturbs the normal functioning of neurons, which is widely observed in neurodegenerative disease. Understanding the mechanisms of metabolic adaptation during disease progression has become a major focus of research, and interventions in these processes may relieve the neurons from degenerative stress. In this review, we highlight evidence of mitochondrial dysfunction, decreased glucose uptake, and diminished glucose metabolism in different neurodegeneration models such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss how hypoxia, a metabolic reprogramming strategy linked to glucose metabolism in tumor cells and normal brain cells, and summarize the evidence for hypoxia as a putative therapy for general neurodegenerative disease.
Collapse
Affiliation(s)
- Rongrong Han
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
| | - Jing Liang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
48
|
Tajmim A, Cuevas-Ocampo AK, Siddique AB, Qusa MH, King JA, Abdelwahed KS, Sonju JJ, El Sayed KA. (-)-Oleocanthal Nutraceuticals for Alzheimer's Disease Amyloid Pathology: Novel Oral Formulations, Therapeutic, and Molecular Insights in 5xFAD Transgenic Mice Model. Nutrients 2021; 13:nu13051702. [PMID: 34069842 PMCID: PMC8157389 DOI: 10.3390/nu13051702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aβ-amyloid (Aβ) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(–)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of β-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aβ plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.
Collapse
Affiliation(s)
- Afsana Tajmim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Areli K. Cuevas-Ocampo
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Judy Ann King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
- Correspondence: ; Tel.: +1-318-342-1725
| |
Collapse
|
49
|
Hosseini L, Mahmoudi J, Pashazadeh F, Salehi-Pourmehr H, Sadigh-Eteghad S. Protective Effects of Nicotinamide Adenine Dinucleotide and Related Precursors in Alzheimer's Disease: A Systematic Review of Preclinical Studies. J Mol Neurosci 2021; 71:1425-1435. [PMID: 33907963 DOI: 10.1007/s12031-021-01842-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
Data from preclinical studies propose nicotinamide adenine dinucleotide (NAD+) as a neuroprotective and bioenergetics stimulant agent to treat Alzheimer's disease (AD); however, there seems to be inconsistency between behavioral and molecular outcomes. We performed this systematic review to provide a better understanding of the effects of NAD+ in rodent AD models and to summarize the literature.Studies were identified by searching PubMed, EMBASE, Scopus, Google Scholar, and the reference lists of relevant review articles published through December 2020. The search strategy was restricted to articles about NAD+, its derivatives, and their association with cognitive function in AD rodent models. The initial search yielded 320 articles, of which 11 publications were included in our systematic review.Based on the primary outcomes, it was revealed that NAD+ improves learning and memory. The secondary endpoints also showed neuroprotective effects of NAD+ on different AD models. The proposed neuroprotective mechanisms included, but were not limited to, the attenuation of the oxidative stress, inflammation, and apoptosis, while enhancing the mitochondrial function.The current systematic review summarizes the preclinical studies on NAD+ precursors and provides evidence favoring the pro-cognitive effects of such components in rodent models of AD.
Collapse
Affiliation(s)
- Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Onyango IG, Bennett JP, Stokin GB. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 2021; 16:1467-1482. [PMID: 33433460 PMCID: PMC8323696 DOI: 10.4103/1673-5374.303007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular mechanisms and clinical manifestations with abnormal protein dynamics and impaired bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and incidence of these diseases is on the rise with the increasing global population and average lifespan. Although many therapeutic approaches have been tested, there are currently no effective treatment routes for the prevention or cure of these diseases. We present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in these diseases and highlight recent advances in novel therapeutic strategies targeting neuronal bioenergetics as potential approach for treating these diseases.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - James P Bennett
- Neurodegeneration Therapeutics, 3050A Berkmar Drive, Charlottesville, VA, USA
| | - Gorazd B Stokin
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|