1
|
Lamadrid-González J, Castellar-Leones S, Contreras-Velásquez JC, Bermúdez V. SMN2 Copy Number Association with Spinal Muscular Atrophy Severity: Insights from Colombian Patients. J Clin Med 2024; 13:6402. [PMID: 39518541 PMCID: PMC11545890 DOI: 10.3390/jcm13216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Spinal muscular atrophy (SMA) is a genetic neurodegenerative disease primarily affecting paediatric patients, often leading to significant morbidity and mortality. Our principal objective is to describe the sociodemographic characteristics and evaluate the association between the number of SMN2 copies and SMA type in patients from the Colombian Foundation for Spinal Muscular Atrophy (FAMECOL) database. Methodology: An analytical cross-sectional study was conducted on 201 patients with a genetic diagnosis of SMA. Data were identified, extracted, and collected from patient records provided by FAMECOL as patients registered with the association, including 201 patients from April 2013 to April 2024, when the database was delivered. Qualitative variables were described using relative and absolute frequencies, while quantitative variables were described using central tendency and dispersion measures according to their distribution. The association between the SMA type and the SMN2 number of copies was assessed by Fisher's exact test (1 to 5 copies). Results: Of the 201 patients studied, 42% were female (n = 85), and 58% were male (n = 116). The median age was 9 years (IQR 4-16 years). The median age at diagnosis was 9 years (IQR 4-16), varying by subgroup: 2, 7, 14, and 41.5 years for each type, respectively. A total of 25% patients were from Antioquia (n = 51). Eighty-nine per cent had gastrostomy (n = 18). The association between the two variables was statistically significant (p < 0.05). Conclusion: This study highlights SMA clinical variability and its association with the number of SMN2 copies, underscoring the importance of a personalised approach to diagnosing and managing this disease. The findings may guide more effective therapeutic strategies to improve patients' quality of life.
Collapse
Affiliation(s)
- José Lamadrid-González
- Programa de Maestría en Genética, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Atlántico 080003, Colombia
| | - Sandra Castellar-Leones
- Departamento de Medicina Fisica y Rehabilitacion, Facultad de medicina, Universidad Nacional de Colombia, Bogotá DC 111321, Colombia;
| | | | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Atlántico 080003, Colombia;
| |
Collapse
|
2
|
Vill K, Tacke M, König A, Baumann M, Baumgartner M, Steinbach M, Bernert G, Blaschek A, Deschauer M, Flotats-Bastardas M, Friese J, Goldbach S, Gross M, Günther R, Hahn A, Hagenacker T, Hauser E, Horber V, Illsinger S, Johannsen J, Kamm C, Koch JC, Koelbel H, Koehler C, Kolzter K, Lochmüller H, Ludolph A, Mensch A, Meyer Zu Hoerste G, Mueller M, Mueller-Felber W, Neuwirth C, Petri S, Probst-Schendzielorz K, Pühringer M, Steinbach R, Schara-Schmidt U, Schimmel M, Schrank B, Schwartz O, Schlachter K, Schwerin-Nagel A, Schreiber G, Smitka M, Topakian R, Trollmann R, Tuerk M, Theophil M, Rauscher C, Vorgerd M, Walter MC, Weiler M, Weiss C, Wilichowski E, Wurster CD, Wunderlich G, Zeller D, Ziegler A, Kirschner J, Pechmann A. 5qSMA: standardised retrospective natural history assessment in 268 patients with four copies of SMN2. J Neurol 2024; 271:2787-2797. [PMID: 38409538 PMCID: PMC11055798 DOI: 10.1007/s00415-024-12188-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
Newborn screening for 5qSMA offers the potential for early, ideally pre-symptomatic, therapeutic intervention. However, limited data exist on the outcomes of individuals with 4 copies of SMN2, and there is no consensus within the SMA treatment community regarding early treatment initiation in this subgroup. To provide evidence-based insights into disease progression, we performed a retrospective analysis of 268 patients with 4 copies of SMN2 from the SMArtCARE registry in Germany, Austria and Switzerland. Inclusion criteria required comprehensive baseline data and diagnosis outside of newborn screening. Only data prior to initiation of disease-modifying treatment were included. The median age at disease onset was 3.0 years, with a mean of 6.4 years. Significantly, 55% of patients experienced symptoms before the age of 36 months. 3% never learned to sit unaided, a further 13% never gained the ability to walk independently and 33% of ambulatory patients lost this ability during the course of the disease. 43% developed scoliosis, 6.3% required non-invasive ventilation and 1.1% required tube feeding. In conclusion, our study, in line with previous observations, highlights the substantial phenotypic heterogeneity in SMA. Importantly, this study provides novel insights: the median age of disease onset in patients with 4 SMN2 copies typically occurs before school age, and in half of the patients even before the age of three years. These findings support a proactive approach, particularly early treatment initiation, in this subset of SMA patients diagnosed pre-symptomatically. However, it is important to recognize that the register will not include asymptomatic individuals.
Collapse
Affiliation(s)
- Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany.
- School of Medicine, Klinikum Rechts Der Isar, Department of Human Genetics, Technical University of Munich, Munich, Germany.
| | - Moritz Tacke
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Anna König
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuela Baumgartner
- Department of Children and Adolescents, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Meike Steinbach
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Astrid Blaschek
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Marcus Deschauer
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, Munich, Germany
| | | | - Johannes Friese
- Department of Neuropediatrics, University Hospital Bonn, Center for Pediatrics, Bonn, Germany
| | | | - Martin Gross
- Department of Neurological Intensive Care and Rehabilitation, Evangelisches Krankenhaus Oldenburg, Oldenburg, Germany
| | - René Günther
- University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Tim Hagenacker
- Department of Neurology, and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Erwin Hauser
- Department for Neuropädiatrie, Landeskrankenhaus Mödling, Mödling, Austria
| | - Veronka Horber
- Department of Paediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Sabine Illsinger
- Hannover Medical School, Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kamm
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Jan C Koch
- Klinik Für Neurologie Universitätsmedizin Göttingen, Göttingen, Germany
| | - Heike Koelbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Cornelia Koehler
- Klinik Für Kinder-Und Jugendmedizin der Ruhr-Universität Bochum Im St. Josef-Hospital, Bochum, Germany
| | - Kirsten Kolzter
- Kliniken Köln, Sozialpädiatrisches Zentrum, Cologne, Germany
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Ludolph
- Department for Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
| | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Halle, Saale, Germany
| | | | - Monika Mueller
- Department for Neuropediatrics, University of Wuerzburg, Würzburg, Germany
| | - Wolfgang Mueller-Felber
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. Von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Manuel Pühringer
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital Linz, Linz, Austria
| | - Robert Steinbach
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Mareike Schimmel
- Pediatric Neurology, Pediatrics and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
| | - Bertold Schrank
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Oliver Schwartz
- Universitätsklinikum Münster Klinik Für Kinder- Und Jugendpädiatrie- Neuropädiatrie, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Kurt Schlachter
- Department of Neuropediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | | | | - Martin Smitka
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Raffi Topakian
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
| | - Regina Trollmann
- Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg Pediatric Neurology, Erlangen, Germany
| | - Matthias Tuerk
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | - Christian Rauscher
- Department for Neuropediatrics, University of Salzburg, Salzburg, Austria
| | - Mathias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Heimer Institute for Muscle Research, Ruhr-University Bochum, Bochum, Germany
| | - Maggie C Walter
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Weiss
- Charité - University Medicine Berlin, Center for Chronically Sick Children, Berlin, Germany
| | | | | | - Gilbert Wunderlich
- German Center for Neurodegenerative Diseases, DZNE, Site Ulm, Ulm, Germany
- Faculty of Medicine and University Hospital, Department of Neurology and Center for Rare Diseases, University of Cologne, Cologne, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Ziegler
- Center for Childhood and Adolescent Medicine, Department of Metabolic Medicine and Pediatric Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Janbernd Kirschner
- Klinik Für Kinder-Und Jugendmedizin der Ruhr-Universität Bochum Im St. Josef-Hospital, Bochum, Germany
| | - Astrid Pechmann
- Klinik Für Kinder-Und Jugendmedizin der Ruhr-Universität Bochum Im St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
3
|
Sun H, Zheng J, Zhang Q, Ying F, Fu Y, Guan Y, Wu J, Zhou Y, Dong J, Xu M, Yang F, An N, Shi N, Zhang L, Zhu S, Liu J, Li M. Screening of Spinal Muscular Atrophy Carriers and Prenatal Diagnosis in Pregnant Women in Yancheng, China. Biochem Genet 2024:10.1007/s10528-024-10775-9. [PMID: 38581475 DOI: 10.1007/s10528-024-10775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder with an autosomal recessive inheritance pattern. Patients with severe symptoms may suffer respiratory failure, leading to death. The homozygous deletion of exon 7 in the SMN1 gene accounts for nearly 95% of all cases. Population carrier screening for SMA and prenatal diagnosis by amniocentesis for high-risk couples can assist in identifying the risk of fetal disease. We provided the SMA carrier screening process to 55,447 pregnant women in Yancheng from October 2020 to December 2022. Among them, 8185 participated in this process, with a participation rate of around 14.76% (95% CI 14.47-15.06%). Quantitative real-time polymerase chain reaction (qPCR) was used to detect deletions of SMN1 exons 7 and 8 (E7, E8) in screened pregnant women. 127 were identified as carriers (111 cases of E7 and E8 heterozygous deletions, 15 cases of E7 heterozygous deletions, and 1 case of E7 heterozygous deletions and E8 homozygous deletions), resulting in a carrying rate of around 1.55% (95% CI 1.30-1.84%). After genetic counseling, 114 spouses of pregnant women who tested positive underwent SMA carrier screening; three of them were screened as SMA carriers. Multiplexed ligation-dependent probe amplification (MLPA) was used for the prenatal diagnosis of the fetuses of high-risk couples. Two of them exhibited two copies of SMN1 exon 7 (normal), and the pregnancy was continued; one exhibited no copies of SMN1 exon 7 and exon 8 (SMA patient), and the pregnancy was terminated. Analyzing SMN1 mutations in Yancheng and provide clinical evidence for SMA genetic counseling and birth defect prevention. Interventional prenatal diagnosis for high-risk families can promote informed reproductive selection and prepare for the fetus's early treatment.
Collapse
Affiliation(s)
- Huilin Sun
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Jianli Zheng
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Qing'e Zhang
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Feifei Ying
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Yadong Fu
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Yongjuan Guan
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Jing Wu
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Yueyun Zhou
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Jingjing Dong
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Mengjun Xu
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Fangfang Yang
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Ning An
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Ning Shi
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Lu Zhang
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Shu Zhu
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China
| | - Jianbing Liu
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China.
| | - Min Li
- The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, Yancheng, 224001, China.
| |
Collapse
|
4
|
Gowda V, Atherton M, Murugan A, Servais L, Sheehan J, Standing E, Manzur A, Scoto M, Baranello G, Munot P, McCullagh G, Willis T, Tirupathi S, Horrocks I, Dhawan A, Eyre M, Vanegas M, Fernandez-Garcia MA, Wolfe A, Pinches L, Illingworth M, Main M, Abbott L, Smith H, Milton E, D’Urso S, Vijayakumar K, Marco SS, Warner S, Reading E, Douglas I, Muntoni F, Ong M, Majumdar A, Hughes I, Jungbluth H, Wraige E. Efficacy and safety of onasemnogene abeparvovec in children with spinal muscular atrophy type 1: real-world evidence from 6 infusion centres in the United Kingdom. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100817. [PMID: 38169987 PMCID: PMC10758961 DOI: 10.1016/j.lanepe.2023.100817] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Background Real-world data on the efficacy and safety of onasemnogene abeparvovec (OA) in spinal muscular atrophy (SMA) are needed, especially to overcome uncertainties around its use in older and heavier children. This study evaluated the efficacy and safety of OA in patients with SMA type 1 in the UK, including patients ≥2 years old and weighing ≥13.5 kg. Methods This observational cohort study used data from patients with genetically confirmed SMA type 1 treated with OA between May 2021 and January 2023, at 6 infusion centres in the United Kingdom. Functional outcomes were assessed using age-appropriate functional scales. Safety analyses included review of liver function, platelet count, cardiac assessments, and steroid requirements. Findings Ninety-nine patients (45 SMA therapy-naïve) were treated with OA (median age at infusion: 10 [range, 0.6-89] months; median weight: 7.86 [range, 3.2-20.2] kg; duration of follow-up: 3-22 months). After OA infusion, mean ± SD change in CHOP-INTEND score was 11.0 ± 10.3 with increased score in 66/78 patients (84.6%); patients aged <6 months had a 13.9 points higher gain in CHOP-INTEND score than patients ≥2 years (95% CI, 6.8-21.0; P < 0.001). Asymptomatic thrombocytopenia (71/99 patients; 71.7%), asymptomatic troponin-I elevation (30/89 patients; 33.7%) and transaminitis (87/99 patients; 87.9%) were reported. No thrombotic microangiopathy was observed. Median steroid treatment duration was 97 (range, 28-548) days with dose doubled in 35/99 patients (35.4%). There were 22.5-fold increased odds of having a transaminase peak >100 U/L (95% CI, 2.3-223.7; P = 0.008) and 21.2-fold increased odds of steroid doubling, as per treatment protocol (95% CI, 2.2-209.2; P = 0.009) in patients weighing ≥13.5 kg versus <8.5 kg. Weight at infusion was positively correlated with steroid treatment duration (r = 0.43; P < 0.001). Worsening transaminitis, despite doubling of oral prednisolone, led to treatment with intravenous methylprednisolone in 5 children. Steroid-sparing immunosuppressants were used in 5 children to enable steroid weaning. Two deaths apparently unrelated to OA were reported. Interpretation OA led to functional improvements and was well tolerated with no persistent clinical complications, including in older and heavier patients. Funding Novartis Innovative Therapies AG provided a grant for independent medical writing services.
Collapse
Affiliation(s)
- Vasantha Gowda
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mark Atherton
- Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | - Archana Murugan
- Department of Paediatric Neurology, University Hospital Bristol, Bristol, United Kingdom
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Division of Child Neurology, Centre de Référence des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège and University of Liège, Avenue de l’Hôpital 1 4000 Liège, Belgium
| | - Jennie Sheehan
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Emma Standing
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, United Kingdom
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, United Kingdom
| | - Giovanni Baranello
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, United Kingdom
| | - Gary McCullagh
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Tracey Willis
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Sandya Tirupathi
- Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - Iain Horrocks
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and MowatLabs, King’s College Hospital, London, United Kingdom
| | - Michael Eyre
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Maria Vanegas
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Miguel A. Fernandez-Garcia
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Amy Wolfe
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Laura Pinches
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Marjorie Illingworth
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Marion Main
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, United Kingdom
| | - Lianne Abbott
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, United Kingdom
| | - Hayley Smith
- Department of Paediatric Neurology, University Hospital Bristol, Bristol, United Kingdom
| | - Emily Milton
- Department of Paediatric Neurology, University Hospital Bristol, Bristol, United Kingdom
| | - Sarah D’Urso
- Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Silvia Sanchez Marco
- Paediatric Neurology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Sinead Warner
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Emily Reading
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Isobel Douglas
- Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Min Ong
- Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | - Anirban Majumdar
- Department of Paediatric Neurology, University Hospital Bristol, Bristol, United Kingdom
| | - Imelda Hughes
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Heinz Jungbluth
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine (FoLSM), London, King’s College London, London, United Kingdom
- King’s College London, London, United Kingdom
| | - Elizabeth Wraige
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Alotaibi KM, Alsuhaibani M, Al-Essa KS, Bamaga AK, Mukhtar AS, Alrumaih AM, Al-Hasinah HF, Aldossary S, Alghamdi F, Temsah MH, Abanmy N, Alwhaibi M, Asiri Y, AlRuthia Y. The socioeconomic burden of spinal muscular atrophy in Saudi Arabia: a cross-sectional pilot study. Front Public Health 2024; 12:1303475. [PMID: 38362212 PMCID: PMC10867838 DOI: 10.3389/fpubh.2024.1303475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Background Spinal muscular atrophy (SMA) is a rare debilitating condition with a significant burden for patients and society. However, little is known about how it affects Saudi Arabia's population. The socioeconomic and medical characteristics of affected SMA patients and their caregivers are lacking. Purpose This study aimed to describe the socioeconomic and medical characteristics of SMA patients and caregivers in Saudi Arabia. Patients and methods A cross-sectional questionnaire-based study was conducted using snowball sampling. Assessment tools including EuroQol (EQ-5D-5L) and visual analog scale (EQ-VAS), Generalized Anxiety Disorder 7-item (GAD-7), Patient Health Questionnaire (PHQ-9), and Costs for Patients Questionnaire (CoPaQ) were used to assess the quality of life (QoL), anxiety, depression, and out-of-pocket expenditures. Results Sixty-four caregivers of SMA patients participated. Type I patients had higher sibling concordance, ICU hospitalization, and mechanical support needs. Type III patients had better QoL. Type I patients' caregivers had higher depression scores. Type III patients' caregivers had higher out-of-pocket expenditures. Forty-eight percent received supportive care, while others received SMA approved therapies. Conclusion SMA imposes a significant socioeconomic burden on patients and caregivers, requiring more attention from the healthcare system. Access to innovative therapies varied across SMA types. Pre-marital screening and early detection are crucial to reduce disease incidence and ensure timely treatment.
Collapse
Affiliation(s)
- Khloud Mubark Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohannad Alsuhaibani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S. Al-Essa
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Khamis Bamaga
- Neurology Division, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amnah S. Mukhtar
- Pharmaceutical Care Department, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Ali Mohammed Alrumaih
- Pharmaceutical Care Department, General Directorate for Health Services, Riyadh, Saudi Arabia
| | - Huda F. Al-Hasinah
- Department of Pharmacy, Prince Sultan Medical City, Riyadh, Saudi Arabia
| | - Shaikhah Aldossary
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Fouad Alghamdi
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mohamad-Hani Temsah
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Norah Abanmy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Monira Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yazed AlRuthia
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Abiusi E, Costa-Roger M, Bertini ES, Tiziano FD, Tizzano EF, Abiusi E, Baranello G, Bertini E, Boemer F, Burghes A, Codina-Solà M, Costa-Roger M, Dangouloff T, Groen E, Gos M, Jędrzejowska M, Kirschner J, Lemmink HH, Müller-Felber W, Ouillade MC, Quijano-Roy S, Rucinski K, Saugier-Veber P, Tiziano FD, Tizzano EF, Wirth B. 270th ENMC International Workshop: Consensus for SMN2 genetic analysis in SMA patients 10-12 March, 2023, Hoofddorp, the Netherlands. Neuromuscul Disord 2024; 34:114-122. [PMID: 38183850 DOI: 10.1016/j.nmd.2023.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The 270th ENMC workshop aimed to develop a common procedure to optimize the reliability of SMN2 gene copy number determination and to reinforce collaborative networks between molecular scientists and clinicians. The workshop involved neuromuscular and clinical experts and representatives of patient advocacy groups and industry. SMN2 copy number is currently one of the main determinants for therapeutic decision in SMA patients: participants discussed the issues that laboratories may encounter in this molecular test and the cruciality of the accurate determination, due the implications as prognostic factor in symptomatic patients and in individuals identified through newborn screening programmes. At the end of the workshop, the attendees defined a set of recommendations divided into four topics: SMA molecular prognosis assessment, newborn screening for SMA, SMN2 copies and treatments, and modifiers and biomarkers. Moreover, the group draw up a series of recommendations for the companies manufacturing laboratory kits, that will help to minimize the risk of errors, regardless of the laboratories' expertise.
Collapse
Affiliation(s)
- Emanuela Abiusi
- Section of Genomic Medicine, Department of Public Health and Life Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Mar Costa-Roger
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Enrico Silvio Bertini
- Research Unit of Neuromuscular Disease, Bambino Gesu’ Children's Hospital, IRCCS, Roma, Italy
| | - Francesco Danilo Tiziano
- Section of Genomic Medicine, Department of Public Health and Life Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
- Complex Unit of Medical Genetics, Fondazione Policlinico Universitario IRCCS “A. Gemelli”, Roma, Italy
| | - Eduardo F Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Emanuela Abiusi
- Section of Genomic Medicine, Dept. of Life Sciences and Public Health, Catholic University of the Sacred Heart, Roma, Italy
| | - Giovanni Baranello
- The Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre & Great Ormond Street Hospital NHS Foundation Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - Enrico Bertini
- Italy, Research Unit of Neuromuscular Disease, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - François Boemer
- Biochemical Genetics Lab, Department of Human Genetics, University Hospital, University of Liège, 4000 Liège, Belgium
| | - Arthur Burghes
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Marta Codina-Solà
- Neuromuscular Reference Center, Department of Paediatrics, University Hospital Liege & University of Liege, Belgium
| | - Mar Costa-Roger
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tamara Dangouloff
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Ewout Groen
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Gos
- Department of Neuropediatrics and Muscle Disorders, Medical Center University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Maria Jędrzejowska
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Janbernd Kirschner
- Centre for Neuromuscular Disorders, Center for Translational Neuro and Behavioral Sciences, Department of Pediatric Neurology, University Duisburg-Essen, 45147 Essen, Germany
| | - Henny H Lemmink
- AFM Téléthon, Évry, France; SMA Europe; European Alliance for Newborn Screening in Spinal Muscular Atrophy
| | - Wolfgang Müller-Felber
- Pediatric Neuromuscular Unit (NEIDF Reference Center at FILNEMUS & Euro-NMD), Child Neurology Department, Raymond Poincaré Hospital (UVSQ), APHP Université Paris Saclay, Garches France
| | - Marie-Christine Ouillade
- Fundacja SMA, Warsaw, Poland; SMA Europe; European Alliance for Newborn Screening in Spinal Muscular Atrophy
| | - Susana Quijano-Roy
- Univ Rouen Normandie, Inserm U1245, Normandie Univ and CHU Rouen, Department of Genetics and Nord/Est/Ile de France Neuromuscular Reference Center, F-76000 Rouen, France
| | - Kacper Rucinski
- Institute of Medical Genomics, Dept. of Life Sciences and Public Health, Catholic University of the Sacred Heart, and Complex Unit of Medical Genetics, Fondazione Policlinico Universitario IRCCS “A. Gemelli”, Roma, Italy
| | - Pascale Saugier-Veber
- Institute of Human Genetics, University Hospital of Cologne, Center for Molecular Medicine, University of Cologne and Center for Rare Diseases Cologne, University Hopsital of Cologne, Cologne, Germany
| | - Francesco Danilo Tiziano
- Institute of Medical Genomics, Dept. of Life Sciences and Public Health, Catholic University of the Sacred Heart, and Complex Unit of Medical Genetics, Fondazione Policlinico Universitario IRCCS “A. Gemelli”, Roma, Italy
| | - Eduardo Fidel Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, Center for Molecular Medicine, University of Cologne and Center for Rare Diseases Cologne, University Hopsital of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Giorgia Q, Gomez Garcia de la Banda M, Smeriglio P. Role of circulating biomarkers in spinal muscular atrophy: insights from a new treatment era. Front Neurol 2023; 14:1226969. [PMID: 38020652 PMCID: PMC10679720 DOI: 10.3389/fneur.2023.1226969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease due to biallelic mutations in the SMN1 gene on chromosome 5. It is characterized by progressive muscle weakness of limbs, bulbar and respiratory muscles. The disease is usually classified in four different phenotypes (1-4) according to age at symptoms onset and maximal motor milestones achieved. Recently, three disease modifying treatments have received approval from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), while several other innovative drugs are under study. New therapies have been game changing, improving survival and life quality for SMA patients. However, they have also intensified the need for accurate biomarkers to monitor disease progression and treatment efficacy. While clinical and neurophysiological biomarkers are well established and helpful in describing disease progression, there is a great need to develop more robust and sensitive circulating biomarkers, such as proteins, nucleic acids, and other small molecules. Used alone or in combination with clinical biomarkers, they will play a critical role in enhancing patients' stratification for clinical trials and access to approved treatments, as well as in tracking response to therapy, paving the way to the development of individualized therapeutic approaches. In this comprehensive review, we describe the foremost circulating biomarkers of current significance, analyzing existing literature on non-treated and treated patients with a special focus on neurofilaments and circulating miRNA, aiming to identify and examine their role in the follow-up of patients treated with innovative treatments, including gene therapy.
Collapse
Affiliation(s)
- Querin Giorgia
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Marta Gomez Garcia de la Banda
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- APHP, Pediatric Neurology Department, Hôpital Armand Trousseau, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- APHP, Pediatric Neurology and ICU Department, Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France
| | - Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, Paris, France
| |
Collapse
|
8
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
9
|
Hu J, Zhu L, Bao H, Liu Y, Xing H, Kang Q, Jin C. Utility estimations of different health states of patients with type I, II, and III spinal muscular atrophy in China: A mixed approach study with patient and proxy-reported data. Front Public Health 2022; 10:1054931. [PMID: 36605247 PMCID: PMC9809905 DOI: 10.3389/fpubh.2022.1054931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Spinal muscular atrophy (SMA) is a rare autosomal-recessive neuromuscular disease. Health state utility values (HSUV) are used in health economic evaluation regarding the desirability of health outcomes such as a certain health state or change in health states over time. There is no utility data of Chinese patients with SMA. Materials and methods Vignettes were developed for 10 pediatric neurologists to value the utility of Chinese patients with Type I SMA. A mixed patient/proxy derived approach using EQ-5D-Y-3L, EQ-5D-3L, and CHU9D was adopted to estimate the HSUV data of patients with Type II and III SMA, including 112 patients and 301 caregivers. Result The utility of Type I SMA patients ranged from 0.19 to 0.72 with the health state improved from "permanent ventilation" to "walking". The utility of children patients with Type II and III SMA derived from EQ-5D-Y-3L ranged from 0.33 to 0.82 while that derived from CHU9D ranged from 0.46 to 0.75. The utility of adult patients with Type II and III SMA measured by EQ-5D-3L ranged from 0.30 to 0.83. Conclusion The better health states the patients with SMA were in, the higher were the HSUV. The utilities derived from population with different age and disease subtypes were not statistically different when patients with SMA were in the same health states. We recommend further studies on the Chinese specific value set for EQ-5D-Y-3L and other PBMs for children to derive more robust utility data.
Collapse
Affiliation(s)
- Jiahao Hu
- Shanghai Health Development Research Centre (Shanghai Medical Information Centre), Shanghai, China
| | - Lin Zhu
- Shanghai Health Development Research Centre (Shanghai Medical Information Centre), Shanghai, China
| | - Han Bao
- Institute of Pharmaceutical Economics, Sun Yat-sen University, Guangzhou, China
| | - Yuhan Liu
- Shanghai Health Development Research Centre (Shanghai Medical Information Centre), Shanghai, China
| | - Huanping Xing
- Meier Advocacy & Support Centre for SMA, Beijing, China
| | - Qi Kang
- Shanghai Health Development Research Centre (Shanghai Medical Information Centre), Shanghai, China,*Correspondence: Qi Kang
| | - Chunlin Jin
- Shanghai Health Development Research Centre (Shanghai Medical Information Centre), Shanghai, China,Chunlin Jin
| |
Collapse
|
10
|
GENE TARGET: A framework for evaluating Mendelian neurodevelopmental disorders for gene therapy. Mol Ther Methods Clin Dev 2022; 27:32-46. [PMID: 36156879 PMCID: PMC9478871 DOI: 10.1016/j.omtm.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interest in gene-based therapies for neurodevelopmental disorders is increasing exponentially, driven by the rise in recognition of underlying genetic etiology, progress in genomic technology, and recent proof of concept in several disorders. The current prioritization of one genetic disorder over another for development of therapies is driven by competing interests of pharmaceutical companies, advocacy groups, and academic scientists. Although these are all valid perspectives, a consolidated framework will facilitate more efficient and rational gene therapy development. Here we outline features of Mendelian neurodevelopmental disorders that warrant consideration when determining suitability for gene therapy. These features fit into four broad domains: genetics, preclinical validation, clinical considerations, and ethics. We propose a simple mnemonic, GENE TARGET, to remember these features and illustrate how they could be scored using a preliminary scoring rubric. In this suggested rubric, for a given disorder, scores for each feature may be added up to a composite GENE TARGET suitability (GTS) score. In addition to proposing a systematic method to evaluate and compare disorders, our framework helps identify gaps in the translational pipeline for a given disorder, which can inform prioritization of future research efforts.
Collapse
|
11
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Yao M, Ma Y, Qian R, Xia Y, Yuan C, Bai G, Mao S. Quality of life of children with spinal muscular atrophy and their caregivers from the perspective of caregivers: a Chinese cross-sectional study. Orphanet J Rare Dis 2021; 16:7. [PMID: 33407670 PMCID: PMC7789582 DOI: 10.1186/s13023-020-01638-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease leading to dysfunction of multiple organs. SMA can impair the quality of life (QoL) of patients and family. We aimed to evaluate the QoL of children with SMA and their caregivers and to identify the factors associated with QoL in a cross-sectional study conducted in China. METHODS We recruited 101 children aged 0-17 years with SMA and their caregivers from a children's hospital in China. Twenty-six children had type I SMA, 56 type II and 19 type III. Each child's QoL was measured by the Pediatric Quality of Life Inventory 3.0 Neuromuscular Module (PedsQL NMM), which was completed by the child's caregivers. The caregiver's QoL was measured by the Pediatric Quality of Life Inventory Family Impact Module (PedsQL FIM). Information on sociodemographic characteristics, disease-specific characteristics, and treatments were collected using the proxy-reported questionnaire. Two-sample t tests and one-way ANOVA were used to compare differences in average scores of QoL across subgroups. RESULTS Children with type III SMA had a higher average Total score of PedsQL NMM and higher average scores in domains Neuromuscular disease and Family resources than children with type I or type II SMA (p < 0.001). Caregivers of children with type III SMA reported higher average scores in the domains of Physical, Emotional, Social, and Cognitive functioning of the PedsQL FIM than those of children with types I or II SMA (p < 0.05). In addition, disease-related characteristics (e.g. limited mobility, stable course of disease, skeleton deformity, and digestive system dysfunction) and respiratory support were associated with lower average scores of PedsQL NMM and PedsQL FIM (p < 0.05). Exercise training, multidisciplinary team management and use of the medication Nusinersen were each associated with higher average scores in both PedsQL NMM and FIM (p < 0.05). CONCLUSION Our study has demonstrated factors that may impair or improve QoL of children patients with SMA and their parents. Particularly, QoL was relatively poor in children with type I and type II SMA as well as in their caregivers compared to those with type III SMA. We strongly recommend that standard of care in a multidisciplinary team be strengthened to improve the QoL of SMA patients. Our study called for increased attention from clinical physicians on measuring QoL in their clinical practices in order to enhance the understanding of impacts of SMA and to make better decisions regarding treatment.
Collapse
Affiliation(s)
- Mei Yao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Ying Ma
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Ruiying Qian
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yu Xia
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Changzheng Yuan
- School Public Health of Zhejiang University, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Guannan Bai
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Shanshan Mao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
13
|
Belter L, Jarecki J, Reyna SP, Cruz R, Jones CC, Schroth M, O'Toole CM, O'Brien S, Hall SA, Johnson NB, Paradis AD. The Cure SMA Membership Surveys: Highlights of Key Demographic and Clinical Characteristics of Individuals with Spinal Muscular Atrophy. J Neuromuscul Dis 2020; 8:109-123. [PMID: 33104036 PMCID: PMC7902958 DOI: 10.3233/jnd-200563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Cure SMA maintains the largest patient-reported database for people affected with spinal muscular atrophy (SMA). In 2017, Cure SMA initiated annual surveys with their membership to collect demographic and disease characteristics, healthcare, and burden of disease information from patients and caregivers. Objective: To summarize results from two large-scale Cure SMA surveys in 2017 and 2018. Methods: Cure SMA database members were invited to complete surveys; these were completed by caregivers for living or deceased individuals with SMA and/or affected adults. Results: In 2017, 726 surveys were completed for 695 individuals with SMA; in 2018, 796 surveys were completed for 760 individuals with SMA. Data from both survey years are available for 313 affected individuals. Age at symptom onset, distribution of SMN2 gene copy number, and representation of each SMA type in the surveys were consistent with that expected in the SMA population. In the 2018 survey, the average age at diagnosis was 5.2 months for SMA type I and the reported mean age at death for this subgroup was 27.8 months. Between survey years, there was consistency in responses for factors that should not change within individuals over time (e.g., reported age at diagnosis). Conclusions: Results from the Cure SMA surveys advance the understanding of SMA and facilitate advocacy efforts and healthcare services planning. Longitudinal surveys are important for evaluating the impact of effective treatments on changing phenotypes, and burden of disease and care in individuals with SMA.
Collapse
|
14
|
Smeriglio P, Langard P, Querin G, Biferi MG. The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification, Diagnosis and Treatment. J Pers Med 2020; 10:jpm10030075. [PMID: 32751151 PMCID: PMC7564782 DOI: 10.3390/jpm10030075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| | - Paul Langard
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
| | - Giorgia Querin
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Association Institut de Myologie, Plateforme Essais Cliniques Adultes, 75013 Paris, France
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| |
Collapse
|
15
|
Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, Sodaar P, Schouten J, Vijzelaar R, Lemmink HH, van den Berg LH, Groen EJN, van der Pol WL. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020; 2:fcaa075. [PMID: 32954327 PMCID: PMC7425299 DOI: 10.1093/braincomms/fcaa075] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1–4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1–SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.
Collapse
Affiliation(s)
- Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marc D Jansen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Chantall A D Curial
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jelena Medic
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Peter Sodaar
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Schouten
- MRC Holland BV, 1057 DL Amsterdam, the Netherlands
| | | | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
16
|
De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS, Kirschner J, Kuntz NL, Parsons JA, Ryan MM, Butterfield RJ, Topaloglu H, Ben-Omran T, Sansone VA, Jong YJ, Shu F, Staropoli JF, Kerr D, Sandrock AW, Stebbins C, Petrillo M, Braley G, Johnson K, Foster R, Gheuens S, Bhan I, Reyna SP, Fradette S, Farwell W. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019; 29:842-856. [PMID: 31704158 PMCID: PMC7127286 DOI: 10.1016/j.nmd.2019.09.007] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease associated with severe muscle atrophy and weakness in the limbs and trunk. We report interim efficacy and safety outcomes as of March 29, 2019 in 25 children with genetically diagnosed SMA who first received nusinersen in infancy while presymptomatic in the ongoing Phase 2, multisite, open-label, single-arm NURTURE trial. Fifteen children have two SMN2 copies and 10 have three SMN2 copies. At last visit, children were median (range) 34.8 [25.7-45.4] months of age and past the expected age of symptom onset for SMA Types I or II; all were alive and none required tracheostomy or permanent ventilation. Four (16%) participants with two SMN2 copies utilized respiratory support for ≥6 h/day for ≥7 consecutive days that was initiated during acute, reversible illnesses. All 25 participants achieved the ability to sit without support, 23/25 (92%) achieved walking with assistance, and 22/25 (88%) achieved walking independently. Eight infants had adverse events considered possibly related to nusinersen by the study investigators. These results, representing a median 2.9 years of follow up, emphasize the importance of proactive treatment with nusinersen immediately after establishing the genetic diagnosis of SMA in presymptomatic infants and emerging newborn screening efforts.
Collapse
Affiliation(s)
- Darryl C De Vivo
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Post-Graduate Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Wuh-Liang Hwu
- Departments of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard S Finkel
- Division of Neurology, Department of Pediatrics, Nemours Children's Hospital, Orlando, FL, USA
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Neuropediatrics, University Medical Hospital, Bonn, Germany
| | - Nancy L Kuntz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Julie A Parsons
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monique M Ryan
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Haluk Topaloglu
- Department of Pediatric Neurology, Hacettepe University, Ankara, Turkey
| | - Tawfeg Ben-Omran
- Sidra Medicine, Department of Pediatrics, Qatar Foundation, Doha, Qatar; Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Valeria A Sansone
- NEMO Clinical Center - NEuroMuscular Omniservice, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University; Departments of Pediatrics and Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Francy Shu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|