1
|
Zhao Y, Bracher-Smith M, Li Y, Harvey K, Escott-Price V, Lewis PA, Manzoni C. Transcriptomics and weighted protein network analyses of the LRRK2 protein interactome reveal distinct molecular signatures for sporadic and LRRK2 Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:144. [PMID: 39097579 PMCID: PMC11297940 DOI: 10.1038/s41531-024-00761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson's Disease (LRRK2-PD) and an important risk factor for sporadic PD (sPD). Multiple clinical trials are ongoing to evaluate the benefits associated with the therapeutical reduction of LRRK2 kinase activity. In this study, we described the changes of transcriptomic profiles (whole blood mRNA levels) of LRRK2 protein interactors in sPD and LRRK2-PD cases as compared to healthy controls with the aim of comparing the two PD conditions. We went on to model the protein-protein interaction (PPI) network centred on LRRK2, which was weighted to reflect the transcriptomic changes on expression and co-expression levels of LRRK2 protein interactors. Our results showed that LRRK2 interactors present both similar and distinct alterations in expression levels and co-expression behaviours in the sPD and LRRK2-PD cases; suggesting that, albeit being classified as the same disease based on clinical features, LRRK2-PD and sPD display significant differences from a molecular perspective. Interestingly, the similar changes across the two PD conditions result in decreased connectivity within a topological cluster of the LRRK2 PPI network associated with protein metabolism/biosynthesis and ribosomal metabolism suggesting protein homoeostasis and ribosomal dynamics might be affected in both sporadic and familial PD in comparison with controls.
Collapse
Affiliation(s)
- Yibo Zhao
- UCL School of Pharmacy, dept Pharmacology, London, UK
| | - Matthew Bracher-Smith
- University of Cardiff, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Yuelin Li
- UCL School of Pharmacy, dept Pharmacology, London, UK
| | | | - Valentina Escott-Price
- University of Cardiff, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Patrick A Lewis
- Royal Veterinary College, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
2
|
Baidya AT, Deshwal S, Das B, Mathew AT, Devi B, Sandhir R, Kumar R. Catalyzing a Cure: Discovery and development of LRRK2 inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 143:106972. [PMID: 37995640 DOI: 10.1016/j.bioorg.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Alen T Mathew
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Giusto E, Maistrello L, Iannotta L, Giusti V, Iovino L, Bandopadhyay R, Antonini A, Bubacco L, Barresi R, Plotegher N, Greggio E, Civiero L. Prospective Role of PAK6 and 14-3-3γ as Biomarkers for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:495-506. [PMID: 38640169 PMCID: PMC11091598 DOI: 10.3233/jpd-230402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Background Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Lucia Iannotta
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Angelo Antonini
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Keavney JL, Mathur S, Schroeder K, Merrell R, Castillo-Torres SA, Gao V, Crotty GF, Schwarzschild MA, Poma JM. Perspectives of People At-Risk on Parkinson's Prevention Research. JOURNAL OF PARKINSON'S DISEASE 2024; 14:399-414. [PMID: 38489198 PMCID: PMC11091608 DOI: 10.3233/jpd-230436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
The movement toward prevention trials in people at-risk for Parkinson's disease (PD) is rapidly becoming a reality. The authors of this article include a genetically at-risk advocate with the LRRK2 G2019 S variant and two patients with rapid eye movement sleep behavior disorder (RBD), one of whom has now been diagnosed with PD. These authors participated as speakers, panelists, and moderators in the "Planning for Prevention of Parkinson's: A Trial Design Forum" hosted by Massachusetts General Hospital in 2021 and 2022. Other authors include a young onset person with Parkinson's (PwP) and retired family physician, an expert in patient engagement in Parkinson's, and early career and veteran movement disorders clinician researchers. Several themes emerged from the at-risk participant voice concerning the importance of early intervention, the legitimacy of their input in decision-making, and the desire for transparent communication and feedback throughout the entire research study process. Challenges and opportunities in the current environment include lack of awareness among primary care physicians and general neurologists about PD risk, legal and psychological implications of risk disclosure, limited return of individual research study results, and undefined engagement and integration of individuals at-risk into the broader Parkinson's community. Incorporating the perspectives of individuals at-risk as well as those living with PD at this early stage of prevention trial development is crucial to success.
Collapse
Affiliation(s)
- Jessi L. Keavney
- Parkinson’s Foundation, Parkinson’s Advocates in Research Program, Pendergrass, GA, USA
| | | | - Karlin Schroeder
- Parkinson’s Foundation, Associate Vice President of Community Engagement, New York, NY, USA
| | | | - Sergio A. Castillo-Torres
- Edmond J. Safra Fellow in Movement Disorders, Servicio de Movimientos Anormales, Fleni, Buenos Aires, Argentina
| | - Virginia Gao
- Movement Disorders Fellow, Columbia University Irving Medical Center and Weill Cornell Medicine, New York, NY, USA
| | - Grace F. Crotty
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A. Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John M. Poma
- Parkinson’s Foundation, People with Parkinson’s Advisory Council, Glen Allen, VA, USA
| |
Collapse
|
5
|
De SK. New Pyrrolopyrimidines as LRRK2 Inhibitors for Treating Parkinson's Disease. Curr Med Chem 2024; 31:5477-5480. [PMID: 37605404 DOI: 10.2174/0929867331666230821101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/15/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
This patent describes the novel pyrroloppyrimidine compounds as LRRK2 kinase inhibitors. The patent includes the synthesis of compounds, compositions containing them and their use in the treatment of or prevention of diseases associated with LRRK2 kinase activity, such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Surya K De
- Conju-Probe, San Diego, California, USA
- Bharath University, Chennai, Tamil Nadu, 600126, India
| |
Collapse
|
6
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Rizzuti M, Sali L, Melzi V, Scarcella S, Costamagna G, Ottoboni L, Quetti L, Brambilla L, Papadimitriou D, Verde F, Ratti A, Ticozzi N, Comi GP, Corti S, Gagliardi D. Genomic and transcriptomic advances in amyotrophic lateral sclerosis. Ageing Res Rev 2023; 92:102126. [PMID: 37972860 DOI: 10.1016/j.arr.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Costamagna
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Garofalo AW, Schwarz J, Zobel K, Beato C, Bernardi S, Budassi F, Caberlotto L, Gao P, Griffante C, Liu X, Migliore M, Qiao F, Sabbatini FM, Sava A, Zhang M, Carlisle HJ. Brain-penetrant cyanoindane and cyanotetralin inhibitors of G2019S-LRRK2 kinase activity. Bioorg Med Chem Lett 2023; 95:129487. [PMID: 37734423 DOI: 10.1016/j.bmcl.2023.129487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The G2019S variant of LRRK2, which causes an increase in kinase activity, is associated with the occurrence of Parkinson's disease (PD). Potent, mutation-selective, and brain penetrant inhibitors of LRRK2 can suppress the biological effects specific to G2019S-LRRK2 that cause pathogenicity. We report the discovery of a series of cyanoindane and cyanotetralin kinase inhibitors culminating in compound 34 that demonstrated selective inhibition of phosphorylation of LRRK2 in the mouse brain. These novel inhibitors may further enable the precision medicine path for future PD therapeutics.
Collapse
Affiliation(s)
| | - Jacob Schwarz
- ESCAPE Bio, South San Francisco, CA 94080, United States
| | - Kerry Zobel
- ESCAPE Bio, South San Francisco, CA 94080, United States
| | | | | | | | | | - Peng Gao
- WuXi AppTec, Tianjin 300456, PR China
| | | | | | | | | | | | - Anna Sava
- Aptuit, an Evotec Company, 37135 Verona, Italy
| | | | | |
Collapse
|
9
|
Kania E, Long JS, McEwan DG, Welkenhuyzen K, La Rovere R, Luyten T, Halpin J, Lobbestael E, Baekelandt V, Bultynck G, Ryan KM, Parys JB. LRRK2 phosphorylation status and kinase activity regulate (macro)autophagy in a Rab8a/Rab10-dependent manner. Cell Death Dis 2023; 14:436. [PMID: 37454104 PMCID: PMC10349885 DOI: 10.1038/s41419-023-05964-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of Parkinson's disease (PD), with growing importance also for Crohn's disease and cancer. LRRK2 is a large and complex protein possessing both GTPase and kinase activity. Moreover, LRRK2 activity and function can be influenced by its phosphorylation status. In this regard, many LRRK2 PD-associated mutants display decreased phosphorylation of the constitutive phosphorylation cluster S910/S935/S955/S973, but the role of these changes in phosphorylation status with respect to LRRK2 physiological functions remains unknown. Here, we propose that the S910/S935/S955/S973 phosphorylation sites act as key regulators of LRRK2-mediated autophagy under both basal and starvation conditions. We show that quadruple LRRK2 phosphomutant cells (4xSA; S910A/S935A/S955A/S973A) have impaired lysosomal functionality and fail to induce and proceed with autophagy during starvation. In contrast, treatment with the specific LRRK2 kinase inhibitors MLi-2 (100 nM) or PF-06447475 (150 nM), which also led to decreased LRRK2 phosphorylation of S910/S935/S955/S973, did not affect autophagy. In explanation, we demonstrate that the autophagy impairment due to the 4xSA LRRK2 phospho-dead mutant is driven by its enhanced LRRK2 kinase activity. We show mechanistically that this involves increased phosphorylation of LRRK2 downstream targets Rab8a and Rab10, as the autophagy impairment in 4xSA LRRK2 cells is counteracted by expression of phosphorylation-deficient mutants T72A Rab8a and T73A Rab10. Similarly, reduced autophagy and decreased LRRK2 phosphorylation at the constitutive sites were observed in cells expressing the pathological R1441C LRRK2 PD mutant, which also displays increased kinase activity. These data underscore the relation between LRRK2 phosphorylation at its constitutive sites and the importance of increased LRRK2 kinase activity in autophagy regulation and PD pathology.
Collapse
Affiliation(s)
- Elżbieta Kania
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI - B802, 3000, Leuven, Belgium
| | - Jaclyn S Long
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - David G McEwan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI - B802, 3000, Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI - B802, 3000, Leuven, Belgium
| | - Tomas Luyten
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI - B802, 3000, Leuven, Belgium
| | - John Halpin
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences & Leuven Brain Institute, KU Leuven, Herestraat 49, Campus Gasthuisberg B1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences & Leuven Brain Institute, KU Leuven, Herestraat 49, Campus Gasthuisberg B1023, 3000, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI - B802, 3000, Leuven, Belgium
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI - B802, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Taymans JM, Fell M, Greenamyre T, Hirst WD, Mamais A, Padmanabhan S, Peter I, Rideout H, Thaler A. Perspective on the current state of the LRRK2 field. NPJ Parkinsons Dis 2023; 9:104. [PMID: 37393318 PMCID: PMC10314919 DOI: 10.1038/s41531-023-00544-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-LilNCog-Lille Neuroscience & Cognition, F-59000, Lille, France.
| | - Matt Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, Suite 7039, Pittsburgh, PA, 15260, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA, 02142, USA
| | - Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Hardy Rideout
- Centre for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Avner Thaler
- Movement Disorders Unit and Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Faculty of medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
Obergasteiger J, Castonguay AM, Pizzi S, Magnabosco S, Frapporti G, Lobbestael E, Baekelandt V, Hicks AA, Pramstaller PP, Gravel C, Corti C, Lévesque M, Volta M. The small GTPase Rit2 modulates LRRK2 kinase activity, is required for lysosomal function and protects against alpha-synuclein neuropathology. NPJ Parkinsons Dis 2023; 9:44. [PMID: 36973269 PMCID: PMC10042831 DOI: 10.1038/s41531-023-00484-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Anne-Marie Castonguay
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Stefano Magnabosco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Claude Gravel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada.
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy.
| |
Collapse
|
12
|
Tang X, Xing S, Ma M, Xu Z, Guan Q, Chen Y, Feng F, Liu W, Chen T, Chen Y, Sun H. The Development and Design Strategy of Leucine-Rich Repeat Kinase 2 Inhibitors: Promising Therapeutic Agents for Parkinson's Disease. J Med Chem 2023; 66:2282-2307. [PMID: 36758171 DOI: 10.1021/acs.jmedchem.2c01552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting millions of people worldwide. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factor for PD. Elevated LRRK2 kinase activity is found in idiopathic and familial PD cases. LRRK2 mutations are involved in multiple PD pathogeneses, including dysregulation of mitochondrial homeostasis, ciliogenesis, etc. Here, we provide a comprehensive overview of the biological function, structure, and mutations of LRRK2. We also examine recent advances and challenges in developing LRRK2 inhibitors and address prospective protein-based targeting strategies. The binding mechanisms, structure-activity relationships, and pharmacokinetic features of inhibitors are emphasized to provide a comprehensive compendium on the rational design of LRRK2 inhibitors. We hope that this publication can serve as a guide for designing novel LRRK2 inhibitors based on the summarized facts and perspectives.
Collapse
Affiliation(s)
- Xu Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Mingkang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ziwei Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuting Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huai'an 223005, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
13
|
Al-Huseini I, Sirasanagandla SR, Babu KS, Sofin RGS, Das S. Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications. Curr Med Chem 2023; 30:1502-1528. [PMID: 35078392 DOI: 10.2174/0929867329666220117114306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
All cells and intracellular components are remodeled and recycled in order to replace the old and damaged cells. Autophagy is a process by which damaged, and unwanted cells are degraded in the lysosomes. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy has an effect on adaptive and innate immunity, suppression of any tumour, and the elimination of various microbial pathogens. The process of autophagy has both positive and negative effects, and this pertains to any specific disease or its stage of progression. Autophagy involves various processes which are controlled by various signaling pathways, such as Jun N-terminal kinase, GSK3, ERK1, Leucine-rich repeat kinase 2, and PTEN-induced putative kinase 1 and parkin RBR E3. Protein kinases are also important for the regulation of autophagy as they regulate the process of autophagy either by activation or inhibition. The present review discusses the kinase catalyzed phosphorylated reactions, the kinase inhibitors, types of protein kinase inhibitors and their binding properties to protein kinase domains, the structures of active and inactive kinases, and the hydrophobic spine structures in active and inactive protein kinase domains. The intervention of autophagy by targeting specific kinases may form the mainstay of treatment of many diseases and lead the road to future drug discovery.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Kondaveeti Suresh Babu
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed) University, Pune, Maharashtra, India
| | | | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
14
|
Iron-induced cytotoxicity mediated by endolysosomal TRPML1 channels is reverted by TFEB. Cell Death Dis 2022; 13:1047. [PMID: 36522443 PMCID: PMC9755144 DOI: 10.1038/s41419-022-05504-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Increased brain iron content has been consistently reported in sporadic Parkinson's disease (PD) patients, and an increase in cytosolic free iron is known to cause oxidative stress and cell death. However, whether iron also accumulates in susceptible brain areas in humans or in mouse models of familial PD remains unknown. In addition, whilst the lysosome functions as a critical intracellular iron storage organelle, little is known about the mechanisms underlying lysosomal iron release and how this process is influenced by lysosome biogenesis and/or lysosomal exocytosis. Here, we report an increase in brain iron content also in PD patients due to the common G2019S-LRRK2 mutation as compared to healthy age-matched controls, whilst differences in iron content are not observed in G2019S-LRRK2 knockin as compared to control mice. Chemically triggering iron overload in cultured cells causes cytotoxicity via the endolysosomal release of iron which is mediated by TRPML1. TFEB expression reverts the iron overload-associated cytotoxicity by causing lysosomal exocytosis, which is dependent on a TRPML1-mediated increase in cytosolic calcium levels. Therefore, approaches aimed at increasing TFEB levels, or pharmacological TRPML1 activation in conjunction with iron chelation may prove beneficial against cell death associated with iron overload conditions such as those associated with PD.
Collapse
|
15
|
Xenias HS, Chen C, Kang S, Cherian S, Situ X, Shanmugasundaram B, Liu G, Scesa G, Chan CS, Parisiadou L. R1441C and G2019S LRRK2 knockin mice have distinct striatal molecular, physiological, and behavioral alterations. Commun Biol 2022; 5:1211. [PMID: 36357506 PMCID: PMC9649688 DOI: 10.1038/s42003-022-04136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
LRRK2 mutations are closely associated with Parkinson's disease (PD). Convergent evidence suggests that LRRK2 regulates striatal function. Here, by using knock-in mouse lines expressing the two most common LRRK2 pathogenic mutations-G2019S and R1441C-we investigated how LRRK2 mutations altered striatal physiology. While we found that both R1441C and G2019S mice displayed reduced nigrostriatal dopamine release, hypoexcitability in indirect-pathway striatal projection neurons, and alterations associated with an impaired striatal-dependent motor learning were observed only in the R1441C mice. We also showed that increased synaptic PKA activities in the R1441C and not G2019S mice underlie the specific alterations in motor learning deficits in the R1441C mice. In summary, our data argue that LRRK2 mutations' impact on the striatum cannot be simply generalized. Instead, alterations in electrochemical, electrophysiological, molecular, and behavioral levels were distinct between LRRK2 mutations. Our findings offer mechanistic insights for devising and optimizing treatment strategies for PD patients.
Collapse
Affiliation(s)
- Harry S Xenias
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Suraj Cherian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaolei Situ
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Guoxiang Liu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Giuseppe Scesa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
Hussein A, Tielemans A, Baxter MG, Benson DL, Huntley GW. Cognitive deficits and altered cholinergic innervation in young adult male mice carrying a Parkinson's disease Lrrk2 G2019S knockin mutation. Exp Neurol 2022; 355:114145. [PMID: 35732218 PMCID: PMC9338764 DOI: 10.1016/j.expneurol.2022.114145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023]
Abstract
Impaired executive function is a common and debilitating non-motor symptom of idiopathic and hereditary Parkinson's disease (PD), but there is little understanding of the underlying pathophysiological mechanisms and circuits. The G2019S mutation in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) greatly increases risk for late-onset PD, and non-manifesting LRRK2G2019S carriers can also exhibit early and significant cognitive impairment. Here, we subjected young adult male mice carrying a Lrrk2G2019S knockin mutation to touchscreen-based operant tasks that measure attention, goal-directed learning and cognitive flexibility, all of which rely on frontal-striatal connectivity and are strongly modulated by cholinergic innervation. In a visuospatial attention task, mutant mice exhibited significantly more omissions and longer response latencies than controls that could not be attributed to deficits in motivation, visual sensory perception per se or locomotion, thereby suggesting impairments in divided attention and/or action-selection as well as generally slower information processing speed. Pretreating mice with the acetylcholinesterase inhibitor donepezil normalized both higher omission rates and longer response latencies in the mutants, but did not affect any performance metric in controls. Strikingly, cholinergic fiber density in cortical areas PL/IL and DMS (dorsomedial striatum) was significantly sparser in mutants than in controls, while further behavioral interrogation of the mutants revealed significant impairments in action-outcome associations but preserved cognitive flexibility. These data suggest that the Lrrk2G2019S mutation negatively impacts cholinergic innervation anatomically and functionally by young adulthood, impairing corticostriatal network function in ways that may contribute to early PD-associated executive function deficits.
Collapse
|
17
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Trinh J, Schymanski EL, Smajic S, Kasten M, Sammler E, Grünewald A. Molecular mechanisms defining penetrance of LRRK2-associated Parkinson's disease. MED GENET-BERLIN 2022; 34:103-116. [PMID: 38835904 PMCID: PMC11006382 DOI: 10.1515/medgen-2022-2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of dominantly inherited Parkinson's disease (PD). LRRK2 mutations, among which p.G2019S is the most frequent, are inherited with reduced penetrance. Interestingly, the disease risk associated with LRRK2 G2019S can vary dramatically depending on the ethnic background of the carrier. While this would suggest a genetic component in the definition of LRRK2-PD penetrance, only few variants have been shown to modify the age at onset of patients harbouring LRRK2 mutations, and the exact cellular pathways controlling the transition from a healthy to a diseased state currently remain elusive. In light of this knowledge gap, recent studies also explored environmental and lifestyle factors as potential modifiers of LRRK2-PD. In this article, we (i) describe the clinical characteristics of LRRK2 mutation carriers, (ii) review known genes linked to LRRK2-PD onset and (iii) summarize the cellular functions of LRRK2 with particular emphasis on potential penetrance-related molecular mechanisms. This section covers LRRK2's involvement in Rab GTPase and immune signalling as well as in the regulation of mitochondrial homeostasis and dynamics. Additionally, we explored the literature with regard to (iv) lifestyle and (v) environmental factors that may influence the penetrance of LRRK2 mutations, with a view towards further exposomics studies. Finally, based on this comprehensive overview, we propose potential future in vivo, in vitro and in silico studies that could provide a better understanding of the processes triggering PD in individuals with LRRK2 mutations.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Neurology, School of Medicine, Dundee, Ninewells Hospital, Dundee, UK
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
20
|
Boas SM, Joyce KL, Cowell RM. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 2021; 11:antiox11010008. [PMID: 35052512 PMCID: PMC8772787 DOI: 10.3390/antiox11010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress has been implicated in the etiology and pathobiology of various neurodegenerative diseases. At baseline, the cells of the nervous system have the capability to regulate the genes for antioxidant defenses by engaging nuclear factor erythroid 2 (NFE2/NRF)-dependent transcriptional mechanisms, and a number of strategies have been proposed to activate these pathways to promote neuroprotection. Here, we briefly review the biology of the transcription factors of the NFE2/NRF family in the brain and provide evidence for the differential cellular localization of NFE2/NRF family members in the cells of the nervous system. We then discuss these findings in the context of the oxidative stress observed in two neurodegenerative diseases, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and present current strategies for activating NFE2/NRF-dependent transcription. Based on the expression of the NFE2/NRF family members in restricted populations of neurons and glia, we propose that, when designing strategies to engage these pathways for neuroprotection, the relative contributions of neuronal and non-neuronal cell types to the overall oxidative state of tissue should be considered, as well as the cell types which have the greatest intrinsic capacity for producing antioxidant enzymes.
Collapse
Affiliation(s)
- Stephanie M. Boas
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Kathlene L. Joyce
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Rita M. Cowell
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
21
|
Luo A, Xu Z, Liao S. VPS35, the core component of the retromer complex, and Parkinson's disease. IBRAIN 2021; 7:318-324. [PMID: 37786555 PMCID: PMC10529152 DOI: 10.1002/ibra.12004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/04/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is common in middle-aged and elderly people, and its onset is related to multiple factors, such as heredity, environment, and age. The vesicle protein sorting 35 (VPS35) gene was found to be a late-onset autosomal dominant familial PD (PARK17) causative gene. The protein encoded by this gene is located in the endosome and aggregates with other membrane proteins to form a retromer complex, which participates in the membrane protein cycle between the endosome and the Golgi network. Increasing evidence shows that VPS35 may participate in the pathogenesis of PD by affecting autophagy, mitochondria, neurosynaptic transmission, dopamine signaling pathways, and so forth, and it can interact with other disease-causing genes of familial PD. This article aimed to review the functions of VPS35 and the mechanism of its mutations in PD that have been discovered in recent years.
Collapse
Affiliation(s)
- Ai‐Di Luo
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zu‐Cai Xu
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shu‐Sheng Liao
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
22
|
Mani S, Sevanan M, Krishnamoorthy A, Sekar S. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurol Sci 2021; 42:4459-4469. [PMID: 34480241 DOI: 10.1007/s10072-021-05551-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder that affects 1% of the population worldwide. Etiology of PD is likely to be multi-factorial such as protein misfolding, mitochondrial dysfunction, oxidative stress, and neuroinflammation that contributes to the pathology of Parkinson's disease (PD), numerous studies have shown that mitochondrial dysfunction may play a key role in the dopaminergic neuronal loss. In multiple ways, the two most important are the activation of neuroinflammation and mitochondrial dysfunction, while mitochondrial dysfunction could cause neuroinflammation and vice versa. Thus, the mitochondrial proteins are the highly promising target for the development of PD. However, the limited amount of dopaminergic neurons prevented the detailed investigation of Parkinson's disease with regard to mitochondrial dysfunction. Both genetic and environmental factors are also associated with mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provide direct evidence linking mitochondrial dysfunction to PD. A decrease of mitochondrial complex I activity is observed in PD brain and in neurotoxin- or genetic factor-induced in vitro and in vivo models. Moreover, PINK1, Parkin, DJ-1 and LRRK2 mitochondrial PD gene products have important roles in mitophagy, a cellular process that clear damaged mitochondria. This review paper would discuss the evidence for the mitochondrial dysfunction and neuroinflammation in PD.
Collapse
Affiliation(s)
- Sugumar Mani
- Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India.
| | | | - Sathiya Sekar
- Department of Biotechnology, Dr.M.G.R Educational Research Institute, Chennai, India
| |
Collapse
|
23
|
Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, Garavito-Galofre P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021; 9:1061. [PMID: 34440265 PMCID: PMC8393483 DOI: 10.3390/biomedicines9081061] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles released by cells, both constitutively and after cell activation, and are present in different types of biological fluid. Exosomes are involved in the pathogenesis of diseases, such as cancer, neurodegenerative diseases, pregnancy disorders and cardiovascular diseases, and have emerged as potential non-invasive biomarkers for the detection, prognosis and therapeutics of a myriad of diseases. In this review, we describe recent advances related to the regulatory mechanisms of exosome biogenesis, release and molecular composition, as well as their role in health and disease, and their potential use as disease biomarkers and therapeutic targets. In addition, the advantages and disadvantages of their main isolation methods, characterization and cargo analysis, as well as the experimental methods used for exosome-mediated drug delivery, are discussed. Finally, we present potential perspectives for the use of exosomes in future clinical practice.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| |
Collapse
|
24
|
Ahamadi M, Mehrotra N, Hanan N, Lai Yee K, Gheyas F, Anton J, Bani M, Boroojerdi B, Smit H, Weidemann J, Macha S, Thuillier V, Chen C, Yang M, Williams-Gray CH, Stebbins GT, Pagano G, Hang Y, Marek K, Venuto CS, Javidnia M, Dexter D, Pedata A, Stafford B, Akalu M, Stephenson D, Romero K, Sinha V. A Disease Progression Model to Quantify the Nonmotor Symptoms of Parkinson's Disease in Participants With Leucine-Rich Repeat Kinase 2 Mutation. Clin Pharmacol Ther 2021; 110:508-518. [PMID: 33894056 DOI: 10.1002/cpt.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) inhibitors are currently in clinical development as interventions to slow progression of Parkinson's disease (PD). Understanding the rate of progression in PD as measured by both motor and nonmotor features is particularly important in assessing the potential therapeutic effect of LRRK2 inhibitors in clinical development. Using standardized data from the Critical Path for Parkinson's Unified Clinical Database, we quantified the rate of progression of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part I (nonmotor aspects of experiences of daily living) in 158 participants with PD who were carriers and 598 participants with PD who were noncarriers of at least one of three different LRRK2 gene mutations (G2019S, R1441C/G, or R1628P). Age and disease duration were found to predict baseline disease severity, while presence of at least one of these three LRRK2 mutations was a predictor of the rate of MDS-UPDRS Part I progression. The estimated progression rate in MDS-UPDRS Part I was 0.648 (95% confidence interval: 0.544, 0.739) points per year in noncarriers of a LRRK2 mutation and 0.259 (95% confidence interval: 0.217, 0.295) points per year in carriers of a LRRK2 mutation. This analysis demonstrates that the rate of progression based on MDS-UPDRS Part I is ~ 60% lower in carriers as compared with noncarriers of LRRK2 gene mutations.
Collapse
Affiliation(s)
| | | | | | - Ka Lai Yee
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | | | | - Hans Smit
- Union Chimique Belge, Brussels, Belgium
| | | | | | | | | | | | | | | | - Gennaro Pagano
- Neuroscience and Rare Disease Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Kenneth Marek
- Institute of Neurodegenerative Diseases, New Haven, Connecticut, USA
| | | | | | | | - Anne Pedata
- Critical Path Institute, Tucson, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov 2021; 20:551-569. [PMID: 34002056 PMCID: PMC8127496 DOI: 10.1038/s41573-021-00195-4] [Citation(s) in RCA: 580] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
Protein kinases regulate nearly all aspects of cell life, and alterations in their expression, or mutations in their genes, cause cancer and other diseases. Here, we review the remarkable progress made over the past 20 years in improving the potency and specificity of small-molecule inhibitors of protein and lipid kinases, resulting in the approval of more than 70 new drugs since imatinib was approved in 2001. These compounds have had a significant impact on the way in which we now treat cancers and non-cancerous conditions. We discuss how the challenge of drug resistance to kinase inhibitors is being met and the future of kinase drug discovery.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| | | | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
26
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
27
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
28
|
Leucine-rich repeat kinase 2-related functions in GLIA: an update of the last years. Biochem Soc Trans 2021; 49:1375-1384. [PMID: 33960369 DOI: 10.1042/bst20201092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Missense mutations in the leucine-rich repeat kinase-2 (LRRK2) gene represent the most common cause of autosomal dominant Parkinson's disease (PD). In the years LRRK2 has been associated with several organelles and related pathways in cell. However, despite the significant amount of research done in the past decade, the contribution of LRRK2 mutations to PD pathogenesis remains unknown. Growing evidence highlights that LRRK2 controls multiple processes in brain immune cells, microglia and astrocytes, and suggests that deregulated LRRK2 activity in these cells, due to gene mutation, might be directly associated with pathological mechanisms underlying PD. In this brief review, we recapitulate and update the last LRRK2 functions dissected in microglia and astrocytes. Moreover, we discuss how dysfunctions of LRRK2-related pathways may impact glia physiology and their cross-talk with neurons, thus leading to neurodegeneration and progression of PD.
Collapse
|
29
|
LRRK2 at the Crossroad of Aging and Parkinson's Disease. Genes (Basel) 2021; 12:genes12040505. [PMID: 33805527 PMCID: PMC8066012 DOI: 10.3390/genes12040505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the widespread occurrence of proteinaceous inclusions known as Lewy bodies and Lewy neurites. The etiology of PD is still far from clear, but aging has been considered as the highest risk factor influencing the clinical presentations and the progression of PD. Accumulating evidence suggests that aging and PD induce common changes in multiple cellular functions, including redox imbalance, mitochondria dysfunction, and impaired proteostasis. Age-dependent deteriorations in cellular dysfunction may predispose individuals to PD, and cellular damages caused by genetic and/or environmental risk factors of PD may be exaggerated by aging. Mutations in the LRRK2 gene cause late-onset, autosomal dominant PD and comprise the most common genetic causes of both familial and sporadic PD. LRRK2-linked PD patients show clinical and pathological features indistinguishable from idiopathic PD patients. Here, we review cellular dysfunctions shared by aging and PD-associated LRRK2 mutations and discuss how the interplay between the two might play a role in PD pathologies.
Collapse
|
30
|
A LRRK2 GTP Binding Inhibitor, 68, Reduces LPS-Induced Signaling Events and TNF-α Release in Human Lymphoblasts. Cells 2021; 10:cells10020480. [PMID: 33672296 PMCID: PMC7926966 DOI: 10.3390/cells10020480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant Parkinson’s disease (PD) and contribute to sporadic PD. Common genetic variation in LRRK2 modifies susceptibility to immunological disorders including Crohn’s disease and leprosy. Previous studies have reported that LRRK2 is expressed in B lymphocytes and macrophages, suggesting a role for LRRK2 in immunological functions. In this study, we characterized the LRRK2 protein expression and phosphorylation using human lymphoblasts. Lipopolysaccharide (LPS), a proinflammatory agent, induced the increase of LRRK2 expression and kinase activities in human lymphoblasts in a time-dependent manner. Moreover, LPS activated the Toll-like receptor (TLR) signaling pathway, increased TRAF6/LRRK2 interaction, and elevated the phosphorylation levels of MAPK (JNK1/2, p38, and ERK1/2) and IkBα. Treatment with LRRK2 inhibitor 68 reduced LPS-induced TRAF6/LRRK2 interaction and MAPK and IkBα phosphorylation, thereby reducing TNF-α secretion. These results indicate that LRRK2 is actively involved in proinflammatory responses in human lymphoblasts, and inhibition of GTP binding by 68 results in an anti-inflammation effect against proinflammatory stimuli. These findings not only provide novel insights into the mechanisms of LRRK2-linked immune and inflammatory responses in B-cell-like lymphoblasts, but also suggest that 68 may also have potential therapeutic value for LRRK2-linked immunological disorders.
Collapse
|
31
|
Differences in MTHFR and LRRK2 variant's association with sporadic Parkinson's disease in Mexican Mestizos correlated to Native American ancestry. NPJ Parkinsons Dis 2021; 7:13. [PMID: 33574311 PMCID: PMC7878860 DOI: 10.1038/s41531-021-00157-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder, has a complex etiology where environmental and genetic factors intervene. While a number of genes and variants have been identified in recent decades as causative or protective agents of this condition, a limited number of studies have been conducted in mixed populations, such as Mexican Mestizos. The historical convergence of two founding groups and three ethnicities, and the increasing north-to-south gradient of Native American ancestry in Mexico resulted in a subpopulation structure with considerable genetic diversity. In this work, we investigate the influence of 21 known susceptibility variants for PD. Our case-control study, with a cohort of 311 Mexican Mestizo subjects, found a significant risk association for the variant rs1491942 in LRRK2. However, when stratification by ancestry was performed, a risk effect for MTHFR rs1801133 was observed only in the group with the highest percentage of European ancestry, and the PD risk effect for LRRK2 rs1491942 was significant in subjects with a higher ratio of Native American ancestry. Meta-analyses of these SNP revealed the effect of LRRK2 rs1491942 to be even more significant than previously described in populations of European descent. Although corroboration is necessary, our findings suggest that polymorphism rs1491942 may be useful as a risk marker of PD in Mexican Mestizos with greater Native American ancestry. The absence of associations with the remaining known risk factors is, in itself, a relevant finding and invites further research into the shared risk factors' role in the pathophysiological mechanisms of this neurodegenerative disorder.
Collapse
|
32
|
Rastogi S, Sharma V, Bharti PS, Rani K, Modi GP, Nikolajeff F, Kumar S. The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. Int J Mol Sci 2021; 22:E440. [PMID: 33406804 PMCID: PMC7795439 DOI: 10.3390/ijms22010440] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) remains to be one of the biggest burdens on healthcare systems and serves as a leading cause of disability and death. Alzheimer's disease (AD) is among the most common of such disorders, followed by Parkinson's disease (PD). The basic molecular details of disease initiation and pathology are still under research. Only recently, the role of exosomes has been linked to the initiation and progression of these neurodegenerative diseases. Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30-150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. Here we review exosomes, their biogenesis, composition, and role in neurodegenerative diseases. We have also provided details for their characterization through an array of available techniques. Their updated role in neurodegenerative disease pathology is also discussed. Finally, we have shed light on a novel field of salivary exosomes as a potential candidate for early diagnosis in neurodegenerative diseases and compared the biomarkers of salivary exosomes with other blood/cerebrospinal fluid (CSF) based exosomes within these neurological ailments.
Collapse
Affiliation(s)
- Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Komal Rani
- Department of Biotechnology, Amity University, Mumbai 410206, India;
| | - Gyan P. Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India;
| | - Fredrik Nikolajeff
- Department of Health Science, Lulea Technical University, 97187 Lulea, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| |
Collapse
|
33
|
Dayan E, Sklerov M. Autonomic disorders in Parkinson disease: Disrupted hypothalamic connectivity as revealed from resting-state functional magnetic resonance imaging. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:211-222. [PMID: 34266593 DOI: 10.1016/b978-0-12-819973-2.00014-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Converging evidence from diverse methodologies implicate the hypothalamus in the pathophysiology of Parkinson's disease (PD). Pathology in the hypothalamus and in hypothalamic pathways has been linked primarily to autonomic dysfunction, routinely experienced by individuals with PD throughout the course of the disease, sometimes predating onset of motor symptoms. Postmortem and molecular imaging studies have delineated pathologic changes in the hypothalamus and demonstrated alterations in neurotransmitter systems within this structure and associated pathways, which track the progression of the disease. More recently, functional interactions between the hypothalamus, thalamus, and striatum, as assessed using resting-state functional magnetic resonance imaging, were shown to be reduced in PD patients with high in comparison to those with low autonomic symptom burden. These functional changes may relate to micro- and macrostructural alterations which are also observed in PD. An examination of the hypothalamus and hypothalamic pathways can also shed light on atypical parkinsonian disorders and their distinct pathophysiologic characteristics relative to idiopathic PD. Altogether, the current state of knowledge on the involvement of the hypothalamus in PD is profound, yet emerging methodological advances are likely to move our understanding of hypothalamic pathology in PD significantly forward.
Collapse
Affiliation(s)
- Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Miriam Sklerov
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
34
|
Pathological Functions of LRRK2 in Parkinson's Disease. Cells 2020; 9:cells9122565. [PMID: 33266247 PMCID: PMC7759975 DOI: 10.3390/cells9122565] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are common genetic risk factors for both familial and sporadic Parkinson’s disease (PD). Pathogenic mutations in LRRK2 have been shown to induce changes in its activity, and abnormal increase in LRRK2 kinase activity is thought to contribute to PD pathology. The precise molecular mechanisms underlying LRRK2-associated PD pathology are far from clear, however the identification of LRRK2 substrates and the elucidation of cellular pathways involved suggest a role of LRRK2 in microtubule dynamics, vesicular trafficking, and synaptic transmission. Moreover, LRRK2 is associated with pathologies of α-synuclein, a major component of Lewy bodies (LBs). Evidence from various cellular and animal models supports a role of LRRK2 in the regulation of aggregation and propagation of α-synuclein. Here, we summarize our current understanding of how pathogenic mutations dysregulate LRRK2 and discuss the possible mechanisms leading to neurodegeneration.
Collapse
|
35
|
Garofalo AW, Bright J, De Lombaert S, Toda AMA, Zobel K, Andreotti D, Beato C, Bernardi S, Budassi F, Caberlotto L, Gao P, Griffante C, Liu X, Mengatto L, Migliore M, Sabbatini FM, Sava A, Serra E, Vincetti P, Zhang M, Carlisle HJ. Selective Inhibitors of G2019S-LRRK2 Kinase Activity. J Med Chem 2020; 63:14821-14839. [PMID: 33197196 DOI: 10.1021/acs.jmedchem.0c01243] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pathogenic variants in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified that increase the risk for developing Parkinson's disease in a dominantly inherited fashion. These pathogenic variants, of which G2019S is the most common, cause abnormally high kinase activity, and compounds that inhibit this activity are being pursued as potentially disease-modifying therapeutics. Because LRRK2 regulates important cellular processes, developing inhibitors that can selectively target the pathogenic variant while sparing normal LRRK2 activity could offer potential advantages in heterozygous carriers. We conducted a high-throughput screen and identified a single selective compound that preferentially inhibited G2019S-LRRK2. Optimization of this scaffold led to a series of novel, potent, and highly selective G2019S-LRRK2 inhibitors.
Collapse
Affiliation(s)
| | - Jessica Bright
- ESCAPE Bio, South San Francisco, California 94080, United States
| | | | - Alyssa M A Toda
- ESCAPE Bio, South San Francisco, California 94080, United States
| | - Kerry Zobel
- ESCAPE Bio, South San Francisco, California 94080, United States
| | | | | | | | | | | | - Peng Gao
- WuXi AppTec, Tianjin 300456, P. R. China
| | | | | | | | | | | | - Anna Sava
- Aptuit, an Evotec Company, Verona 37135, Italy
| | - Elena Serra
- Aptuit, an Evotec Company, Verona 37135, Italy
| | | | | | - Holly J Carlisle
- ESCAPE Bio, South San Francisco, California 94080, United States
| |
Collapse
|
36
|
Liu X, Le W. Profiling Non-motor Symptoms in Monogenic Parkinson's Disease. Front Aging Neurosci 2020; 12:591183. [PMID: 33192488 PMCID: PMC7661846 DOI: 10.3389/fnagi.2020.591183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elder population, pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra. While the precise mechanisms underlying the pathogenesis of PD remain unknown, various genetic factors have been proved to be associated with PD. To date, at least 23 loci and 19 disease-causing genes for PD have been identified. Although monogenic (often familial) cases account for less than 5% of all PD patients, exploring the phenotypes of monogenic PD can help us understand the disease pathogenesis and progression. Primary motor symptoms are important for PD diagnosis but only detectable at a relatively late stage. Despite typical motor symptoms, various non-motor symptoms (NMS) including sensory complaints, mental disorders, autonomic dysfunction, and sleep disturbances also have negative impacts on the quality of life in PD patients and pose major challenges for disease management. NMS is common in all stages of the PD course. NMS can occur long before the onset of PD motor symptoms or can present in the middle or late stage of the disease accompanied by motor symptoms. Therefore, the profiling and characterization of NMS in monogenic PD may help the diagnosis and differential diagnosis of PD, which thereby can execute early intervention to delay the disease progression. In this review, we summarize the characteristics, clinical phenotypes, especially the NMS of monogenic PD patients carrying mutations of SNCA, LRRK2, VPS35, Parkin, PINK1, DJ-1, and GBA. The clinical implications of this linkage between NMS and PD-related genes are also discussed.
Collapse
Affiliation(s)
- Xinyao Liu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, China
| |
Collapse
|
37
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
38
|
Chen C, Soto G, Dumrongprechachan V, Bannon N, Kang S, Kozorovitskiy Y, Parisiadou L. Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations. eLife 2020; 9:58997. [PMID: 33006315 PMCID: PMC7609054 DOI: 10.7554/elife.58997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson’s disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose toward disease. Here, R1441C and G2019S knock-in mice enabled thorough evaluation of dendritic spines and synapses on pathway-identified SPNs. Biochemical synaptic preparations and super-resolution imaging revealed increased levels and altered organization of glutamatergic AMPA receptors in LRRK2 mutants. Relatedly, decreased frequency of miniature excitatory post-synaptic currents accompanied changes in dendritic spine nano-architecture, and single-synapse currents, evaluated using two-photon glutamate uncaging. Overall, LRRK2 mutations reshaped synaptic structure and function, an effect exaggerated in R1441C dSPNs. These data open the possibility of new neuroprotective therapies aimed at SPN synapse function, prior to disease onset. Parkinson’s disease is caused by progressive damage to regions of the brain that regulate movement. This leads to a loss in nerve cells that produce a signaling molecule called dopamine, and causes patients to experience shakiness, slow movement and stiffness. When dopamine is released, it travels to a part of the brain known as the striatum, where it is received by cells called spiny projection neurons (SPNs), which are rich in a protein called LRRK2. Mutations in this protein have been shown to cause the motor impairments associated with Parkinson’s disease. SPNs send signals to other regions of the brain either via a ‘direct’ route, which promotes movement, or an ‘indirect’ route, which suppresses movement. Previous studies suggest that mutations in the gene for LRRK2 influence the activity of these pathways even before dopamine signaling has been lost. Yet, it remained unclear how different mutations independently affected each pathway. To investigate this further, Chen et al. studied two of the mutations most commonly found in the human gene for LRRK2, known as G2019S and R1441C. This involved introducing one of these mutations in to the genetic code of mice, and using fluorescent proteins to mark single SPNs in either the direct or indirect pathway. The experiments showed that both mutations disrupted the connections between SPNs in the direct and indirect pathway, which altered the activity of nerve cells in the striatum. Chen et al. found that individual connections were more strongly affected by the R1441C mutation. Further experiments showed that this was caused by the re-organization of a receptor protein in the nerve cells of the direct pathway, which increased how SPNs responded to inputs from other nerve cells. These findings suggest that LRRK2 mutations disrupt neural activity in the striatum before dopamine levels become depleted. This discovery could help researchers identify new therapies for treating the early stages of Parkinson’s disease before the symptoms of dopamine loss arise.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Giulia Soto
- Department of Neurobiology, Northwestern University, Chicago, United States
| | | | - Nicholas Bannon
- Department of Neurobiology, Northwestern University, Chicago, United States
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | | | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
39
|
Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020. [DOI: 10.3390/ijms21176312
expr 858053618 + 832508766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
|
40
|
Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, Lacerda HM, Lucia A, Llavero F, Zugaza JL. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6312. [PMID: 32878220 PMCID: PMC7504559 DOI: 10.3390/ijms21176312] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
Affiliation(s)
- Alazne Arrazola Sastre
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - Miriam Luque Montoro
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain;
- R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain
| | | | - Alejandro Lucia
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
- Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
41
|
Padmanabhan S, Fiske BK, Baptista MA. The Michael J. Fox Foundation's Strategies for Accelerating Translation of LRRK2 into Therapies for Parkinson Disease. Cells 2020; 9:E1878. [PMID: 32796584 PMCID: PMC7466022 DOI: 10.3390/cells9081878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
Since 2005, The Michael J. Fox Foundation for Parkinson's Research (MJFF) has invested significant funding and non-funding effort to accelerate research and drug development activity around the Parkinson disease (PD)-associated protein LRRK2. MJFF has spearheaded multiple public/private pre-competitive collaborations that have contributed to our understanding of LRRK2 function; de-risked potential safety questions around the therapeutic use of LRRK2 kinase inhibitors; and generated critical research tools, biosamples, and data for the field. Several LRRK2-targeted therapies are now in human testing due to the hard work of so many in the PD community. In this perspective, we present a holistic description and model of how our Foundation's support targeted important barriers to LRRK2 research and helped move the field into clinical trials.
Collapse
Affiliation(s)
- Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson’s Research, Grand Central Station, P.O. Box 4777, New York, NY 10120, USA
| | | | - Marco A.S. Baptista
- The Michael J. Fox Foundation for Parkinson’s Research, Grand Central Station, P.O. Box 4777, New York, NY 10120, USA
| |
Collapse
|
42
|
Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020; 8:63. [PMID: 32375870 PMCID: PMC7201634 DOI: 10.1186/s40478-020-00935-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.
Collapse
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
43
|
Huntley GW, Benson DL. Origins of Parkinson's Disease in Brain Development: Insights From Early and Persistent Effects of LRRK2-G2019S on Striatal Circuits. Front Neurosci 2020; 14:265. [PMID: 32273839 PMCID: PMC7113397 DOI: 10.3389/fnins.2020.00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Late-onset Parkinson's disease (PD) is dominated clinically and experimentally by a focus on dopamine neuron degeneration and ensuing motor system abnormalities. There are, additionally, a number of non-motor symptoms - including cognitive and psychiatric - that can appear much earlier in the course of the disease and also significantly impair quality of life. The neurobiology of such cognitive and psychiatric non-motor symptoms is poorly understood. The recognition of genetic forms of late-onset PD, which are clinically similar to idiopathic forms in both motor and non-motor symptoms, raises the perspective that brain cells and circuits - and the behaviors they support - differ in significant ways from normal by virtue of the fact that these mutations are carried throughout life, including especially early developmental critical periods where circuit structure and function is particularly susceptible to the influence of experience-dependent activity. In this focused review, we support this central thesis by highlighting studies of LRRK2-G2019S mouse models. We describe work that shows that in G2019S mutants, corticostriatal activity and plasticity are abnormal by P21, the end of a period of excitatory synaptogenesis in striatum. Moreover, by young adulthood, impaired striatal synaptic and non-synaptic forms of plasticity likely underlie altered and variable performance by mutant mice in validated tasks that test for depression-like and anhedonia-like behaviors. Mechanistically, deficits in cellular, synaptic and behavioral plasticity may be unified by mutation-linked defects in trafficking of AMPAR subunits and other membrane channels, which in turn may reflect impairment in the function of the Rab family of GTPases, a major target of LRRK2 phosphorylation. These findings underscore the need to better understand how PD-related mutant proteins influence brain structure and function during an extended period of brain development, and offer new clues for future therapeutic strategies to target non-motor cognitive or psychiatric symptoms of PD.
Collapse
Affiliation(s)
- George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
44
|
Cunningham LA, Moore DJ. Endosomal sorting pathways in the pathogenesis of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:271-306. [PMID: 32247367 PMCID: PMC7206894 DOI: 10.1016/bs.pbr.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.
Collapse
Affiliation(s)
- Lindsey A Cunningham
- Van Andel Institute Graduate School, Grand Rapids, MI, United States; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
45
|
Gonzalez-Hunt CP, Sanders LH. DNA damage and repair in Parkinson's disease: Recent advances and new opportunities. J Neurosci Res 2020; 99:180-189. [PMID: 32048327 DOI: 10.1002/jnr.24592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is the most common movement neurodegenerative disorder. Although our understanding of the underlying mechanisms of pathogenesis in PD has greatly expanded, this knowledge thus far has failed to translate into disease-modifying therapies. Therefore, it is of the utmost urgency to interrogate further the multifactorial etiology of PD. DNA repair defects cause many neurodegenerative diseases. An exciting new PD research avenue is the role that DNA damage and repair may play in neuronal death. The goal of this mini-review was to discuss the evidence for the types of DNA damage that accumulates in PD, which has provided clues for which DNA repair pathways, such as DNA double-strand break repair, are dysfunctional. We further highlight compelling data for activation of the DNA damage response in familial and idiopathic PD. The significance of DNA damage and repair is emerging in the PD field and linking these insights to PD pathogenesis may provide new insights into PD pathophysiology and consequently lead to new therapies.
Collapse
Affiliation(s)
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
46
|
Cogo S, Manzoni C, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J Neurochem 2020; 152:273-283. [PMID: 31693760 DOI: 10.1111/jnc.14908] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
Over the last two decades, a number of studies have underlined the importance of lysosomal-based degradative pathways in maintaining the homeostasis of post-mitotic cells, and revealed the remarkable contribution of a functional autophagic machinery in the promotion of longevity. In contrast, defects in the clearance of organelles and aberrant protein aggregates have been linked to accelerated neuronal loss and neurological dysfunction. Several neurodegenerative disorders, among which Alzheimer disease (AD), Frontotemporal dementia, and Amyotrophic Lateral Sclerosis to name a few, are associated with alterations of the autophagy and endo-lysosomal pathways. In Parkinson disease (PD), the most prevalent genetic determinant, Leucine-rich repeat kinase 2 (LRRK2), is believed to be involved in the regulation of intracellular vesicle traffic, autophagy and lysosomal function. Here, we review the current understanding of the mechanisms by which LRRK2 regulates lysosomal-based degradative pathways in neuronal and non-neuronal cells and discuss the impact of pathogenic PD mutations in contributing to lysosomal dyshomeostasis.
Collapse
Affiliation(s)
- Susanna Cogo
- Department of Biology, University of Padova, Padova, Italy
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Precision medicine in Parkinson's disease: emerging treatments for genetic Parkinson's disease. J Neurol 2020; 267:860-869. [PMID: 31974807 PMCID: PMC7035220 DOI: 10.1007/s00415-020-09705-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 10/29/2022]
Abstract
In recent years, numerous clinical trials for disease modification in Parkinson's disease (PD) have failed, possibly because of a "one-size-fits all" approach. Alternatively, a precision medicine approach, which customises treatments based on patients' individual genotype, may help reach disease modification. Here, we review clinical trials that target genetic forms of PD, i.e., GBA-associated and LRRK2-associated PD. In summary, six ongoing studies which explicitely recruit GBA-PD patients, and two studies which recruit LRRK2-PD patients, were identified. Available data on mechanisms of action, study design, and challenges of therapeutic trials are discussed.
Collapse
|
48
|
Illés A, Csabán D, Grosz Z, Balicza P, Gézsi A, Molnár V, Bencsik R, Gál A, Klivényi P, Molnar MJ. The Role of Genetic Testing in the Clinical Practice and Research of Early-Onset Parkinsonian Disorders in a Hungarian Cohort: Increasing Challenge in Genetic Counselling, Improving Chances in Stratification for Clinical Trials. Front Genet 2019; 10:1061. [PMID: 31737044 PMCID: PMC6837163 DOI: 10.3389/fgene.2019.01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022] Open
Abstract
The genetic analysis of early-onset Parkinsonian disorder (EOPD) is part of the clinical diagnostics. Several genes have been implicated in the genetic background of Parkinsonism, which is clinically indistinguishable from idiopathic Parkinson's disease. The identification of patient's genotype could support clinical decision-making process and also track and analyse outcomes in a comprehensive fashion. The aim of our study was to analyse the genetic background of EOPD in a Hungarian cohort and to evaluate the clinical usefulness of different genetic investigations. The age of onset was between 25 and 50 years. To identify genetic alterations, multiplex ligation-dependent probe amplification (n = 142), Sanger sequencing of the most common PD-associated genes (n = 142), and next-generation sequencing (n = 54) of 127 genes which were previously associated to neurodegenerative disorders were carried out. The genetic analysis identified several heterozygous damaging substitutions in PD-associated genes (C19orf12, DNAJC6, DNAJC13, EIF4G1, LRRK2, PRKN, PINK1, PLA2G6, SYNJ1). CNVs in PRKN and SNCA genes were found in five patients. In our cohort, nine previously published genetic risk factors were detected in three genes (GBA, LRRK2, and PINK1). In nine cases, two or three coexisting pathogenic mutations and risk variants were identified. Advances of sequencing technologies make it possible to aid diagnostics of PD by widening the scope of analysis to genes which were previously linked to other neurodegenerative disorders. Our data suggested that rare damaging variants are enriched versus neutral variants, among PD patients in the Hungarian population, which raise the possibility of an oligogenic effect. Heterozygous mutations of multiple recessive genes involved in the same pathway may perturb the molecular process linked to PD pathogenesis. Comprehensive genetic assessment of individual patients can rarely reveal monogenic cause in EOPD, although it may identify the involvement of multiple PD-associated genes in the background of the disease and may facilitate the better understanding of clinically distinct phenocopies. Due to the genetic complexity of the disease, genetic counselling and management is getting more challenging. Clinical geneticist should be prepared for counselling of patients with coexisting disease-causing mutations and susceptibility factors. At the same time, genomic-based stratification has increasing importance in future clinical trials.
Collapse
Affiliation(s)
- Anett Illés
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Dóra Csabán
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Zoltán Grosz
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Péter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Viktor Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Renáta Bencsik
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Anikó Gál
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
49
|
Chen W, Yan X, Lv H, Liu Y, He Z, Luo X. Gender differences in prevalence of LRRK2-associated Parkinson disease: A meta-analysis of observational studies. Neurosci Lett 2019; 715:134609. [PMID: 31698024 DOI: 10.1016/j.neulet.2019.134609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The gender effect in the prevalence of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson disease (PD) remains controversial. Herein, we conducted a meta-analysis to investigate the gender effect among these patients. METHODS PubMed and EMBASE databases were searched to identify the potential related studies published before December 2017. Case-control studies with separated data of sex and mutation status were included in further analyses. We pooled relative risk (RR) using fixed-effect model. The publication bias and sensitivity analyses were also performed. RESULTS Sixty-four studies with 32452 patients diagnosed with PD were included. Higher prevalence of female patients with LRRK2-associated PD was observed with a pooled RR of 1.22 (95% CI 1.14-1.30, P<0.001). Further subgroup analyses showed that higher prevalence of female patients was only obtained in G2019S mutation patients (RR = 1.32, 95% CI 1.23-1.43, P<0.001), but not in G2385R variant patients (RR = 1.03, 95% CI 0.91-1.17, P = 0.651). No significant heterogeneity and publication bias were observed in additional analyses. CONCLUSIONS Higher female prevalence of LRRK2 mutation suggests roles of gender-related risk factors in PD patients, especially who carried G2019S mutation. Contrary to idiopathic PD, no sex difference was observed in prevalence of patients carried G2385R variant.
Collapse
Affiliation(s)
- Weiyao Chen
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xuejing Yan
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Hong Lv
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| | - Xiaoguang Luo
- Shen Zhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, People's Republic of China.
| |
Collapse
|
50
|
Podlesniy P, Puigròs M, Serra N, Fernández-Santiago R, Ezquerra M, Tolosa E, Trullas R. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease. EBioMedicine 2019; 48:554-567. [PMID: 31631040 PMCID: PMC6838390 DOI: 10.1016/j.ebiom.2019.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Both idiopathic and familial Parkinson's disease are associated with mitochondrial dysfunction. Mitochondria have their own mitochondrial DNA (mtDNA) and previous studies have reported that the release of mtDNA is a biomarker of Parkinson's disease. METHODS We have now investigated the relationship between mtDNA replication, transcription and release in fibroblasts from patients with idiopathic (iPD) and Leucine-rich repeat kinase 2G2019S -associated Parkinson's disease (LRRK2-PD), using Selfie-digital PCR, a method that allows absolute quantification of mtDNA genomes and transcripts. FINDINGS In comparison with healthy controls, we found that fibroblasts from patients with iPD or LRRK2-PD had a high amount of mitochondrial 7S DNA along with a low mtDNA replication rate that was associated with a reduction of cf-mtDNA release. Accumulation of 7S DNA in iPD and LRRK2-PD fibroblasts was related with an increase in H-strand mtDNA transcription. INTERPRETATION These results show that 7S DNA accumulation, low mtDNA replication, high H-strand transcription, and low mtDNA release compose a pattern of mtDNA dysfunction shared by both iPD and LRRK2-PD fibroblasts. Moreover, these results suggest that the deregulation of the genetic switch formed by 7SDNA that alternates between mtDNA replication and transcription is a fundamental pathophysiological mechanism in both idiopathic and monogenic Parkinson's disease.
Collapse
Affiliation(s)
- Petar Podlesniy
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Núria Serra
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rubén Fernández-Santiago
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Mario Ezquerra
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Eduardo Tolosa
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|