1
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Rehabilitation in Chronic Stroke. Neurorehabil Neural Repair 2025; 39:74-86. [PMID: 39345118 PMCID: PMC11723815 DOI: 10.1177/15459683241287731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. OBJECTIVES This study investigated the effectiveness of contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery driven by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity, and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. METHODS Twenty-six prospectively enrolled chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. RESULTS Chronic stroke patients achieved significant motor improvement in both proximal and distal upper extremity with BCI therapy. Motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3/C4 motor electrodes and positively correlated with motor recovery across BCI therapy sessions. CONCLUSIONS BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients, which significantly correlated with theta-gamma CFC increases in the motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven rehabilitation in chronic stroke patients. TRIAL REGISTRATION Advarra Study: https://classic.clinicaltrials.gov/ct2/show/NCT04338971 and Washington University Study: https://classic.clinicaltrials.gov/ct2/show/NCT03611855.
Collapse
Affiliation(s)
- Nabi Rustamov
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Alexandre Carter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric C. Leuthardt
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
- Neurolutions, Inc. St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Huang Y, Zelmann R, Hadar P, Dezha-Peralta J, Richardson RM, Williams ZM, Cash SS, Keller CJ, Paulk AC. Theta-burst direct electrical stimulation remodels human brain networks. Nat Commun 2024; 15:6982. [PMID: 39143083 PMCID: PMC11324911 DOI: 10.1038/s41467-024-51443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaquelin Dezha-Peralta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Lee HS, Kim DH, Seo HG, Im S, Yoo YJ, Kim NY, Lee J, Kim D, Park HY, Yoon MJ, Kim YS, Kim H, Chang WH. Efficacy of personalized rTMS to enhance upper limb function in subacute stroke patients: a protocol for a multi-center, randomized controlled study. Front Neurol 2024; 15:1427142. [PMID: 39022726 PMCID: PMC11253596 DOI: 10.3389/fneur.2024.1427142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is widely used therapy to enhance motor deficit in stroke patients. To date, rTMS protocols used in stroke patients are relatively unified. However, as the pathophysiology of stroke is diverse and individual functional deficits are distinctive, more precise application of rTMS is warranted. Therefore, the objective of this study was to determine the effects of personalized protocols of rTMS therapy based on the functional reserve of each stroke patient in subacute phase. Methods This study will recruit 120 patients with stroke in subacute phase suffering from the upper extremity motor impairment, from five different hospitals in Korea. The participants will be allocated into three different study conditions based on the functional reserve of each participant, measured by the results of TMS-induced motor evoked potentials (MEPs), and brain MRI with diffusion tensor imaging (DTI) evaluations. The participants of the intervention-group in the three study conditions will receive different protocols of rTMS intervention, a total of 10 sessions for 2 weeks: high-frequency rTMS on ipsilesional primary motor cortex (M1), high-frequency rTMS on ipsilesional ventral premotor cortex, and high-frequency rTMS on contralesional M1. The participants of the control-group in all three study conditions will receive the same rTMS protocol: low-frequency rTMS on contralesional M1. For outcome measures, the following assessments will be performed at baseline (T0), during-intervention (T1), post-intervention (T2), and follow-up (T3) periods: Fugl-Meyer Assessment (FMA), Box-and-block test, Action Research Arm Test, Jebsen-Taylor hand function test, hand grip strength, Functional Ambulatory Category, fractional anisotropy measured by the DTI, and brain network connectivity obtained from MRI. The primary outcome will be the difference of upper limb function, as measured by FMA from T0 to T2. The secondary outcomes will be the differences of other assessments. Discussion This study will determine the effects of applying different protocols of rTMS therapy based on the functional reserve of each patient. In addition, this methodology may prove to be more efficient than conventional rTMS protocols. Therefore, effective personalized application of rTMS to stroke patients can be achieved based on their severity, predicted mechanism of motor recovery, or functional reserves. Clinical trial registration https://clinicaltrials.gov/, identifier NCT06270238.
Collapse
Affiliation(s)
- Ho Seok Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Young Kim
- Department of Rehabilitation Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jungsoo Lee
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Donghyeon Kim
- NEUROPHET Inc., Research Institute, Seoul, Republic of Korea
| | - Hae-Yeon Park
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Seok Kim
- Department of Rehabilitation Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Hyunjin Kim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Wang J, Wu Z, Hong S, Ye H, Zhang Y, Lin Q, Chen Z, Zheng L, Qin J. Cerebellar transcranial magnetic stimulation for improving balance capacity and activity of daily living in stroke patients: a systematic review and meta-analysis. BMC Neurol 2024; 24:205. [PMID: 38879485 PMCID: PMC11179288 DOI: 10.1186/s12883-024-03720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The application of cerebellar transcranial magnetic stimulation (TMS) in stroke patients has received increasing attention due to its neuromodulation mechanisms. However, studies on the effect and safety of cerebellar TMS to improve balance capacity and activity of daily living (ADL) for stroke patients are limited. This systematic review and meta-analysis aimed to investigate the effect and safety of cerebellar TMS on balance capacity and ADL in stroke patients. METHOD A systematic search of seven electronic databases (PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang and Chinese Scientific Journal) were conducted from their inception to October 20, 2023. The randomized controlled trials (RCTs) of cerebellar TMS on balance capacity and/or ADL in stroke patients were enrolled. The quality of included studies were assessed by Physiotherapy Evidence Database (PEDro) scale. RESULTS A total of 13 studies involving 542 participants were eligible. The pooled results from 8 studies with 357 participants showed that cerebellar TMS could significantly improve the post-intervention Berg balance scale (BBS) score (MD = 4.24, 95%CI = 2.19 to 6.29, P < 0.00001; heterogeneity, I2 = 74%, P = 0.0003). The pooled results from 4 studies with 173 participants showed that cerebellar TMS could significantly improve the post-intervention Time Up and Go (TUG) (MD=-1.51, 95%CI=-2.8 to -0.22, P = 0.02; heterogeneity, I2 = 0%, P = 0.41). The pooled results from 6 studies with 280 participants showed that cerebellar TMS could significantly improve the post-intervention ADL (MD = 7.75, 95%CI = 4.33 to 11.17, P < 0.00001; heterogeneity, I2 = 56%, P = 0.04). The subgroup analysis showed that cerebellar TMS could improve BBS post-intervention and ADL post-intervention for both subacute and chronic stage stroke patients. Cerebellar high frequency TMS could improve BBS post-intervention and ADL post-intervention. Cerebellar TMS could still improve BBS post-intervention and ADL post-intervention despite of different cerebellar TMS sessions (less and more than 10 TMS sessions), different total cerebellar TMS pulse per week (less and more than 4500 pulse/week), and different cerebellar TMS modes (repetitive TMS and Theta Burst Stimulation). None of the studies reported severe adverse events except mild side effects in three studies. CONCLUSIONS Cerebellar TMS is an effective and safe technique for improving balance capacity and ADL in stroke patients. Further larger-sample, higher-quality, and longer follow-up RCTs are needed to explore the more reliable evidence of cerebellar TMS in the balance capacity and ADL, and clarify potential mechanisms.
Collapse
Affiliation(s)
- Jingfeng Wang
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhisheng Wu
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Shanshan Hong
- Department of Obstetrics and Gynecology, Quan Zhou Women's and Children's Hospital, Quanzhou, China
| | - Honghong Ye
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yi Zhang
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qiuxiang Lin
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zehuang Chen
- Huada Street Community Health Service Center, Quanzhou, China
| | - Liling Zheng
- Department of Cardiovascular Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| | - Jiawei Qin
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| |
Collapse
|
5
|
Giustiniani A, Quartarone A. Defining the concept of reserve in the motor domain: a systematic review. Front Neurosci 2024; 18:1403065. [PMID: 38745935 PMCID: PMC11091373 DOI: 10.3389/fnins.2024.1403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
A reserve in the motor domain may underlie the capacity exhibited by some patients to maintain motor functionality in the face of a certain level of disease. This form of "motor reserve" (MR) could include cortical, cerebellar, and muscular processes. However, a systematic definition has not been provided yet. Clarifying this concept in healthy individuals and patients would be crucial for implementing prevention strategies and rehabilitation protocols. Due to its wide application in the assessment of motor system functioning, non-invasive brain stimulation (NIBS) may support such definition. Here, studies focusing on reserve in the motor domain and studies using NIBS were revised. Current literature highlights the ability of the motor system to create a reserve and a possible role for NIBS. MR could include several mechanisms occurring in the brain, cerebellum, and muscles, and NIBS may support the understanding of such mechanisms.
Collapse
|
6
|
Zeng Y, Cheng R, Zhang L, Fang S, Zhang S, Wang M, Lv Q, Dai Y, Gong X, Liang F. Clinical Comparison between HD-tDCS and tDCS for Improving Upper Limb Motor Function: A Randomized, Double-Blinded, Sham-Controlled Trial. Neural Plast 2024; 2024:2512796. [PMID: 38585306 PMCID: PMC10999289 DOI: 10.1155/2024/2512796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/15/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Background Stroke is a common and frequently occurring disease among middle-aged and elderly people, with approximately 55%-75% of patients remaining with upper limb dysfunction. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. Objectives This study aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) of the primary motor cortex (M1) functional area in poststroke patients in the subacute phase is more effective in improving upper limb function than conventional tDCS. Methods This randomized, sham-controlled clinical trial included 69 patients with subcortical stroke. They were randomly divided into the HD-tDCS, anodal tDCS (a-tDCS), and sham groups. Each group received 20 sessions of stimulation. The patients were assessed using the Action Research Arm Test, Fugl-Meyer score for upper extremities, Motor Function Assessment Scale, and modified Barthel index (MBI) pretreatment and posttreatment. Results The intragroup comparison scores improved after 4 weeks of treatment. The HD-tDCS group showed a slightly greater, but nonsignificant improvement as compared to a-tDCS group in terms of mean change observed in function of trained items. The MBI score of the HD-tDCS group was maintained up to 8 weeks of follow-up and was higher than that in the a-tDCS group. Conclusion Both HD-tDCS and a-tDCS can improve upper limb motor function and daily activities of poststroke patients in the subacute stage. This trial is registered with ChiCTR2000031314.
Collapse
Affiliation(s)
- Yaqin Zeng
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruidong Cheng
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shan Fang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Lv
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunlan Dai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Gong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feng Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
8
|
Vallejo P, Cueva E, Martínez-Lozada P, García-Ríos CA, Miranda-Barros DH, Leon-Rojas JE. Repetitive Transcranial Magnetic Stimulation in Stroke: A Literature Review of the Current Role and Controversies of Neurorehabilitation Through Electromagnetic Pulses. Cureus 2023; 15:e41714. [PMID: 37575778 PMCID: PMC10414689 DOI: 10.7759/cureus.41714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective method used for the treatment of various neurological diseases, including stroke, epilepsy, and movement disorders. The pathophysiological mechanism for the effect of TMS is not clear. In this literature review, we conducted a detailed search regarding the effect of rTMS on neurotransmission and neuronal plasticity through the modulation of neuronal excitability. Evidence suggests that intramolecular subatomic mechanisms, including genetic changes related to neuronal prevention and death, play an important role. We also discuss the use of rTMS in the rehabilitation of patients with stroke and its main complications, as well as alternative mechanisms related to recovery, emphasizing the findings of available evidence and touching on possible controversies and limitations of the method.
Collapse
Affiliation(s)
- Paula Vallejo
- Medical School, Universidad de Las Américas, Quito, ECU
- Medical Research Department, NeurALL Research Group, Quito, ECU
| | - Emily Cueva
- Medical Research Department, NeurALL Research Group, Quito, ECU
| | | | | | | | - Jose E Leon-Rojas
- Neurological Surgery, Universidad de Las Américas, Quito, ECU
- Medical Research Department, NeurALL Research Group, Quito, ECU
- Research and Development Department, Medignosis, Quito, ECU
| |
Collapse
|
9
|
Ayubcha C, Amanullah A, Patel KH, Teichner E, Gokhale S, Marquez-Valenzuela U, Werner TJ, Alavi A. Stroke and molecular imaging: a focus on FDG-PET. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:51-63. [PMID: 37214267 PMCID: PMC10193198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023]
Abstract
Stroke is the leading cause of disability worldwide, the second most common cause of dementia and the third leading cause of death. Though the etiology of stroke has been explored extensively, there remains open questions in the scientific and clinical study of stroke. Traditional imaging techniques, such as magnetic resonance imaging and computed tomography, have been applied extensively and remain mainstays in clinical practice. Nevertheless, positron emission tomography has proven to be a powerful molecular imaging tool in exploring the scientific aspects of neurological disease, and stroke remains an area of great interest. This review article examines the role of positron emission tomography in the study of stroke including its contributions to elaborating related pathophysiology and delving into possible clinical applications.
Collapse
Affiliation(s)
- Cyrus Ayubcha
- Harvard Medical SchoolBoston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBoston, MA, USA
| | - Aamir Amanullah
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
- Lewis Katz School of Medicine at Temple UniversityPhiladelphia, PA, USA
| | | | - Eric Teichner
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
- Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Saket Gokhale
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
- Thomas Jefferson UniversityPhiladelphia, PA, USA
| | | | - Thomas J Werner
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
10
|
Yüksel MM, Sun S, Latchoumane C, Bloch J, Courtine G, Raffin EE, Hummel FC. Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation? IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:300-318. [PMID: 38196977 PMCID: PMC10776095 DOI: 10.1109/ojemb.2023.3263690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/11/2024] Open
Abstract
Stroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes. Transcranial ultrasound stimulation (TUS) is an emerging approach for non-invasive deep brain neuromodulation. Using non-ionizing, ultrasonic waves with millimeter-accuracy spatial resolution, excellent steering capacity and long penetration depth, TUS has the potential to serve as a novel non-invasive deep brain stimulation method to establish unprecedented neuromodulation and novel neurorehabilitation protocols. The purpose of the present review is to provide an overview on the current knowledge about the neuromodulatory effects of TUS while discussing the potential of TUS in the field of stroke recovery, with respect to existing NIBS methods. We will address and discuss critically crucial open questions and remaining challenges that need to be addressed before establishing TUS as a new clinical neurorehabilitation approach for motor stroke recovery.
Collapse
Affiliation(s)
- Mahmut Martin Yüksel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Shiqi Sun
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Charles Latchoumane
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Jocelyne Bloch
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Gregoire Courtine
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Estelle Emeline Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
- Clinical NeuroscienceUniversity of Geneva Medical SchoolGeneva1211Switzerland
| |
Collapse
|
11
|
Staat C, Gattinger N, Gleich B. PLUSPULS: A transcranial magnetic stimulator with extended pulse protocols. HARDWAREX 2023; 13:e00380. [PMID: 36578972 PMCID: PMC9791927 DOI: 10.1016/j.ohx.2022.e00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly applied in basic neuroscience while its field of usage for diagnosing and treating various neurological diseases broadens steadily. A TMS device generates a current pulse in the reach of several thousand ampére to produce a magnetic pulse which induces an electric field around neurons. This electric field, if high enough to depolarize the neuron membrane, generates an action potential at the neuron which travels down the neurons connected to it. The PLUSPULS TMS generates this magnetic pulse by pre-charging a pulse capacitor C with the voltage V C 0 and connecting it with a stimulation coil L . The oscillation of the resonance circuit is cut off after one period and is called a biphasic pulse. PLUSPULS is a high frequency stimulator with inter stimulus intervals (ISI) down to 1ms which enables different pulse protocols as paired pulse or quadri theta burst stimulation. A GUI on PC allows a flexible control of PLUSPULS with varying amplitudes and ISI in one burst. The modular hardware and the control via GUI on PC allows for an easier adjustment on requirements to come. The article provides design considerations, hardware, firmware and software to reconstruct a modular biphasic TMS with enhanced charging network to enable extended pulse protocols.
Collapse
|
12
|
Shen QR, Hu MT, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit 2022; 28:e938298. [PMID: 36457205 PMCID: PMC9724451 DOI: 10.12659/msm.938298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 09/02/2023] Open
Abstract
Stroke is a disease with a high incidence and disability rate, resulting in changes in neural network and corticoid-subcortical excitability and various functional disabilities. The aim of the present study was to discuss the current status of research and limitations and potential direction in the application of noninvasive brain stimulation (NIBS) on post-stroke patients. This literature review focused on clinical studies and reviews. Literature retrieval was conducted in PubMed, Cochrane, Scopus, and CNKI, using the following keywords: Repeated transcranial magnetic stimulation, Transcranial direct current stimulation, Transcranial alternating current stimulation, Transcranial alternating current stimulation, Transcranial focused ultrasound, Noninvasive vagus nerve stimulation, Stroke, and Rehabilitation. We selected 200 relevant publications from 1985 to 2022. An overview of recent research on the use of NIBS on post-stroke patients, including its mechanism, therapeutic parameters, effects, and safety, is presented. It was found that NIBS has positive therapeutic effects on dysfunctions of motor, sensory, cognitive, speech, swallowing, and depression after stroke, but standardized stimulus programs are still lacking. The literature suggests that rTMS and tDCS are more beneficial to post-stroke patients, while tFUS and tVNS are currently less studied for post-stroke rehabilitation, but are also potential interventions.
Collapse
Affiliation(s)
- Qian-ru Shen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Meng-ting Hu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wu Wang
- Department of Rehabilitation Therapy, The Second Rehabilitation Hospital of Shanghai, Shanghai, PR China
| |
Collapse
|
13
|
Tan G, Wang J, Liu J, Sheng Y, Xie Q, Liu H. A framework for quantifying the effects of transcranial magnetic stimulation on motor recovery from hemiparesis: Corticomuscular Network. J Neural Eng 2022; 19. [PMID: 35366651 DOI: 10.1088/1741-2552/ac636b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is an experimental therapy for promoting motor recovery from hemiparesis. At present, hemiparesis patients' responses to TMS are variable. To maximize its therapeutic potential, we need an approach that relates the electrophysiology of motor recovery and TMS. To this end, we propose Corticomuscular Network (CMN) representing the holistic motor system, including the cortico-cortical pathway, corticospinal tract, and muscle co-activation. METHODS CMN is made up of coherence between pairs of electrode signals and spatial locations of the electrodes. We associated coherence and graph features of CMN with Fugl-Meyer Assessment (FMA) for the upper extremity. Besides, we compared CMN between 8 patients with hemiparesis and 6 healthy controls and contrasted CMN of patients before and after a 1Hz TMS. MAIN RESULTS Corticomuscular coherence (CMC) correlated positively with FMA. The regression model between FMA and CMC between 5 pairs of channels had 0.99 adjusted R^2 and a p-value less than 0.01. Compared to healthy controls, CMN of patients tended to be a small-world network and was more interconnected with higher CMC. CMC between cortex and triceps brachii long head was higher in patients. 15-minute 1Hz TMS protocol induced coherence changes beyond the stimulation side and had a limited impact on CMN parameters that are related to motor recovery. SIGNIFICANCE CMN is a potential clinical approach to quantify rehabilitating progress. It also sheds light on the desirable electrophysiological effects of TMS based on which rehabilitating strategies can be optimized.
Collapse
Affiliation(s)
- Gansheng Tan
- Washington University in St Louis, 520 S Euclid Ave, St. Louis, MO 63110, St Louis, Missouri, 63130-4899, UNITED STATES
| | - Jixian Wang
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 800 Dongchuan Rd, Shanghai, 200025, CHINA
| | - Jinbiao Liu
- Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, CHINA
| | - Yixuan Sheng
- Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, CHINA
| | - Qing Xie
- Ruijin Hospital, 800 Dongchuan Rd, Shanghai, 200025, CHINA
| | - Honghai Liu
- Harbin Institute of Technology Shenzhen, Pingshan 1 Rd, Nanshan, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
14
|
Einstein EH, Dadario NB, Khilji H, Silverstein JW, Sughrue ME, D'Amico RS. Transcranial magnetic stimulation for post-operative neurorehabilitation in neuro-oncology: a review of the literature and future directions. J Neurooncol 2022; 157:435-443. [PMID: 35338454 DOI: 10.1007/s11060-022-03987-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a neuromodulation technology capable of targeted stimulation and inhibition of cortical areas. Repetitive TMS (rTMS) has demonstrated efficacy in the treatment of several neuropsychiatric disorders, and novel uses of rTMS for neurorehabilitation in patients with acute and chronic neurologic deficits are being investigated. However, studies to date have primarily focused on neurorehabilitation in stroke patients, with little data supporting its use for neurorehabilitation in brain tumor patients. METHODS We performed a review of the current available literature regarding uses of rTMS for neurorehabilitation in post-operative neuro-oncologic patients. RESULTS Data have demonstrated that rTMS is safe in the post-operative neuro-oncologic patient population, with minimal adverse effects and no documented seizures. The current evidence also demonstrates potential effectiveness in terms of neurorehabilitation of motor and language deficits. CONCLUSIONS Although data are overall limited, both safety and effectiveness have been demonstrated for the use of rTMS for neurorehabilitation in the neuro-oncologic population. More randomized controlled trials and specific comparisons of contralateral versus ipsilateral rTMS protocols should be explored. Further work may also focus on individualized, patient-specific TMS treatment protocols for optimal functional recovery.
Collapse
Affiliation(s)
- Evan H Einstein
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA.
| | - Nicholas B Dadario
- Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Hamza Khilji
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Justin W Silverstein
- Department of Neurology, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
- Neuro Protective Solutions, New York, NY, USA
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| |
Collapse
|
15
|
Li J, Cheng L, Chen S, Zhang J, Liu D, Liang Z, Li H. Functional Connectivity Changes in Multiple-Frequency Bands in Acute Basal Ganglia Ischemic Stroke Patients: A Machine Learning Approach. Neural Plast 2022; 2022:1560748. [PMID: 35356364 PMCID: PMC8958111 DOI: 10.1155/2022/1560748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Several functional magnetic resonance imaging (fMRI) studies have investigated the resting-state functional connectivity (rs-FC) changes in the primary motor cortex (M1) in patients with acute basal ganglia ischemic stroke (BGIS). However, the frequency-specific FC changes of M1 in acute BGIS patients are still unclear. Our study was aimed at exploring the altered FC of M1 in three frequency bands and the potential features as biomarkers for the identification by using a support vector machine (SVM). Methods We included 28 acute BGIS patients and 42 healthy controls (HCs). Seed-based FC of two regions of interest (ROI, bilateral M1s) were calculated in conventional, slow-5, and slow-4 frequency bands. The abnormal voxel-wise FC values were defined as the features for SVM in different frequency bands. Results In the ipsilesional M1, the acute BGIS patients exhibited decreased FC with the right lingual gyrus in the conventional and slow-4 frequency band. Besides, the acute BGIS patients showed increased FC with the right medial superior frontal gyrus (SFGmed) in the conventional and slow-5 frequency band and decreased FC with the left lingual gyrus in the slow-5 frequency band. In the contralesional M1, the BGIS patients showed lower FC with the right SFGmed in the conventional frequency band. The higher FC values with the right lingual gyrus and left SFGmed were detected in the slow-4 frequency band. In the slow-5 frequency band, the BGIS patients showed decreased FC with the left calcarine sulcus. SVM results showed that the combined features (slow-4+slow-5) had the highest accuracy in classification prediction of acute BGIS patients, with an area under curve (AUC) of 0.86. Conclusion Acute BGIS patients had frequency-specific alterations in FC; SVM is a promising method for exploring these frequency-dependent FC alterations. The abnormal brain regions might be potential targets for future researchers in the rehabilitation and treatment of stroke patients.
Collapse
Affiliation(s)
- Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Shijian Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
16
|
Shin J, Yang S, Park C, Lee Y, You SJH. Comparative effects of passive and active mode robot-assisted gait training on brain and muscular activities in sub-acute and chronic stroke. NeuroRehabilitation 2022; 51:51-63. [PMID: 35311717 DOI: 10.3233/nre-210304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Robot-assisted gait training (RAGT) was initially developed based on the passive controlled (PC) mode, where the target or ideal locomotor kinematic trajectory is predefined and a patient basically 'rides' the robot instead of actively participating in the actual locomotor relearning process. A new insightful contemporary neuroscience and mechatronic evidence suggest that robotic-based locomotor relearning can be best achieved through active interactive (AI) mode rather than PC mode. OBJECTIVE The purpose of this study was to compare the pattern of gait-related cortical activity, specifically gait event-related spectral perturbations (ERSPs), and muscle activity from the tibialis anterior (TA) and clinical functional tests in subacute and chronic stroke patients during robot-assisted gait training (RAGT) in passive controlled (PC) and active interactive (AI) modes. METHODS The present study involves a two-group pretest-posttest design in which two groups (i.e., PC-RAGT group and AI-RAGT group) of 14 stroke subjects were measured to assess changes in ERSPs, the muscle activation of TA, and the clinical functional tests, following 15- 18 sessions of intervention according to the protocol of each group. RESULTS Our preliminary results demonstrated that the power in the μ band (8- 12 Hz) was increased in the leg area of sensorimotor cortex (SMC) and supplementary motor area (SMA) at post-intervention as compared to pre-intervention in both groups. Such cortical neuroplasticity change was associated with TA muscle activity during gait and functional independence in functional ambulation category (FAC) and motor coordination in Fugl- Meyer Assessment for lower extremity (FMA-LE) test as well as spasticity in the modified Ashworth scale (MAS) measures. CONCLUSIONS We have first developed a novel neuroimaging experimental paradigm which distinguished gait event related cortical involvement between pre- and post-intervention with PC-RAGT and AI-RAGT in individuals with subacute and chronic hemiparetic stroke.
Collapse
Affiliation(s)
- Jiwon Shin
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju, Republic of Korea.,Department of Physical Therapy, Yonsei University, Wonju, Republic of Korea
| | - Sejung Yang
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Chanhee Park
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju, Republic of Korea.,Department of Physical Therapy, Yonsei University, Wonju, Republic of Korea
| | - Yongseok Lee
- Myongji-Choonhey Rehabilitation Hospital, Seoul, Republic of Korea
| | - Sung Joshua H You
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju, Republic of Korea.,Department of Physical Therapy, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
17
|
Poologaindran A, Profyris C, Young IM, Dadario NB, Ahsan SA, Chendeb K, Briggs RG, Teo C, Romero-Garcia R, Suckling J, Sughrue ME. Interventional neurorehabilitation for promoting functional recovery post-craniotomy: a proof-of-concept. Sci Rep 2022; 12:3039. [PMID: 35197490 PMCID: PMC8866464 DOI: 10.1038/s41598-022-06766-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
The human brain is a highly plastic ‘complex’ network—it is highly resilient to damage and capable of self-reorganisation after a large perturbation. Clinically, neurological deficits secondary to iatrogenic injury have very few active treatments. New imaging and stimulation technologies, though, offer promising therapeutic avenues to accelerate post-operative recovery trajectories. In this study, we sought to establish the safety profile for ‘interventional neurorehabilitation’: connectome-based therapeutic brain stimulation to drive cortical reorganisation and promote functional recovery post-craniotomy. In n = 34 glioma patients who experienced post-operative motor or language deficits, we used connectomics to construct single-subject cortical networks. Based on their clinical and connectivity deficit, patients underwent network-specific transcranial magnetic stimulation (TMS) sessions daily over five consecutive days. Patients were then assessed for TMS-related side effects and improvements. 31/34 (91%) patients were successfully recruited and enrolled for TMS treatment within two weeks of glioma surgery. No seizures or serious complications occurred during TMS rehabilitation and 1-week post-stimulation. Transient headaches were reported in 4/31 patients but improved after a single session. No neurological worsening was observed while a clinically and statistically significant benefit was noted in 28/31 patients post-TMS. We present two clinical vignettes and a video demonstration of interventional neurorehabilitation. For the first time, we demonstrate the safety profile and ability to recruit, enroll, and complete TMS acutely post-craniotomy in a high seizure risk population. Given the lack of randomisation and controls in this study, prospective randomised sham-controlled stimulation trials are now warranted to establish the efficacy of interventional neurorehabilitation following craniotomy.
Collapse
Affiliation(s)
- Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,The Alan Turing Institute, British Library, London, UK
| | - Christos Profyris
- Netcare Linksfield Hospital, Johannesburg, South Africa.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Isabella M Young
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Nicholas B Dadario
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.,Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Syed A Ahsan
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Kassem Chendeb
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Charles Teo
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,The Alan Turing Institute, British Library, London, UK
| | - Michael E Sughrue
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
18
|
Duan YJ, Hua XY, Zheng MX, Wu JJ, Xing XX, Li YL, Xu JG. Corticocortical paired associative stimulation for treating motor dysfunction after stroke: study protocol for a randomised sham-controlled double-blind clinical trial. BMJ Open 2022; 12:e053991. [PMID: 35027421 PMCID: PMC8762140 DOI: 10.1136/bmjopen-2021-053991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Stroke survivors can have a high disability rate with low quality of daily life, resulting in a heavy burden on family and society. Transcranial magnetic stimulation has been widely applied to brain injury repair, neurological disease treatment, cognition and emotion regulation and so on. However, there is still much to be desired in the theories of using these neuromodulation techniques to treat stroke-caused hemiplegia. It is generally recognised that synaptic plasticity is an important basis for functional repair after brain injury. This study protocol aims to examine the corticocortical paired associative stimulation (ccPAS) for inducing synaptic plasticity to rescue the paralysed after stroke. METHODS AND ANALYSIS The current study is designed as a 14-week double-blind randomised sham-controlled clinical trial, composed of 2-week intervention and 12-week follow-up. For the study, 42 patients who had a stroke aged 40-70 will be recruited, who are randomly assigned either to the ccPAS intervention group, or to the control group at a 1:1 ratio, hence an equal number each. In the intervention group, ccPAS is practised in conjunction with the conventional rehabilitation treatment, and in the control group, the conventional rehabilitation treatment is administered with sham stimulation. A total of 10 interventions will be made, 5 times a week for 2 weeks. The same assessors are supposed to evaluate the participants' motor function at four time points of the baseline (before 10 interventions), treatment ending (after 10 interventions), and two intervals of follow-up (1 and 3 months later, respectively). The Fugl-Meyer Assessment Upper Extremity is used for the primary outcomes. The secondary outcomes include changes in the assessment of Action Research Arm Test (ARAT), Modified Barthel Index (MBI), electroencephalogram (EEG) and functional MRI data. The adverse events are to be recorded throughout the study. ETHICS AND DISSEMINATION This study was approved by the Medical Ethics Committee of Yueyang Hospital. All ethical work was performed in accordance with the Helsinki declaration. Written informed consent was obtained from all individual participants included in the study. Study findings will be disseminated in the printed media. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry: ChiCTR2000036685.
Collapse
Affiliation(s)
- Yu-Jie Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Gao BY, Cao YX, Fu PF, Xing Y, Liang D, Jiang S, Xie YX, Li M. Optogenetics stimulates nerve reorganization in the contralesional anterolateral primary motor cortex in a mouse model of ischemic stroke. Neural Regen Res 2021; 17:1535-1544. [PMID: 34916439 PMCID: PMC8771093 DOI: 10.4103/1673-5374.330615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anterolateral motor cortex of rodents is an important motor auxiliary area, and its function is similar to that of the premotor area in humans. Activation and inhibition of the contralesional anterolateral motor cortex (cALM) have been shown to have direct effects on motor behavior. However, the significance of cALM activation and inhibition in the treatment of stroke remains unclear. This study investigated the role of optogenetic cALM stimulation in a mouse model of cerebral stroke. The results showed that 21-day optogenetic cALM inhibition, but not activation, improved neurological function. In addition, optogenetic cALM stimulation substantially altered dendritic structural reorganization and dendritic spine plasticity, as optogenetic cALM inhibition resulted in increased dendritic length, number of dendritic spines, and number of perforated synapses, whereas optogenetic activation led to an increase in the number of multiple synapse boutons and the number of dendritic intersections. Furthermore, RNA-seq analysis showed that multiple biological processes regulated by the cALM were upregulated immediately after optogenetic cALM inhibition, and that several immediate-early genes (including cFOS, Erg1, and Sema3f) were expressed at higher levels after optogenetic inhibition than after optogenetic activation. These results were confirmed by quantitative reverse transcription-polymerase chain reaction. Finally, immunofluorescence analysis showed that the c-FOS signal in layer V of the primary motor cortex in the ischemic hemisphere was higher after optogenetic cALM activation than it was after optogenetic cALM inhibition. Taken together, these findings suggest that optogenetic cALM stimulation promotes neural reorganization in the primary motor cortex of the ischemic hemisphere, and that optogenetic cALM inhibition and activation have different effects on neural plasticity. The study was approved by the Experimental Animal Ethics Committee of Fudan University (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Bei-Yao Gao
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yi-Xing Cao
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Peng-Fei Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Liang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan Jiang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Xiao Xie
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Min Li
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
20
|
A Meta-Analysis: Whether Repetitive Transcranial Magnetic Stimulation Improves Dysfunction Caused by Stroke with Lower Limb Spasticity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7219293. [PMID: 34876916 PMCID: PMC8645366 DOI: 10.1155/2021/7219293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022]
Abstract
Objective To evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) in improving lower limb spasticity after stroke. Methods The PubMed, Web of Science, Cochrane Library, EMBASE, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM) disc, China Science and Technology Journal Database (VIP), and Wanfang databases were searched online from their inception to May 2021 for randomized controlled trials (RCTs) involving repetitive transcranial magnetic stimulation for lower extremity spasticity after stroke. Valid data were extracted from the included literature, and the quality evaluation was conducted with the Cochrane Handbook for Systematic Reviews of Interventions along with the Physiotherapy Evidence Database scale (PE-Dro scale). The data that met the quality requirements were systematically analysed using Review Manager 5.4 software. Results A total of 554 patients from seven articles (nine studies) were quantitatively analysed. Outcomes included the Modified Ashworth Scale (MAS), Fugl-Meyer Assessment of Lower Extremity (FMA-LE), Modified Barthel Index (MBI), and Timed Up and Go (TUG), measured as the effect of rTMS compared with controls conditions after treatment. The systematic review showed that rTMS reduced MAS and increased MBI scores, respectively (SMD = -0.24, 95% CI [-0.45, -0.03], P = 0.02; MD = 6.14, 95% CI [-3.93,8.35], P < 0.00001), compared with control conditions. Low-frequency rTMS (LF-rTMS) significantly improved FMA-LE scores (SMD = 0.32, 95% CI [0.13, 0.51], P = 0.001). However, there was no significant difference in FMA-LE scores when using high-frequency rTMS (HF-rTMS) (P > 0.1) and in TUG times (P > 0.1) between the treatment and control groups. Conclusions rTMS was effective in improving spasticity and activities of daily living. LF-rTMS has positive clinical effects on enhancing motor function in patients who experience lower extremity spasticity after stroke. To better validate the above conclusions, more multicentre, high-quality, and double-blind randomized controlled trials are needed.
Collapse
|
21
|
Chen IH, Liang PJ, Chiu VJY, Lee SC. Trunk Muscle Activation Patterns During Standing Turns in Patients With Stroke: An Electromyographic Analysis. Front Neurol 2021; 12:769975. [PMID: 34858317 PMCID: PMC8631775 DOI: 10.3389/fneur.2021.769975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Recent evidence indicates that turning difficulty may correlate with trunk control; however, surface electromyography has not been used to explore trunk muscle activity during turning after stroke. This study investigated trunk muscle activation patterns during standing turns in healthy controls (HCs) and patients with stroke with turning difficulty (TD) and no TD (NTD). The participants with stroke were divided into two groups according to the 180° turning duration and number of steps to determine the presence of TD. The activation patterns of the bilateral external oblique and erector spinae muscles of all the participants were recorded during 90° standing turns. A total of 14 HCs, 14 patients with TD, and 14 patients with NTD were recruited. The duration and number of steps in the turning of the TD group were greater than those of the HCs, independent of the turning direction. However, the NTD group had a significantly longer turning duration than did the HC group only toward the paretic side. Their performance was similar when turning toward the non-paretic side; this result is consistent with electromyographic findings. Both TD and NTD groups demonstrated increased amplitudes of trunk muscles compared with the HC groups. Their trunk muscles failed to maintain consistent amplitudes during the entire movement of standing turns in the direction that they required more time or steps to turn toward (i.e., turning in either direction for the TD group and turning toward the paretic side for the NTD group). Patients with stroke had augmented activation of trunk muscles during turning. When patients with TD turned toward either direction and when patients with NTD turned toward the paretic side, the flexible adaptations and selective actions of trunk muscles observed in the HCs were absent. Such distinct activation patterns during turning may contribute to poor turning performance and elevate the risk of falling. Our findings provide insights into the contribution and importance of trunk muscles during turning and the association with TD after stroke. These findings may help guide the development of more effective rehabilitation therapies that target specific muscles for those with TD.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Department of Physical Therapy, Fooyin University, Kaohsiung City, Taiwan
| | - Pei-Jung Liang
- Department of Rehabilitation Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Valeria Jia-Yi Chiu
- Department of Rehabilitation Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Shu-Chun Lee
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
22
|
Taud B, Lindenberg R, Darkow R, Wevers J, Höfflin D, Grittner U, Meinzer M, Flöel A. Limited Add-On Effects of Unilateral and Bilateral Transcranial Direct Current Stimulation on Visuo-Motor Grip Force Tracking Task Training Outcome in Chronic Stroke. A Randomized Controlled Trial. Front Neurol 2021; 12:736075. [PMID: 34858310 PMCID: PMC8631774 DOI: 10.3389/fneur.2021.736075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This randomized controlled trial investigated if uni- and bihemispheric transcranial direct current stimulation (tDCS) of the motor cortex can enhance the effects of visuo-motor grip force tracking task training and transfer to clinical assessments of upper extremity motor function. Methods: In a randomized, double-blind, sham-controlled trial, 40 chronic stroke patients underwent 5 days of visuo-motor grip force tracking task training of the paretic hand with either unilateral or bilateral (N = 15/group) or placebo tDCS (N = 10). Immediate and long-term (3 months) effects on training outcome and motor recovery (Upper Extremity Fugl-Meyer, UE-FM, Wolf Motor Function Test, and WMFT) were investigated. Results: Trained task performance significantly improved independently of tDCS in a curvilinear fashion. In the anodal stimulation group UE-FM scores were higher than in the sham group at day 5 (adjusted mean difference: 2.6, 95%CI: 0.6–4.5, p = 0.010) and at 3 months follow up (adjusted mean difference: 2.8, 95%CI: 0.8–4.7, p = 0.006). Neither training alone, nor the combination of training and tDCS improved WMFT performance. Conclusions: Visuo-motor grip force tracking task training can facilitate recovery of upper extremity function. Only minimal add-on effects of anodal but not dual tDCS were observed. Clinical Trial Registration:https://clinicaltrials.gov/ct2/results?recrs=&cond=&term=NCT01969097&cntry=&state=&city=&dist=, identifier: NCT01969097, retrospectively registered on 25/10/2013.
Collapse
Affiliation(s)
- Benedikt Taud
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Robert Lindenberg
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of History, Philosophy and Ethics of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Robert Darkow
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Jasmin Wevers
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Dorothee Höfflin
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Ulrike Grittner
- Berlin Institute of Health at Charité, Charité University Medicine, Berlin, Germany.,Institute of Biometry and Clinical Epidemiology, Charité University Medicine, Berlin, Germany
| | - Marcus Meinzer
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases, Site Greifswald/Rostock, Greifswald, Germany.,Center for Stroke Research, Charité University Medicine, Berlin, Germany
| |
Collapse
|
23
|
Kerr AL. Contralesional plasticity following constraint-induced movement therapy benefits outcome: contributions of the intact hemisphere to functional recovery. Rev Neurosci 2021; 33:269-283. [PMID: 34761646 DOI: 10.1515/revneuro-2021-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 11/15/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. A common, chronic deficit after stroke is upper limb impairment, which can be exacerbated by compensatory use of the nonparetic limb. Resulting in learned nonuse of the paretic limb, compensatory reliance on the nonparetic limb can be discouraged with constraint-induced movement therapy (CIMT). CIMT is a rehabilitative strategy that may promote functional recovery of the paretic limb in both acute and chronic stroke patients through intensive practice of the paretic limb combined with binding, or otherwise preventing activation of, the nonparetic limb during daily living exercises. The neural mechanisms that support CIMT have been described in the lesioned hemisphere, but there is a less thorough understanding of the contralesional changes that support improved functional outcome following CIMT. Using both human and non-human animal studies, the current review explores the role of the contralesional hemisphere in functional recovery of stroke as it relates to CIMT. Current findings point to a need for a better understanding of the functional significance of contralesional changes, which may be determined by lesion size, location, and severity as well stroke chronicity.
Collapse
Affiliation(s)
- Abigail L Kerr
- Departments of Psychology and Neuroscience, Illinois Wesleyan University, 1312 Park Street, Bloomington, IL 61701, USA
| |
Collapse
|
24
|
Brisson V, Tremblay P. Improving speech perception in noise in young and older adults using transcranial magnetic stimulation. BRAIN AND LANGUAGE 2021; 222:105009. [PMID: 34425411 DOI: 10.1016/j.bandl.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Normal aging is associated with speech perception in noise (SPiN) difficulties. The objective of this study was to determine if SPiN performance can be enhanced by intermittent theta-burst stimulation (iTBS) in young and older adults. METHOD We developed a sub-lexical SPiN test to evaluate the contribution of age, hearing, and cognition to SPiN performance in young and older adults. iTBS was applied to the left posterior superior temporal sulcus (pSTS) and the left ventral premotor cortex (PMv) to examine its impact on SPiN performance. RESULTS Aging was associated with reduced SPiN accuracy. TMS-induced performance gain was greater after stimulation of the PMv compared to the pSTS. Participants with lower scores in the baseline condition improved the most. DISCUSSION SPiN difficulties can be reduced by enhancing activity within the left speech-processing network in adults. This study paves the way for the development of TMS-based interventions to reduce SPiN difficulties in adults.
Collapse
Affiliation(s)
- Valérie Brisson
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada.
| |
Collapse
|
25
|
Orrù G, Conversano C, Hitchcott PK, Gemignani A. Motor stroke recovery after tDCS: a systematic review. Rev Neurosci 2021; 31:201-218. [PMID: 31472070 DOI: 10.1515/revneuro-2019-0047] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
The purpose of the present study was to investigate the effects of transcranial direct current stimulation (tDCS) on motor recovery in adult patients with stroke, taking into account the parameters that could influence the motor recovery responses. The second aim was to identify the best tDCS parameters and recommendations available based on the enhanced motor recovery demonstrated by the analyzed studies. Our systematic review was performed by searching full-text articles published before February 18, 2019 in the PubMed database. Different methods of applying tDCS in association with several complementary therapies were identified. Studies investigating the motor recovery effects of tDCS in adult patients with stroke were considered. Studies investigating different neurologic conditions and psychiatric disorders or those not meeting our methodologic criteria were excluded. The main parameters and outcomes of tDCS treatments are reported. There is not a robust concordance among the study outcomes with regard to the enhancement of motor recovery associated with the clinical application of tDCS. This is mainly due to the heterogeneity of clinical data, tDCS approaches, combined interventions, and outcome measurements. tDCS could be an effective approach to promote adaptive plasticity in the stroke population with significant positive premotor and postmotor rehabilitation effects. Future studies with larger sample sizes and high-quality studies with a better standardization of stimulation protocols are needed to improve the study quality, further corroborate our results, and identify the optimal tDCS protocols.
Collapse
Affiliation(s)
- Graziella Orrù
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Paul Kenneth Hitchcott
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| |
Collapse
|
26
|
Rolle CE, Baumer FM, Jordan JT, Berry K, Garcia M, Monusko K, Trivedi H, Wu W, Toll R, Buckwalter MS, Lansberg M, Etkin A. Mapping causal circuit dynamics in stroke using simultaneous electroencephalography and transcranial magnetic stimulation. BMC Neurol 2021; 21:280. [PMID: 34271872 PMCID: PMC8283835 DOI: 10.1186/s12883-021-02319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/16/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Motor impairment after stroke is due not only to direct tissue loss but also to disrupted connectivity within the motor network. Mixed results from studies attempting to enhance motor recovery with Transcranial Magnetic Stimulation (TMS) highlight the need for a better understanding of both connectivity after stroke and the impact of TMS on this connectivity. This study used TMS-EEG to map the causal information flow in the motor network of healthy adult subjects and define how stroke alters these circuits. METHODS Fourteen stroke patients and 12 controls received TMS to two sites (bilateral primary motor cortices) during two motor tasks (paretic/dominant hand movement vs. rest) while EEG measured the cortical response to TMS pulses. TMS-EEG based connectivity measurements were derived for each hemisphere and the change in connectivity (ΔC) between the two motor tasks was calculated. We analyzed if ΔC for each hemisphere differed between the stroke and control groups or across TMS sites, and whether ΔC correlated with arm function in stroke patients. RESULTS Right hand movement increased connectivity in the left compared to the right hemisphere in controls, while hand movement did not significantly change connectivity in either hemisphere in stroke. Stroke patients with the largest increase in healthy hemisphere connectivity during paretic hand movement had the best arm function. CONCLUSIONS TMS-EEG measurements are sensitive to movement-induced changes in brain connectivity. These measurements may characterize clinically meaningful changes in circuit dynamics after stroke, thus providing specific targets for trials of TMS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Camarin E Rolle
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Fiona M Baumer
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua T Jordan
- Department of Psychiatry, University of California At San Francisco, San Francisco, CA, USA
| | - Ketura Berry
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Madelleine Garcia
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen Monusko
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA
| | - Hersh Trivedi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Russell Toll
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maarten Lansberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA.
| |
Collapse
|
27
|
Zhong M, Cywiak C, Metto AC, Liu X, Qian C, Pelled G. Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity. Brain Stimul 2021; 14:884-894. [PMID: 34029768 DOI: 10.1016/j.brs.2021.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Combining training or sensory stimulation with non-invasive brain stimulation has shown to improve performance in healthy subjects and improve brain function in patients after brain injury. However, the plasticity mechanisms and the optimal parameters to induce long-term and sustainable enhanced performance remain unknown. OBJECTIVE This work was designed to identify the protocols of which combining sensory stimulation with repetitive transcranial magnetic stimulation (rTMS) will facilitate the greatest changes in fMRI activation maps in the rat's primary somatosensory cortex (S1). METHODS Several protocols of combining forepaw electrical stimulation with rTMS were tested, including a single stimulation session compared to multiple, daily stimulation sessions, as well as synchronous and asynchronous delivery of both modalities. High-resolution fMRI was used to determine how pairing sensory stimulation with rTMS induced short and long-term plasticity in the rat S1. RESULTS All groups that received a single session of rTMS showed short-term increases in S1 activity, but these increases did not last three days after the session. The group that received a stimulation protocol of 10 Hz forepaw stimulation that was delivered simultaneously with 10 Hz rTMS for five consecutive days demonstrated the greatest increases in the extent of the evoked fMRI responses compared to groups that received other stimulation protocols. CONCLUSIONS Our results provide direct indication that pairing peripheral stimulation with rTMS induces long-term plasticity, and this phenomenon appears to follow a time-dependent plasticity mechanism. These results will be important to lead the design of new training and rehabilitation paradigms and training towards achieving maximal performance in healthy subjects.
Collapse
Affiliation(s)
- Ming Zhong
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Carolina Cywiak
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Abigael C Metto
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Xiang Liu
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
28
|
Yadegari Dehkordi S, Firoozabadi SM, Forouzandeh Moghadam M, Shankayi Z. Endocytosis induction by high-pulsed magnetic fields to overcome cell membrane barrier and improve chemotherapy efficiency. Electromagn Biol Med 2021; 40:438-445. [PMID: 33977836 DOI: 10.1080/15368378.2021.1923026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell membrane acts as a barrier to the entry of impermeable drugs into cells. Recent studies have suggested that using magnetic fields can enable molecules to overcome the cell membrane barrier. However, the mechanism of membrane permeabilization remains unclear. Therefore, we evaluated the increases in bleomycin (CT) uptake, a non-permanent chemotherapy agent, using high-pulsed magnetic fields and investigated whether endocytosis was involved in the process. This study exposed MCF-7 cells to magnetic fields (2.2 T strength, different number of 28 and 56 pulses, and frequency of 1 and 10 Hz) in order to investigate whether this approach could promote the cell-killing efficiency of bleomycin. The involvement of endocytosis as a possible mechanism was tested by exposing cells to three endocytosis inhibitors, namely chlorpromazine, genistein, and amiloride. Our results illustrated that magnetic fields, depending on their conditions, could induce different endocytosis pathways. In such conditions as 10 Hz-28 pulses, 10 Hz-56 pulses, and 1 Hz-56 pulse, clathrin-mediated endocytosis was observed. Moreover, macropinocytosis was induced by the 10 Hz magnetic field and caveolae-mediated endocytosis occurred in all the magnetic field conditions. The findings imply that high-pulsed magnetic fields generate different endocytosis pathways in the MCF-7 cells, thus increasing the efficiency of chemotherapy agents.
Collapse
Affiliation(s)
- Sajedeh Yadegari Dehkordi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
A randomized controlled trial on the effects induced by robot-assisted and usual-care rehabilitation on upper limb muscle synergies in post-stroke subjects. Sci Rep 2021; 11:5323. [PMID: 33674675 PMCID: PMC7935882 DOI: 10.1038/s41598-021-84536-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle synergies are hypothesized to reflect connections among motoneurons in the spinal cord activated by central commands and sensory feedback. Robotic rehabilitation of upper limb in post-stroke subjects has shown promising results in terms of improvement of arm function and motor control achieved by reassembling muscle synergies into a set more similar to that of healthy people. However, in stroke survivors the potentially neurophysiological changes induced by robot-mediated learning versus usual care have not yet been investigated. We quantified upper limb motor deficits and the changes induced by rehabilitation in 32 post-stroke subjects through the movement analysis of two virtual untrained tasks of object placing and pronation. The sample analyzed in this study is part of a larger bi-center study and included all subjects who underwent kinematic analysis and were randomized into robot and usual care groups. Post-stroke subjects who followed robotic rehabilitation showed larger improvements in axial-to-proximal muscle synergies with respect to those who underwent usual care. This was associated to a significant improvement of the proximal kinematics. Both treatments had negative effects in muscle synergies controlling the distal district. This study supports the definition of new rehabilitative treatments for improving the neurophysiological recovery after stroke.
Collapse
|
30
|
Mantell KE, Sutter EN, Shirinpour S, Nemanich ST, Lench DH, Gillick BT, Opitz A. Evaluating transcranial magnetic stimulation (TMS) induced electric fields in pediatric stroke. NEUROIMAGE-CLINICAL 2021; 29:102563. [PMID: 33516935 PMCID: PMC7847946 DOI: 10.1016/j.nicl.2021.102563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
Numerical TMS simulations were performed over and around perinatal stroke lesions. The presence of brain lesions locally affects the electric field distribution. Brain lesions do not significantly change the mean electric field strength. Model driven approaches can inform TMS dosing in a pediatric stroke population.
Transcranial magnetic stimulation (TMS) is an increasingly popular tool for stroke rehabilitation. Consequently, researchers have started to explore the use of TMS in pediatric stroke. However, the application of TMS in a developing brain with pathologies comes with a unique set of challenges. The effect of TMS-induced electric fields has not been explored in children with stroke lesions. Here, we used finite element method (FEM) modeling to study how the electric field strength is affected by the presence of a lesion. We created individual realistic head models from MRIs (n = 6) of children with unilateral cerebral palsy due to perinatal stroke. We conducted TMS electric field simulations for coil locations over lesioned and non-lesioned hemispheres. We found that the presence of a lesion can strongly affect the electric field distribution. On the group level, the mean electric field strength did not differ between lesioned and non-lesioned hemispheres but exhibited a greater variability in the lesioned hemisphere. Other factors such as coil-to-cortex distance have a strong influence on the TMS electric field even in the presence of lesions. Our study has important implications for the delivery of TMS in children with brain lesions with respect to TMS dosing and coil placement.
Collapse
Affiliation(s)
- Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Ellen N Sutter
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Samuel T Nemanich
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Daniel H Lench
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
31
|
Lang S, Gan LS, McLennan C, Kirton A, Monchi O, Kelly JJP. Preoperative Transcranial Direct Current Stimulation in Glioma Patients: A Proof of Concept Pilot Study. Front Neurol 2020; 11:593950. [PMID: 33329346 PMCID: PMC7710969 DOI: 10.3389/fneur.2020.593950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) has been used extensively in patient populations to facilitate motor network plasticity. However, it has not been studied in patients with brain tumors. We aimed to determine the feasibility of a preoperative motor training and tDCS intervention in patients with glioma. In an exploratory manner, we assessed changes in motor network connectivity following this intervention and related these changes to predicted electrical field strength from the stimulated motor cortex. Methods: Patients with left-sided glioma (n=8) were recruited in an open label proof of concept pilot trial and participated in four consecutive days of motor training combined with tDCS. The motor training consisted of a 60-min period where the subject learned to play the piano with their right hand. Concurrently, they received 40 min of 2 mA anodal tDCS of the left motor cortex. Patients underwent task and resting state fMRI before and after this intervention. Changes in both the connectivity of primary motor cortex (M1) and general connectivity across the brain were assessed. Patient specific finite element models were created and the predicted electrical field (EF) resulting from stimulation was computed. The magnitude of the EF was extracted from left M1 and correlated to the observed changes in functional connectivity. Results: There were no adverse events and all subjects successfully completed the study protocol. Left M1 increased both local and global connectivity. Voxel-wide measures, not constrained by a specific region, revealed increased global connectivity of the frontal pole and decreased global connectivity of the supplementary motor area. The magnitude of EF applied to the left M1 correlated with changes in global connectivity of the right M1. Conclusion: In this proof of concept pilot study, we demonstrate for the first time that tDCS appears to be feasible in glioma patients. In our exploratory analysis, we show preoperative motor training combined with tDCS may alter sensorimotor network connectivity. Patient specific modeling of EF in the presence of tumor may contribute to understanding the dose-response relationship of this intervention. Overall, this suggests the possibility of modulating neural networks in glioma patients.
Collapse
Affiliation(s)
- Stefan Lang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Liu Shi Gan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Cael McLennan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Oury Monchi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - John J P Kelly
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Akbar N, Yarossi M, Martinez-Gost M, Sommer MA, Dannhauer M, Rampersad S, Brooks D, Tunik E, Erdoğmuş D. Mapping Motor Cortex Stimulation to Muscle Responses: A Deep Neural Network Modeling Approach. THE ... INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS : PETRA ... INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS 2020; 2020:15. [PMID: 32818205 PMCID: PMC7430758 DOI: 10.1145/3389189.3389203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A deep neural network (DNN) that can reliably model muscle responses from corresponding brain stimulation has the potential to increase knowledge of coordinated motor control for numerous basic science and applied use cases. Such cases include the understanding of abnormal movement patterns due to neurological injury from stroke, and stimulation based interventions for neurological recovery such as paired associative stimulation. In this work, potential DNN models are explored and the one with the minimum squared errors is recommended for the optimal performance of the M2M-Net, a network that maps transcranial magnetic stimulation of the motor cortex to corresponding muscle responses, using: a finite element simulation, an empirical neural response profile, a convolutional autoencoder, a separate deep network mapper, and recordings of multi-muscle activation. We discuss the rationale behind the different modeling approaches and architectures, and contrast their results. Additionally, to obtain a comparative insight of the trade-o between complexity and performance analysis, we explore different techniques, including the extension of two classical information criteria for M2M-Net. Finally, we find that the model analogous to mapping the motor cortex stimulation to a combination of direct and synergistic connection to the muscles performs the best, when the neural response profile is used at the input.
Collapse
|
33
|
Bakker CD, Massa M, Daffertshofer A, Pasman JW, van Kuijk AA, Kwakkel G, Stegeman DF. The addition of the MEP amplitude of finger extension muscles to clinical predictors of hand function after stroke: A prospective cohort study. Restor Neurol Neurosci 2020; 37:445-456. [PMID: 31322583 DOI: 10.3233/rnn-180890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Within the first 72 hours after stroke, active finger extension is a strong predictor of long-term dexterity. Transcranial magnetic stimulation may add prognostic value to clinical assessment, which is especially relevant for patients unable to follow instructions. OBJECTIVE The current prospective cohort study aims at determining whether amplitude of motor evoked potentials of the extensor digitorum communis (EDC) can improve clinical prediction after stroke when added to clinical tests. METHODS the amplitude of motor evoked potentials of the affected EDC muscle at rest was measured in 18 participants within 4 weeks after stroke, as were the ability to perform finger extension and the Fugl-Meyer Motor Assessment of the upper extremity (FMA_UE). These three determinants were related to the FMA_UE at 26 weeks after stroke (FMA_UE26), both directly, and via the proportional recovery prediction model. The relation between amplitude of the motor evoked potentials and FMA_UE26 was evaluated for EDC. For comparison, also the MEP amplitudes of biceps brachii and adductor digiti minimi muscles were recorded. RESULTS Patients' ability to voluntarily extend the fingers was strongly related to FMA_UE26, in our cohort there were no false negative results for this predictor. Our data revealed that the relation between amplitude of motor evoked potential of EDC and FMA_UE26 was significant, but moderate (rs = 0.58) without added clinical value. The other tested muscles did not correlate significantly to FMA_UE26. CONCLUSIONS Our study demonstrates no additional value of motor evoked potential amplitude of the affected EDC muscle to the clinical test of finger extension, the latter being more strongly related to FMA_UE26.
Collapse
Affiliation(s)
- C D Bakker
- Department of Rehabilitation, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Rehabilitation Medicine, Máxima Medical Center, Veldhoven, the Netherlands
| | - M Massa
- Department of Neurology/Clinical Neurophysiology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - A Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences and Institute for Brain and Behaviour Amsterdam, the Netherlands
| | - J W Pasman
- Department of Neurology/Clinical Neurophysiology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - A A van Kuijk
- Department of Rehabilitation, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands.,Tolbrug Rehabilitation Centre, Jeroen Bosch Hospital, 's-Hertogenbosch, the Netherlands
| | - G Kwakkel
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, location VU University Medical Center, MOVE Research Institute Amsterdam and Amsterdam NeuroScience, the Netherlands
| | - D F Stegeman
- Department of Neurology/Clinical Neurophysiology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences and Institute for Brain and Behaviour Amsterdam, the Netherlands
| |
Collapse
|
34
|
Synergistic Effects of Scalp Acupuncture and Repetitive Transcranial Magnetic Stimulation on Cerebral Infarction: A Randomized Controlled Pilot Trial. Brain Sci 2020; 10:brainsci10020087. [PMID: 32046150 PMCID: PMC7071610 DOI: 10.3390/brainsci10020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
This study investigated the synergistic effects of scalp acupuncture (SA) and repetitive transcranial magnetic stimulation (rTMS), known to be effective for cerebral infarction. This outcome-assessor-blinded, randomized controlled clinical trial included a per-protocol analysis to compare the efficacy of SA and electromagnetic convergence stimulation (SAEM-CS) and single or no stimulation. The trial was conducted with 42 cerebral infarction patients (control group, 12; SA group, 11; rTMS group, 8; SAEM-CS group, 11). All patient groups underwent two sessions of CSRT per day. SA, rTMS, and SAEM-CS were conducted once per day, 5 days per week, for 3 weeks. The primary outcome was evaluated using the Fugl–Mayer assessment (FMA). FMA Upper Extremity, FMA total, MBI, and FIM scores significantly increased in the rTMS group compared with the control group. Additionally, FMA Upper Extremity, FMA total, MBI and FIM scores significantly increased in the rTMS group compared with the SAEM-CS group. However, there were no significant changes in the SA or SAEM-CS groups. In conclusion, low-frequency rTMS in the contralesional hemisphere may have long-term therapeutic effects on upper extremity motor function recovery and improvements in activities of daily living. SAEM-CS did not show positive synergistic effects of SA and rTMS.
Collapse
|
35
|
Bao SC, Khan A, Song R, Kai-yu Tong R. Rewiring the Lesioned Brain: Electrical Stimulation for Post-Stroke Motor Restoration. J Stroke 2020; 22:47-63. [PMID: 32027791 PMCID: PMC7005350 DOI: 10.5853/jos.2019.03027] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation has been extensively applied in post-stroke motor restoration, but its treatment mechanisms are not fully understood. Stimulation of neuromotor control system at multiple levels manipulates the corresponding neuronal circuits and results in neuroplasticity changes of stroke survivors. This rewires the lesioned brain and advances functional improvement. This review addresses the therapeutic mechanisms of different stimulation modalities, such as noninvasive brain stimulation, peripheral electrical stimulation, and other emerging techniques. The existing applications, the latest progress, and future directions are discussed. The use of electrical stimulation to facilitate post-stroke motor recovery presents great opportunities in terms of targeted intervention and easy applicability. Further technical improvements and clinical studies are required to reveal the neuromodulatory mechanisms and to enhance rehabilitation therapy efficiency in stroke survivors and people with other movement disorders.
Collapse
Affiliation(s)
- Shi-chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Song
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Ramger BC, Bader KA, Davies SP, Stewart DA, Ledbetter LS, Simon CB, Feld JA. Effects of Non-Invasive Brain Stimulation on Clinical Pain Intensity and Experimental Pain Sensitivity Among Individuals with Central Post-Stroke Pain: A Systematic Review. J Pain Res 2019; 12:3319-3329. [PMID: 31853195 PMCID: PMC6916700 DOI: 10.2147/jpr.s216081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/05/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Central post-stroke pain (CPSP) is a neuropathic disorder resulting in pain and disability. An emerging treatment for CPSP is non-invasive brain stimulation including direct current stimulation [tDCS] and repetitive transcranial magnetic stimulation [rTMS]. This systematic review analyzes the efficacy and quality of non-invasive brain stimulation intervention studies for CPSP. Methods Studies were sought from three research databases published between 2007 and 2017. Studies were included if the sole intervention was non-invasive brain stimulation and the primary outcome either clinical or experimental pain intensity. Studies were qualitatively assessed for risk of bias. Results Of 1107 articles extracted, six met eligibility criteria. Five studies found a decrease in pain intensity (p<0.05) immediately and 3 weeks after rTMS or tDCS was delivered over the primary motor cortex. For experimental pain, one study found thermal pain thresholds improved for those receiving tDCS compared to sham (p<0.05), while another found normalization of the cold detection threshold only after rTMS (p<0.05). Qualitative assessment revealed only one study rated as "excellent/good" quality, while the other five were rated as "fair" or "poor". Conclusion Non-invasive brain stimulation may have a therapeutic effect on pain level for individuals with CPSP, as evidenced by significant decreases in clinical and experimental pain scores. However, despite the impact of CPSP and the promise of non-invasive brain stimulation, few rigorous studies have been performed in this area. Future studies should aim to standardize treatment parameters, measure both clinical and experimental pain, and include long-term follow-up.
Collapse
Affiliation(s)
- Benjamin Curtis Ramger
- Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly Anne Bader
- Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Samantha Pauline Davies
- Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David Andrew Stewart
- Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Corey Brae Simon
- Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jody Ann Feld
- Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
37
|
Malone LA, Sun LR. Transcranial Magnetic Stimulation for the Treatment of Pediatric Neurological Disorders. Curr Treat Options Neurol 2019; 21:58. [PMID: 31720969 DOI: 10.1007/s11940-019-0600-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Repetitive transcranial magnetic stimulation (rTMS) is a form of noninvasive brain stimulation that is used for the treatment of migraine and major depression in adults and is now being evaluated for use in other disorders. The purpose of this review is to summarize the physiology underlying TMS, the safety and tolerability in pediatric patients, and the evidence for TMS efficacy in the treatment of pediatric neurologic disorders. RECENT FINDINGS Studies investigating rTMS for adolescent depression, hemiparesis due to pediatric stroke, autism, and tics/Tourette syndrome have demonstrated some therapeutic benefit. rTMS has been insufficiently studied for migraine in children despite benefits demonstrated for adult migraine. Evidence for rTMS in childhood epilepsy and ADHD remains mixed. Repetitive transcranial magnetic stimulation is emerging as a safe, tolerable, and potentially effective therapeutic strategy in a number of pediatric neurological disorders, though high-quality, randomized controlled trials are needed. Ongoing studies should focus on optimization of treatment protocols, development of biomarkers to identify children who will benefit from the technique, and identification of the most appropriate indicators of response.
Collapse
Affiliation(s)
- Laura A Malone
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Lisa R Sun
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA.
| |
Collapse
|
38
|
Fisicaro F, Lanza G, Grasso AA, Pennisi G, Bella R, Paulus W, Pennisi M. Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord 2019. [PMID: 31598137 DOI: 10.1177/1756286419878317.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute brain ischemia causes changes in several neural networks and related cortico-subcortical excitability, both in the affected area and in the apparently spared contralateral hemisphere. The modulation of these processes through modern techniques of noninvasive brain stimulation, namely repetitive transcranial magnetic stimulation (rTMS), has been proposed as a viable intervention that could promote post-stroke clinical recovery and functional independence. This review provides a comprehensive summary of the current evidence from the literature on the efficacy of rTMS applied to different clinical and rehabilitative aspects of stroke patients. A total of 32 meta-analyses published until July 2019 were selected, focusing on the effects on motor function, manual dexterity, walking and balance, spasticity, dysphagia, aphasia, unilateral neglect, depression, and cognitive function after a stroke. Only conventional rTMS protocols were considered in this review, and meta-analyses focusing on theta burst stimulation only were excluded. Overall, both HF-rTMS and LF-rTMS have been shown to be safe and well-tolerated. In addition, the current literature converges on the positive effect of rTMS in the rehabilitation of all clinical manifestations of stroke, except for spasticity and cognitive impairment, where definitive evidence of efficacy cannot be drawn. However, routine use of a specific paradigm of stimulation cannot be recommended yet due to a significant level of heterogeneity of the studies in terms of protocols to be set and outcome measures that have to be used. Future studies need to preliminarily evaluate the most promising protocols before going on to multicenter studies with large cohorts of patients in order to achieve a definitive translation into daily clinical practice.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95125, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
39
|
Fisicaro F, Lanza G, Grasso AA, Pennisi G, Bella R, Paulus W, Pennisi M. Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord 2019; 12:1756286419878317. [PMID: 31598137 PMCID: PMC6763938 DOI: 10.1177/1756286419878317] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/28/2019] [Indexed: 02/05/2023] Open
Abstract
Acute brain ischemia causes changes in several neural networks and related cortico-subcortical excitability, both in the affected area and in the apparently spared contralateral hemisphere. The modulation of these processes through modern techniques of noninvasive brain stimulation, namely repetitive transcranial magnetic stimulation (rTMS), has been proposed as a viable intervention that could promote post-stroke clinical recovery and functional independence. This review provides a comprehensive summary of the current evidence from the literature on the efficacy of rTMS applied to different clinical and rehabilitative aspects of stroke patients. A total of 32 meta-analyses published until July 2019 were selected, focusing on the effects on motor function, manual dexterity, walking and balance, spasticity, dysphagia, aphasia, unilateral neglect, depression, and cognitive function after a stroke. Only conventional rTMS protocols were considered in this review, and meta-analyses focusing on theta burst stimulation only were excluded. Overall, both HF-rTMS and LF-rTMS have been shown to be safe and well-tolerated. In addition, the current literature converges on the positive effect of rTMS in the rehabilitation of all clinical manifestations of stroke, except for spasticity and cognitive impairment, where definitive evidence of efficacy cannot be drawn. However, routine use of a specific paradigm of stimulation cannot be recommended yet due to a significant level of heterogeneity of the studies in terms of protocols to be set and outcome measures that have to be used. Future studies need to preliminarily evaluate the most promising protocols before going on to multicenter studies with large cohorts of patients in order to achieve a definitive translation into daily clinical practice.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95125, Italy
- Department of Neurology IC, Oasi Research Institute – IRCCS, Troina, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Dilena A, Todd G, Berryman C, Rio E, Stanton TR. What is the effect of bodily illusions on corticomotoneuronal excitability? A systematic review. PLoS One 2019; 14:e0219754. [PMID: 31415588 PMCID: PMC6695177 DOI: 10.1371/journal.pone.0219754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Background This systematic review aimed to summarise and critically appraise the evidence for the effect of bodily illusions on corticomotoneuronal excitability. Methods Five databases were searched, with two independent reviewers completing study inclusion, risk of bias, transcranial magnetic stimulation (TMS) reporting quality, and data extraction. Included studies evaluated the effect of an illusion that altered perception of the body (and/or its movement) on excitability of motor circuitry in healthy, adult, human participants. Studies were required to: use TMS to measure excitability and/or inhibition; report quantitative outcomes (e.g., motor evoked potentials); compare the illusion to a control or active comparison condition; evaluate that an illusion had occurred (e.g., measured illusion strength/presence). Results Of 2,257 studies identified, 11 studies (14 experiments) were included, evaluating kinaesthetic illusions (n = 5), a rubber hand illusion (RHI) paradigm (n = 5), and a missing limb illusion (n = 1). Kinaesthetic illusions (induced via vision/tendon vibration) increased corticomotoneuronal excitability. Conflicting effects were found for traditional, visuotactile RHIs of a static hand. However, embodying a hand and then observing it move (“self-action”) resulted in decreased corticomotoneuronal excitability and increased silent period duration (a measure of Gamma-Aminobutynic acid [GABA]B-mediated intracortical inhibition in motor cortex), with the opposite occurring (increased excitability, decreased inhibition) when the fake hand was not embodied prior to observing movement (“other-action”). Visuomotor illusions manipulating agency had conflicting results, but in the lower risk study, illusory agency over movement resulted in a relative decrease in corticomotoneuronal excitability. Last, an illusion of a missing limb reduced corticomotoneuronal excitability. Conclusion While evidence for the effect of bodily illusions on corticomotoneuronal excitability was limited (only 14 experiments) and had a high risk of bias, kinaesthetic illusions and illusions of embodying a hand (and seeing it move), had consistent effects. Future investigations into the role of embodiment and the illusion strength on corticomotoneuronal excitability and inhibition are warranted.
Collapse
Affiliation(s)
- Alex Dilena
- BodyinMind Research Group, School of Health Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Gabrielle Todd
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Carolyn Berryman
- BodyinMind Research Group, School of Health Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Neuromotor Plasticity and Development (NeuroPAD) Research Group, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ebonie Rio
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Tasha R. Stanton
- BodyinMind Research Group, School of Health Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- * E-mail:
| |
Collapse
|
41
|
Huo C, Xu G, Li Z, Lv Z, Liu Q, Li W, Ma H, Wang D, Fan Y. Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: A functional near-infrared spectroscopy study. Sci Rep 2019; 9:6226. [PMID: 30996244 PMCID: PMC6470232 DOI: 10.1038/s41598-019-42674-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Stroke remains the leading cause of long-term disability worldwide. Rehabilitation training is essential for motor function recovery following stroke. Specifically, limb linkage rehabilitation training can stimulate motor function in the upper and lower limbs simultaneously. This study aimed to investigate limb linkage rehabilitation task-related changes in cortical activation and effective connectivity (EC) within a functional brain network after stroke by using functional near-infrared spectroscopy (fNIRS) imaging. Thirteen stroke patients with either left hemiparesis (L-H group, n = 6) and or right hemiparesis (R-H group, n = 7) and 16 healthy individuals (control group) participated in this study. A multichannel fNIRS system was used to measure changes in cerebral oxygenated hemoglobin (delta HbO2) and deoxygenated hemoglobin (delta HHb) in the bilateral prefrontal cortices (PFCs), motor cortices (MCs), and occipital lobes (OLs) during (1) the resting state and (2) a motor rehabilitation task with upper and lower limb linkage (first 10 min [task_S1], last 10 min [task_S2]). The frequency-specific EC among the brain regions was calculated based on coupling functions and dynamic Bayesian inference in frequency intervals: high-frequency I (0.6-2 Hz) and II (0.145-0.6 Hz), low-frequency III (0.052-0.145 Hz), and very-low-frequency IV (0.021-0.052 Hz). The results showed that the stroke patients exhibited an asymmetric (greater activation in the contralesional versus ipsilesional motor region) cortical activation pattern versus healthy controls. Compared with the healthy controls, the stroke patients showed significantly lower EC (p < 0.025) in intervals I and II in the resting and task states. The EC from the MC and OL to the right PFC in interval IV was significantly higher in the R-H group than in the control group during the resting and task states (p < 0.025). Furthermore, the L-H group showed significantly higher EC from the MC and OL to the left PFC in intervals III and IV during the task states compared with the control group (p < 0.025). The significantly increased influence of the MC and OL on the contralesional PFC in low- and very-low-frequency bands suggested that plastic reorganization of cognitive resources severed to compensate for impairment in stroke patients during the motor rehabilitation task. This study can serve as a basis for understanding task-related reorganization of functional brain networks and developing novel assessment techniques for stroke rehabilitation.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China.
| | - Zeping Lv
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Qianying Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Hongzhuo Ma
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Daifa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
42
|
Xu J, Branscheidt M, Schambra H, Steiner L, Widmer M, Diedrichsen J, Goldsmith J, Lindquist M, Kitago T, Luft AR, Krakauer JW, Celnik PA. Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol 2019; 85:502-513. [PMID: 30805956 DOI: 10.1002/ana.25452] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with chronic stroke have been shown to have failure to release interhemispheric inhibition (IHI) from the intact to the damaged hemisphere before movement execution (premovement IHI). This inhibitory imbalance was found to correlate with poor motor performance in the chronic stage after stroke and has since become a target for therapeutic interventions. The logic of this approach, however, implies that abnormal premovement IHI is causal to poor behavioral outcome and should therefore be present early after stroke when motor impairment is at its worst. To test this idea, in a longitudinal study, we investigated interhemispheric interactions by tracking patients' premovement IHI for one year following stroke. METHODS We assessed premovement IHI and motor behavior five times over a 1-year period after ischemic stroke in 22 patients and 11 healthy participants. RESULTS We found that premovement IHI was normal during the acute/subacute period and only became abnormal at the chronic stage; specifically, release of IHI in movement preparation worsened as motor behavior improved. In addition, premovement IHI did not correlate with behavioral measures cross-sectionally, whereas the longitudinal emergence of abnormal premovement IHI from the acute to the chronic stage was inversely correlated with recovery of finger individuation. INTERPRETATION These results suggest that interhemispheric imbalance is not a cause of poor motor recovery, but instead might be the consequence of underlying recovery processes. These findings call into question the rehabilitation strategy of attempting to rebalance interhemispheric interactions in order to improve motor recovery after stroke. Ann Neurol 2019;85:502-513.
Collapse
Affiliation(s)
- Jing Xu
- Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Meret Branscheidt
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD.,Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Heidi Schambra
- Department of Neurology, Columbia University, New York, NY.,Department of Neurology, New York University, New York, NY
| | - Levke Steiner
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Mario Widmer
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Jörn Diedrichsen
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Brain Mind Institute, University of Western Ontario, London, ON, Canada
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University, New York, NY
| | - Martin Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD
| | - Tomoko Kitago
- Department of Neurology, Columbia University, New York, NY.,Burke Neurological Institute, White Plains, NY
| | - Andreas R Luft
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD
| | | |
Collapse
|
43
|
Blood oxygenation changes resulting from subthreshold high frequency repetitive transcranial magnetic stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1513-1516. [PMID: 29060167 DOI: 10.1109/embc.2017.8037123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Effects of high frequency repetitive transcranial magnetic stimulation (rTMS) with a subthreshold intensity on hemodynamic response in brain cortices (both motor and prefrontal cortices) was investigated using the functional near infrared spectroscopy (fNIRS) technique. FNIRS signals of the motor and prefrontal cortices were acquired in healthy volunteers (n=7) at rest and during rTMS intervention. A significant reduction in oxygenated hemoglobin (HbO) concentration during the entire stimulation process was observed from both motor and prefrontal cortices. Results showed that the fNIRS technique can provide a reliable measure of regional cortical brain activation that could be valuable in studying cortical excitability connectivity in combination with rTMS.
Collapse
|
44
|
Sato S, Kakuda W, Sano M, Kitahara T, Kiko R. Therapeutic Application of Transcranial Magnetic Stimulation Combined with Rehabilitative Training for Incomplete Spinal Cord Injury: A Case Report. Prog Rehabil Med 2018; 3:20180014. [PMID: 32789239 DOI: 10.2490/prm.20180014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022] Open
Abstract
Background Only a few researchers have therapeutically applied transcranial magnetic stimulation (TMS) for patients with spinal cord injury. The purpose of this case study was to evaluate the safety, feasibility, and efficacy of therapeutic TMS combined with rehabilitative training for a patient with tetraparesis resulting from incomplete spinal cord injury. Case An 82-year-old male patient with incomplete spinal cord injury was admitted to our department for long-term rehabilitation. Eighteen days prior to admission, the patient sustained the injury in a fall. At admission to our department, the patient was diagnosed as having injury of the spinal cord at the C6 level. From the 76th day after admission, when the patient was considered to have attained a plateau state of recovery, application of therapeutic TMS was initiated using a double-cone coil. Two 15-min sessions of 10-Hz TMS were scheduled for daily application. Simultaneously, rehabilitative training was continuously provided. This patient received a total of 30 sessions of TMS over 19 days. Neither adverse effects nor deterioration of neurological symptoms was recognized during the intervention period. With this application of TMS, some improvements were evident in the American Spinal Injury Association motor score, the knee muscle strength, and the calf circumference. Discussion This case study demonstrated the safety and feasibility of TMS combined with rehabilitative training in a patient with incomplete spinal cord injury. Our protocol featuring TMS might constitute a novel neurorehabilitation intervention for such patients; however, the efficacy of the protocol should be confirmed in a large number of patients.
Collapse
Affiliation(s)
- Shin Sato
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Wataru Kakuda
- Department of Rehabilitation Medicine, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| | - Mitsuhiro Sano
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Takamasa Kitahara
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Risa Kiko
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| |
Collapse
|
45
|
Iodice R, Manganelli F, Dubbioso R. The therapeutic use of non-invasive brain stimulation in multiple sclerosis - a review. Restor Neurol Neurosci 2018; 35:497-509. [PMID: 28984619 DOI: 10.3233/rnn-170735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system and a leading cause of disability in young adults. Many disabling symptoms in MS, such as spasticity, pain, depression and cognitive deficits are not fully controlled by drug treatment. Non-invasive brain stimulation (NIBS) techniques can be used as tools for modulating altered cortical excitability and plasticity MS patients, providing an improvement in disabling symptoms affecting such patients. OBJECTIVE This review reported and summarized some of the most interesting and promising recent achievements regarding the therapeutic use of NIBS in MS patients. METHODS We reviewed the clinical application of transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), emphasizing their effect on clinical symptoms and signs that are commonly involved in MS patients. In addition, we shortly described new NIBS protocols, such as transcranial alternating current stimulation and transcranial focused ultrasound stimulation as potential and innovative therapeutic options to be applied in future studies in MS patients. RESULTS We reviewed twenty-one studies covering six main clinical domains. Most of such studies focused on fatigues (33.3%), motor performance (19%) and spasticity (19%), sparse results were about pain (9.5%), cognitive abilities (9.5%), sensory deficit (4.8%) and bladder function (4.8%). The most promising results have been published for the improvement of motor (i.e. hand dexterity) and cognitive performances (i.e. attention and working memory) by applying rTMS or tDCS alone or in association with motor/cognitive training, for pain's treatment by using tDCS. CONCLUSION There are still no official recommendations for the therapeutic use of tDCS or rTMS in MS. The huge inter-individual variability of NIBS efficacy is still a big challenge which needs to be solved. However, well-designed studies, deeper knowledge about pathomechanisms underlying MS, and the combination of such techniques with motor and cognitive rehabilitation might results in higher effectiveness of NIBS.
Collapse
Affiliation(s)
- Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Italy
| |
Collapse
|
46
|
Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci 2017; 11:469. [PMID: 28983244 PMCID: PMC5613154 DOI: 10.3389/fnhum.2017.00469] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
Following a stroke, the resulting lesion creates contralateral motor impairment and an interhemispheric imbalance involving hyperexcitability of the contralesional hemisphere. Neuronal reorganization may occur on both the ipsilesional and contralesional hemispheres during recovery to regain motor functionality and therefore bilateral activation for the hemiparetic side is often observed. Although ipsilesional hemispheric reorganization is traditionally thought to be most important for successful recovery, definitive conclusions into the role and importance of the contralesional motor cortex remain under debate. Through examining recent research in functional neuroimaging investigating motor cortex changes post-stroke, as well as brain-computer interface (BCI) and transcranial magnetic stimulation (TMS) therapies, this review attempts to clarify the contributions of each hemisphere toward recovery. Several functional magnetic resonance imaging studies suggest that continuation of contralesional hemisphere hyperexcitability correlates with lesser recovery, however a subset of well-recovered patients demonstrate contralesional motor activity and show decreased functional capability when the contralesional hemisphere is inhibited. BCI therapy may beneficially activate either the contralesional or ipsilesional hemisphere, depending on the study design, for chronic stroke patients who are otherwise at a functional plateau. Repetitive TMS used to excite the ipsilesional motor cortex or inhibit the contralesional hemisphere has shown promise in enhancing stroke patients' recovery.
Collapse
Affiliation(s)
- Keith C Dodd
- Department of Biomedical Engineering, University of Wisconsin-MadisonMadison, WI, United States
| | - Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States.,Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, United States.,Department of Neurology, University of Wisconsin-MadisonMadison, WI, United States.,Department of Psychology and Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| |
Collapse
|
47
|
van Lieshout ECC, Visser-Meily JMA, Neggers SFW, van der Worp HB, Dijkhuizen RM. Brain stimulation for arm recovery after stroke (B-STARS): protocol for a randomised controlled trial in subacute stroke patients. BMJ Open 2017; 7:e016566. [PMID: 28851789 PMCID: PMC5629737 DOI: 10.1136/bmjopen-2017-016566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Many patients with stroke have moderate to severe long-term sensorimotor impairments, often including inability to execute movements of the affected arm or hand. Limited recovery from stroke may be partly caused by imbalanced interaction between the cerebral hemispheres, with reduced excitability of the ipsilesional motor cortex while excitability of the contralesional motor cortex is increased. Non-invasive brain stimulation with inhibitory repetitive transcranial magnetic stimulation (rTMS) of the contralesional hemisphere may aid in relieving a post-stroke interhemispheric excitability imbalance, which could improve functional recovery. There are encouraging effects of theta burst stimulation (TBS), a form of TMS, in patients with chronic stroke, but evidence on efficacy and long-term effects on arm function of contralesional TBS in patients with subacute hemiparetic stroke is lacking. METHODS AND ANALYSIS In a randomised clinical trial, we will assign 60 patients with a first-ever ischaemic stroke in the previous 7-14 days and a persistent paresis of one arm to 10 sessions of real stimulation with TBS of the contralesional primary motor cortex or to sham stimulation over a period of 2 weeks. Both types of stimulation will be followed by upper limb training. A subset of patients will undergo five MRI sessions to assess post-stroke brain reorganisation. The primary outcome measure will be the upper limb function score, assessed from grasp, grip, pinch and gross movements in the action research arm test, measured at 3 months after stroke. Patients will be blinded to treatment allocation. The primary outcome at 3 months will also be assessed in a blinded fashion. ETHICS AND DISSEMINATION The study has been approved by the Medical Research Ethics Committee of the University Medical Center Utrecht, The Netherlands. The results will be disseminated through (open access) peer-reviewed publications, networks of scientists, professionals and the public, and presented at conferences. TRIAL REGISTRATION NUMBER NTR6133.
Collapse
Affiliation(s)
- Eline C C van Lieshout
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johanna M A Visser-Meily
- Department of Rehabilitation, Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center, Utrecht, The Netherlands
| | - Sebastiaan F W Neggers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Matsugi A, Okada Y. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition. FUNCTIONAL NEUROLOGY 2017; 32:77-82. [PMID: 28676140 DOI: 10.11138/fneur/2017.32.2.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.
Collapse
|
49
|
Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons. PLoS One 2017; 12:e0170528. [PMID: 28114421 PMCID: PMC5256952 DOI: 10.1371/journal.pone.0170528] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/18/2016] [Indexed: 11/19/2022] Open
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) has been successfully used as a non-invasive therapeutic intervention for several neurological disorders in the clinic as well as an investigative tool for basic neuroscience. rTMS has been shown to induce long-term changes in neuronal circuits in vivo. Such long-term effects of rTMS have been investigated using behavioral, imaging, electrophysiological, and molecular approaches, but there is limited understanding of the immediate effects of TMS on neurons. We investigated the immediate effects of high frequency (20 Hz) rTMS on the activity of cortical neurons in an effort to understand the underlying cellular mechanisms activated by rTMS. We used whole-cell patch-clamp recordings in acute rat brain slices and calcium imaging of cultured primary neurons to examine changes in neuronal activity and intracellular calcium respectively. Our results indicate that each TMS pulse caused an immediate and transient activation of voltage gated sodium channels (9.6 ± 1.8 nA at -45 mV, p value < 0.01) in neurons. Short 500 ms 20 Hz rTMS stimulation induced action potentials in a subpopulation of neurons, and significantly increased the steady state current of the neurons at near threshold voltages (at -45 mV: before TMS: I = 130 ± 17 pA, during TMS: I = 215 ± 23 pA, p value = 0.001). rTMS stimulation also led to a delayed increase in intracellular calcium (153.88 ± 61.94% increase from baseline). These results show that rTMS has an immediate and cumulative effect on neuronal activity and intracellular calcium levels, and suggest that rTMS may enhance neuronal responses when combined with an additional motor, sensory or cognitive stimulus. Thus, these results could be translated to optimize rTMS protocols for clinical as well as basic science applications.
Collapse
|
50
|
Sasso V, Bisicchia E, Latini L, Ghiglieri V, Cacace F, Carola V, Molinari M, Viscomi MT. Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury. J Neuroinflammation 2016; 13:150. [PMID: 27301743 PMCID: PMC4908713 DOI: 10.1186/s12974-016-0616-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
Background After focal brain injuries occur, in addition to the effects that are attributable to the primary site of damage, the resulting functional impairments depend highly on changes that occur in regions that are remote but functionally connected to the site of injury. Such effects are associated with apoptotic and inflammatory cascades and are considered to be important predictors of outcome. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique that is used to treat various central nervous system (CNS) pathologies and enhance functional recovery after brain damage. Objective This study examined the efficacy of rTMS in mitigating remote degeneration and inflammation and in improving functional recovery in a model of focal brain damage. Methods Rats that were undergoing hemicerebellectomy (HCb) were treated with an rTMS protocol for 7 days, and neuronal death indices, glial activation, and functional recovery were assessed. Results rTMS significantly reduced neuronal death and glial activation in remote regions and improved functional recovery. Conclusions Our finding opens up a completely new scenario for exploiting the potential of rTMS as an anti-apoptotic and anti-inflammatory treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0616-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valeria Sasso
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Elisa Bisicchia
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Laura Latini
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Veronica Ghiglieri
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Dipartimento di Filosofia, Scienze Sociali, Umane e della Formazione, Università degli Studi di Perugia, Perugia, Italy
| | - Fabrizio Cacace
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Valeria Carola
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Marco Molinari
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Maria Teresa Viscomi
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|