1
|
Valenzuela-López L, Moreno-Verdú M, Cuenca-Zaldívar JN, Romero JP. Effects of Hand Motor Interventions on Cognitive Outcomes Post-stroke: A Systematic Review and Bayesian Network Meta-analysis. Arch Phys Med Rehabil 2024; 105:1770-1783. [PMID: 38211761 DOI: 10.1016/j.apmr.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To synthetize the evidence on the effects of hand rehabilitation (RHB) interventions on cognition post-stroke and compare their efficacy. DATA SOURCES PubMed, Embase, Cochrane, Scopus, Web of Science, and CINAHL were searched from inception to November 2022. DATA SELECTION Randomized controlled trials conducted in adults with stroke where the effects of hand motor interventions on any cognitive domains were assessed. DATA EXTRACTION Data were extracted by 2 independent reviewers. A Bayesian Network Meta-analysis (NMA) was applied for measures with enough studies and comparisons. Risk of bias was assessed with the Cochrane Risk of Bias tool. DATA SYNTHESIS Fifteen studies were included in qualitative synthesis, and 11 in NMA. Virtual reality (VR) (n=7), robot-assisted (n=5), or handgrip strength (n=3) training were the experimental interventions and conventional RHB (n=14) control intervention. Two separate NMA were performed with MoCA (n=480 participants) and MMSE (n=350 participants) as outcome measures. Both coincided that the most probable best interventions were robot-assisted and strength training, according to SUCRA and rankogram, followed by conventional RHB and VR training. No significant differences between any of the treatments were found in the MoCA network, but in the MMSE, robot-assisted and strength training were significantly better than conventional RHB and VR. No significant differences between robot-assisted and strength training were found nor between conventional RHB and VR. CONCLUSIONS Motor interventions can improve MoCA/MMSE scores post-stroke. Most probable best interventions were robot-assisted and strength training. Limited literature assessing domain-specific cognitive effects was found.
Collapse
Affiliation(s)
- Laura Valenzuela-López
- Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain
| | - Marcos Moreno-Verdú
- Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain.
| | - Juan Nicolás Cuenca-Zaldívar
- Research Group in Physiotherapy and Pain, Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Research Group in Nursing and Health Care, Puerta de Hierro Health Research Institute - Segovia de Arana (IDIPHISA), Madrid, Spain; Physical Therapy Unit. Primary Health Care Center "El Abajón", Madrid, Spain; Interdisciplinary Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Juan Pablo Romero
- Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Brain Damage Unit, Beata María Ana Hospital, Madrid, Spain
| |
Collapse
|
2
|
Chang JY, Chun MH, Lee A, Lee A, Lee CM. Effects of training with a rehabilitation device (Rebless®) on upper limb function in patients with chronic stroke: A randomized controlled trial. Medicine (Baltimore) 2024; 103:e38753. [PMID: 38941364 PMCID: PMC11466080 DOI: 10.1097/md.0000000000038753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Upper limb dysfunction is one of the most common sequelae of stroke and robotic therapy is considered one of the promising methods for upper limb rehabilitation. OBJECTIVE This study aimed to explore the clinical effectiveness of upper limb training using a rehabilitation robotic device (Rebless®) for patients with stroke. METHODS In this prospective, unblinded, randomized controlled trial, patients were randomly assigned to receive robotic training (experimental group, n = 15) or conventional therapy (control group, n = 15). Both groups received upper limb training lasting for 30 minutes per session with a total of 10 training sessions within 4 weeks. Motor function, functional evaluation, and spasticity were clinically assessed before and after the training. Cortical activation was measured using functional near-infrared spectroscopy at the 1st and 10th training sessions. RESULTS The experimental group demonstrated a significant improvement in the Fugl-Meyer assessment-upper extremity score and the modified Ashworth scale grade in elbow flexors. The cortical activity of the unaffected hemisphere significantly decreased after 10 training sessions in the experimental group compared with the control group. CONCLUSIONS The experimental group showed significant improvement in the Fugl-Meyer assessment-upper extremity score and spasticity of elbow flexors and had significantly decreased cortical activity of the unaffected hemisphere. Training with Rebless® may help patients with chronic stroke in restoring upper limb function and recovering the contralateral predominance of activation in motor function.
Collapse
Affiliation(s)
- Jong Yoon Chang
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Anna Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ahro Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Min Lee
- Research Institute of Future City and Society, Yonsei University, Seoul, Republic of Korea
- PlayIdeaLab Incorporation, Seoul, Republic of Korea
| |
Collapse
|
3
|
Hwang S, Min KC, Song CS. Assistive technology on upper extremity function for stroke patients: A systematic review with meta-analysis. J Hand Ther 2024:S0894-1130(23)00202-8. [PMID: 38796397 DOI: 10.1016/j.jht.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND In stroke rehabilitation, the selection of appropriate assistive devices is of paramount importance for patients. Specifically, the choice of device can significantly influence the functional recovery of the upper limb, impacting their overall activities or functional tasks. OBJECTIVES This review aimed to comprehensively analyze and summarize the clinical evidence from randomized controlled trials (RCTs) regarding the therapeutic effects of commonly used assistive devices on upper extremity function in patients with stroke. METHODS To evaluate assistive devices for patients with stroke, we summarized qualitatively throughout synthesis of results, such as therapeutic intervention, intensity, outcome, and summary of results, and examined risk of bias, heterogeneity, mean difference, 95% confidence interval, and I-squared value. To analyze, we used RoB 2 and RevMan 5.4. RESULTS The qualitative synthesis included 31 RCTs. The randomization process and the reporting of results showed minimal bias, but there were issues with bias from intended interventions, and missing outcome data presented some concerns. The quantitative synthesis included 16 RCTs. There was a significant difference in the Fugl-Meyer assessment-upper extremity functioning (FMA-UE) scores between the groups, with a total mean difference (95% confidence interval) of 2.40 (0.21, 4.60), heterogeneity values were Tau2 = 0.32, chi-square = 8.22, degrees of freedom = 8 (p = 0.41), and I2 = 3% for FMA-UE and the test for the overall effect produced Z = 2.14 (p = 0.03) in patients with chronic stroke. However, there was no significant difference in all other outcome measures. CONCLUSIONS Upper-limb robots did not demonstrate significant superiority over conventional treatments in improving function of upper limbs, with the exception of FMA-UE scores for patients with chronic stroke. The mean difference of FMA-UE was also lower than minimally important difference. Nonetheless, the usage of upper-limb robots may contribute to enhanced function for patients with stroke, as those devices support clinicians and enable a greater number of movement repetitions within specific time frames.
Collapse
Affiliation(s)
- Sujin Hwang
- Department of Physical Therapy, Division of Health Science, Baekseok University, Cheonan, Republic of Korea; Graduate School of Health Welfare, Baekseok University, Seoul, Republic of Korea
| | - Kyoung-Chul Min
- Department of Occupational Therpay, Wonkwang University, Republic of Korea
| | - Chiang-Soon Song
- Department of Occupational Therapy, College of Natural Science and Public Health and Safety, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
4
|
Jeon SY, Ki M, Shin JH. Resistive versus active assisted robotic training for the upper limb after a stroke: A randomized controlled study. Ann Phys Rehabil Med 2024; 67:101789. [PMID: 38118340 DOI: 10.1016/j.rehab.2023.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Selection of a suitable training modality according to the status of upper limb function can maximize the effects of robotic rehabilitation; therefore, it is necessary to identify the optimal training modality. OBJECTIVES This study aimed to compare robotic rehabilitation approaches incorporating either resistance training (RET) or active-assisted training (AAT) using the same rehabilitation robot in people with stroke and moderate impairment. METHODS In this randomized controlled trial, we randomly allocated 34 people with stroke who had moderate impairment to either the experimental group (RET, n = 18) or the control group (AAT, n = 16). Both groups performed robot-assisted therapy for 30 min, 5 days per week, for 4 weeks. The same rehabilitation robot provided resistance to the RET group and assistance to the AAT group. Body function and structure, activity, and participation outcomes were evaluated before, during, and after the intervention. RESULTS RET led to greater improvements than AAT in terms of smoothness (p = 0.006). The Fugl-Meyer Assessment (FMA)-upper extremity (p < 0.001), FMA-proximal (p < 0.001), Action Research Arm Test-gross movement (p = 0.011), and kinematic variables of joint independence (p = 0.017) and displacement (p = 0.011) also improved at the end of intervention more in the RET group. CONCLUSIONS Robotic RET was more effective than AAT in improving upper limb function, structure, and activity among participants with stroke who had moderate impairment.
Collapse
Affiliation(s)
- Sun Young Jeon
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, 58, Samgaksan-ro, Gangbuk-gu, Seoul, Republic of Korea
| | - Myung Ki
- Department of Global Community Health, Graduate School of Public Health, Korea University, Republic of Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Joon-Ho Shin
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, 58, Samgaksan-ro, Gangbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Salazar-Cifuentes P, Contreras T, Hernández E, Leiva-Abarca E, Castro-Flores P, San Juan D, Araneda R, Ebner-Karestinos D. Evaluation of ALBA device for upper extremity motor function in adults with subacute and chronic acquired brain injury: a randomised controlled trial protocol in a tertiary clinic of the metropolitan region of Chile. BMJ Open 2023; 13:e076774. [PMID: 37993168 PMCID: PMC10668162 DOI: 10.1136/bmjopen-2023-076774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Stroke is a significant worldwide cause of death and a prevalent contributor to long-term disability among adults. Survivors commonly encounter a wide array of motor, sensory and cognitive impairments. Rehabilitation interventions, mainly targeting the upper extremities, include a wide array of components, although the evidence indicates that the intensity of practice and task-specific training play crucial roles in facilitating effective results. Assisted therapy with electronic devices designed for the affected upper extremity could be employed to enable partial or total control of this limb, while simultaneously incorporating the aforementioned characteristics in the rehabilitation process. METHODS AND ANALYSIS 32 adults who had a subacute or chronic stroke, aged over 18 years old, will be included for this randomised controlled trial aiming to determine the non-inferiority effect of the inclusion of a robotic device (ALBA) to regular treatment against only regular rehabilitation. Participants will be assessed before and after 4 weeks of intervention and at 3 months of follow-up. The primary outcome will be the Fugl-Meyer assessment for upper extremities; secondary outcomes will include the questionnaires Functional Independence Measure, Medical Outcomes Study 36-item Short-Form Health Survey as well as the System Usability Scale. ETHICS AND DISSEMINATION Full ethical approval was obtained for this study from the scientific and ethical review board Servicio de Salud Metropolitano Oriente of Santiago (approval number: SSMOriente030522), and the recommendations of the Chilean law no 20120 of 7 September 2006, concerning scientific research in the human being, its genome and human cloning, will be followed. Ahead of inclusion, potential participants will read and sign a written informed consent form. Future findings will be presented and published in conferences and peer-reviewed journals. TRIAL REGISTRATION NUMBER International ClinicalTrials.gov Registry (NCT05824416; https://clinicaltrials.gov/ct2/show/NCT05824416?term=uMOV&draw=2&rank=1).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rodrigo Araneda
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Daniela Ebner-Karestinos
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
6
|
Rozevink SG, Hijmans JM, Horstink KA, van der Sluis CK. Effectiveness of task-specific training using assistive devices and task-specific usual care on upper limb performance after stroke: a systematic review and meta-analysis. Disabil Rehabil Assist Technol 2023; 18:1245-1258. [PMID: 34788166 DOI: 10.1080/17483107.2021.2001061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Task-specific rehabilitation is a key indicator for successful rehabilitation to improve the upper limb performance after stroke. Assistive robotic and non-robotic devices are emerging to provide rehabilitation therapy; however, the effectiveness of task-specific training programs using assistive training devices compared with task-specific usual care training has not been summarized yet. Therefore, the effectiveness of task-specific training using assistive arm devices (TST-AAD) compared with task-specific usual care (TSUC) on the upper limb performance of patients with a stroke was investigated. To assess task specificity, a set of criteria was proposed: participation, program, relevant, repeated, randomized, reconstruction and reinforced. MATERIALS AND METHODS Out of 855 articles, 17 fulfilled the selection criteria. A meta-analysis was performed on the Fugl-Meyer Assessment scores in the subacute and chronic stages after stroke and during follow-up. RESULTS AND CONCLUSION Both TST-AAD and TSUC improved the upper limb performance after stroke. In the sub-acute phase after stroke, TST-AAD was more effective than TSUC in reducing the upper limb impairment, although findings were based on only three studies. In the chronic phase, TST-AAD and TSUC showed similar effectiveness. No differences between the two types of training were found at the follow-up measurements. Future studies should describe training, device usage and criteria of task specificity in a standardized way to ease comparison.Implications for rehabilitationArm or hand function is often undertreated in stroke patients, assistive training devices may be able to improve the upper limb performance.Task-specific training using assistive devices is effective in improving the upper limb performance after stroke.Task-specific training using assistive devices seems to be more effective in reducing impairment compared with task specific usual care in the subacute phase after stroke, but they are equally effective in the chronic phase of stroke.
Collapse
Affiliation(s)
- Samantha G Rozevink
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Juha M Hijmans
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Koen A Horstink
- University of Groningen, University Medical Center Groningen, Department of Human Movement Sciences, Groningen, The Netherlands
| | - Corry K van der Sluis
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| |
Collapse
|
7
|
Trzmiel T, Marchewka R, Pieczyńska A, Zasadzka E, Zubrycki I, Kozak D, Mikulski M, Poświata A, Tobis S, Hojan K. The Effect of Using a Rehabilitation Robot for Patients with Post-Coronavirus Disease (COVID-19) Fatigue Syndrome. SENSORS (BASEL, SWITZERLAND) 2023; 23:8120. [PMID: 37836950 PMCID: PMC10575211 DOI: 10.3390/s23198120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
The aim of this study was to compare the effectiveness of traditional neurological rehabilitation and neurological rehabilitation combined with a rehabilitation robot for patients with post-COVID-19 fatigue syndrome. Eighty-six participants transferred from intensive care units due to post-viral fatigue after COVID-19 were randomly divided into two groups: the intervention group and the control group. The control group received standard neurological rehabilitation for 120 min a day, while the intervention group received the same neurological rehabilitation for 75 min a day, complemented by 45 min of exercises on the rehabilitation robot. The Berg scale, Tinetti scale, six-minute walking test, isokinetic muscle force test, hand grip strength, Barthel Index, and Functional Independence Measure were used to measure the outcomes. Both groups improved similarly during the rehabilitation. Between groups, a comparison of before/after changes revealed that the intervention group improved better in terms of Functional Independence Measure (p = 0.015) and mean extensor strength (p = 0.023). The use of EMG-driven robots in the rehabilitation of post-COVID-19 fatigue syndrome patients was shown to be effective.
Collapse
Affiliation(s)
- Tomasz Trzmiel
- Department of Occupational Therapy, Poznan University of Medical Sciences, 60-781 Poznan, Poland (S.T.); (K.H.)
| | - Renata Marchewka
- Neurorehabilitation Ward, Greater Poland Provincial Hospital, 60-480 Poznan, Poland
| | - Anna Pieczyńska
- Department of Occupational Therapy, Poznan University of Medical Sciences, 60-781 Poznan, Poland (S.T.); (K.H.)
| | - Ewa Zasadzka
- Department of Occupational Therapy, Poznan University of Medical Sciences, 60-781 Poznan, Poland (S.T.); (K.H.)
| | - Igor Zubrycki
- Institute of Automatic Control, Lodz University of Technology, 90-537 Łódź, Poland;
| | - Dominika Kozak
- Egzotech sp. z o.o., 44-100 Gliwice, Poland; (D.K.); (M.M.); (A.P.)
- Department of Physiotherapy, University of Health Science, 85-067 Bydgoszcz, Poland
| | - Michał Mikulski
- Egzotech sp. z o.o., 44-100 Gliwice, Poland; (D.K.); (M.M.); (A.P.)
| | - Anna Poświata
- Egzotech sp. z o.o., 44-100 Gliwice, Poland; (D.K.); (M.M.); (A.P.)
| | - Sławomir Tobis
- Department of Occupational Therapy, Poznan University of Medical Sciences, 60-781 Poznan, Poland (S.T.); (K.H.)
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, 60-781 Poznan, Poland (S.T.); (K.H.)
- Neurorehabilitation Ward, Greater Poland Provincial Hospital, 60-480 Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
8
|
Yang X, Shi X, Xue X, Deng Z. Efficacy of Robot-Assisted Training on Rehabilitation of Upper Limb Function in Patients With Stroke: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2023; 104:1498-1513. [PMID: 36868494 DOI: 10.1016/j.apmr.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE To systematically evaluate the effect of robot-assisted training (RAT) on upper limb function recovery in patients with stroke, providing the evidence-based medical basis for the clinical application of RAT. DATA SOURCES We searched online electronic databases up to June 2022, including PubMed, The Cochrane Library, Scopus, Web of Science, EMBASE, WanFang Data, CNKI, and VIP full-text databases. STUDY SELECTION Randomized controlled trials of the effect of RAT on upper extremity functional recovery in patients with stroke. DATA EXTRACTION The Cochrane Collaboration Tool for Assessing the Risk of Bias was used to assess study quality and risk of bias. DATA SYNTHESIS Fourteen randomized controlled trials involving 1275 patients were included for review. Compared with the control group, RAT significantly improved upper limb motor function and daily living ability. The overall differences were statistically significant, Fugl-Meyer Assessment for the Upper Extremity (FMA-UE; standard mean difference=0.69; 95% confidence interval, 0.34, 1.05; P=.0001), modified Barthel Index (standard mean difference=0.95; 95% confidence interval, 0.75, 1.15; P<.00001), whereas the differences in modified Ashworth Scale, FIM, and Wolf Motor Function Test scores were not statistically significant. SUBGROUP ANALYSIS Compared with the control group, the differences between FMA-UE and modified Barthel Index at 4 and 12 weeks of RAT, there were statistically significant, the differences of FMA-UE and modified Ashworth Scale in patients with stroke in the acute and chronic phases were statistically significant. CONCLUSION The present study showed that RAT can significantly enhance the upper limb motor function and activities of daily life in patients with stroke undergoing upper limb rehabilitation.
Collapse
Affiliation(s)
- Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiubo Shi
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Xiali Xue
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| | - Zhongyi Deng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
de Crignis AC, Ruhnau ST, Hösl M, Lefint J, Amberger T, Dressnandt J, Brunner H, Müller F. Robotic arm training in neurorehabilitation enhanced by augmented reality - a usability and feasibility study. J Neuroeng Rehabil 2023; 20:105. [PMID: 37568195 PMCID: PMC10422755 DOI: 10.1186/s12984-023-01225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Robotic therapy and serious gaming support motor learning in neurorehabilitation. Traditional monitor-based gaming outputs cannot adequately represent the third dimension, whereas virtual reality headsets lack the connection to the real world. The use of Augmented Reality (AR) techniques could potentially overcome these issues. The objective of this study was thus to evaluate the usability, feasibility and functionality of a novel arm rehabilitation device for neurorehabilitation (RobExReha system) based on a robotic arm (LBR iiwa, KUKA AG) and serious gaming using the AR headset HoloLens (Microsoft Inc.). METHODS The RobExReha system was tested with eleven adult inpatients (mean age: 64.4 ± 11.2 years; diagnoses: 8 stroke, 2 spinal cord injury, 1 Guillain-Barré-Syndrome) who had paretic impairments in their upper limb. Five therapists administered and evaluated the system. Data was compared with a Reference Group (eleven inpatients; mean age: 64.3 ± 9.1 years; diagnoses: 10 stroke, 1 spinal cord injury) who trained with commercially available robotic therapy devices (ArmeoPower or ArmeoSpring, Hocoma AG). Patients used standardized questionnaires for evaluating usability and comfort (Quebec User Evaluation of Satisfaction with assistive technology [QUEST]), workload (Raw Task Load Index [RTLX]) and a questionnaire for rating visual perception of the gaming scenario. Therapists used the QUEST, the System Usability Scale and the short version of the User Experience Questionnaire. RESULTS Therapy with the RobExReha system was safe and feasible for patients and therapists, with no serious adverse events being reported. Patients and therapists were generally satisfied with usability. The patients' usability ratings were significantly higher in the Reference Group for two items of the QUEST: reliability and ease of use. Workload (RTLX) ratings did not differ significantly between the groups. Nearly all patients using the RobExReha system perceived the gaming scenario in AR as functioning adequately despite eight patients having impairments in stereoscopic vision. The therapists valued the system's approach as interesting and inventive. CONCLUSIONS We demonstrated the clinical feasibility of combining a novel robotic upper limb robot with an AR-serious game in a neurorehabilitation setting. To ensure high usability in future applications, a reliable and easy-to-use system that can be used for task-oriented training should be implemented. TRIAL REGISTRATION Ethical approval was obtained and the trial was registered at the German Clinical Trials Register (DRKS00022136).
Collapse
Affiliation(s)
| | | | - Matthias Hösl
- Schön Klinik Bad Aibling, Bad Aibling, Germany
- Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Jérémy Lefint
- Fraunhofer Institute for Manufacturing, Engineering and Automation IPA, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
10
|
Ahmed I, Mustafaoglu R, Benkhalifa N, Yakhoub YH. Does noninvasive brain stimulation combined with other therapies improve upper extremity motor impairment, functional performance, and participation in activities of daily living after stroke? A systematic review and meta-analysis of randomized controlled trial. Top Stroke Rehabil 2023; 30:213-234. [PMID: 35112659 DOI: 10.1080/10749357.2022.2026278] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Several studies have investigated the effect of noninvasive brain stimulation (NIBS) on upper limb motor function in stroke, but the evidence so far is conflicting. OBJECTIVE We aimed to determine the effect of NIBS on upper limb motor impairment, functional performance, and participation in activities of daily living after stroke. METHOD Literature search was conducted for randomized controlled trials (RCTs) assessing the effect of "tDCS" or "rTMS" combined with other therapies on upper extremity motor recovery after stroke. The outcome measures were Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Wolf Motor Function Test (WMFT), and Barthel Index (BI). The mean difference (MD) and 95%CI were estimated for motor outcomes. Cochrane risk of bias tool was used to assess the quality of evidence. RESULT Twenty-five RCTs involving 1102 participants were included in the review. Compared to sham stimulation, NIBS combined with other therapies has effectively improved FMA-UE (MD0.97 [95%CI, 0.09 to 1.86; p = .03]) and BI score (MD9.11 [95%CI, 2.27 to 15.95; p = .009]) in acute/sub-acute stroke (MD1.73 [95%CI, 0.61 to 2.85; p = .003]) but unable to modify FMA-UE score in chronic stroke (MD-0.31 [95%CI, -1.77 to 1.15; p = .68]). Only inhibitory (MD3.04 [95%CI, 1.76 to 4.31; I2 = 82%, p < .001] protocol is associated with improved FMA-UE score. Twenty minutes of stimulation/session for ≥20 sessions was found to be effective in improving FMA-UE score (Stimulation time: ES0.45; p ≤ .001; Sessions: ES0.33; p ≤ .001). The NIBS did not produce any significant improvement in WMFT as compared to sham NIBS (MD0.91 [95% CI, -0.89 to 2.70; p = .32]). CONCLUSION Moderate to high-quality evidence suggested that NIBS combined with other therapies is effective in improving upper extremity motor impairment and participation in activities of daily living after acute/sub-acute stroke.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rustem Mustafaoglu
- Department of Physiotherapy and Rehabilitation, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nesrine Benkhalifa
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Yakhoub Hassan Yakhoub
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
11
|
Heo M, Kang SR, Yu M, Kwon TK. The development of split-treadmill with a fall prevention training function. Technol Health Care 2023:THC220392. [PMID: 36776081 DOI: 10.3233/thc-220392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND The weakening of the ability of the elderly to perform gait is becoming a major cause of the increase in the frequency of falls. OBJECTIVE In this study, we designed and manufactured a treadmill capable of restraining walking by providing a sudden repulsive force on the left and right legs of a pedestrian when walking for the fall prevention training of the elderly. Through this, it is possible for the elderly person to strengthen the lower extremity muscles to prevent and prepare for falling through the fall prevention training similar to the fall environment that may occur in daily life. METHOD The development system includes a motor for generating a driving force in the form of a left and a right driving system and a belt separated from each other, an electromagnetic clutch for rapidly stopping the running belt of the motor transmitted to the running belt to stop the running belt, and a controller for controlling the driver. RESULTS In order to evaluate the development system, the motor driving ability test and the power transmission, connection and shut-off performance of the electromagnetic clutch were carried out. The subject's muscle activity of the lower extremity muscles was evaluated when the running belt stopped at the beginning of the right folding. CONCLUSION It is expected that the developed dual function system would be helpful for the fall prevention exercise as well as the rehabilitation exercise for patients who have recovered from surgery or hemiplegic patients.
Collapse
Affiliation(s)
| | - Seung-Rok Kang
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - Mi Yu
- Department of Healthcare Engineering, Jeonbuk National University, Jeonju, Korea
| | - Tae-Kyu Kwon
- Division of Biomedical Engineering, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
12
|
Elmanowski J, Kleynen M, Geers RPJ, Rovelo-Ruiz G, Geurts E, Coninx K, Verbunt JA, Seelen HAM. Task-oriented arm training for stroke patients based on remote handling technology concepts: A feasibility study. Technol Health Care 2023; 31:1593-1605. [PMID: 37092188 PMCID: PMC10578292 DOI: 10.3233/thc-220465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/08/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Improving arm-hand skill performance is a major therapeutic target in stroke rehabilitation. Arm-hand rehabilitation may be enriched in content and variation by using technology-assisted training. Especially for people with a severely affected arm, technology-assisted training offers more challenging training possibilities. OBJECTIVE The aim of this study was to explore the feasibility of ReHab-TOAT, a "Remote Handling Based Task-Oriented Arm Training" approach featuring enriched haptic feedback aimed at improving daily activities and participation. METHODS Five subacute or chronic stroke patients suffering moderate to severe arm-hand impairments and five rehabilitation therapists participated. All participants received 2 ReHab-TOAT sessions. Outcome measure was a bespoke feasibility questionnaire on user experiences and satisfaction regarding 'motivation', 'individualization of training', 'potential training effects', and 'implementation in rehabilitation' of patients and therapists. RESULTS Both patients and therapists experienced ReHab-TOAT as being feasible. They found ReHab-TOAT very motivating and challenging. All patients perceived an added value of ReHab-TOAT and would continue the training. Small improvements regarding exercise variability were suggested. CONCLUSION ReHab-TOAT seems to be a feasible and very promising training approach for arm-hand rehabilitation of stroke patients with a moderately or severely affected arm. Further research is necessary to investigate potential training effects of ReHab-TOAT.
Collapse
Affiliation(s)
- Jule Elmanowski
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
- Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, The Netherlands
- Adelante Rehabilitation Centre, Hoensbroek, The Netherlands
| | - Melanie Kleynen
- Research Centre for Nutrition, Lifestyle and Exercise, Faculty of Health, Zuyd University of Applied Sciences, Heerlen, The Netherlands
| | - Richard P J Geers
- Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, The Netherlands
| | - Gustavo Rovelo-Ruiz
- Expertise Centre for Digital Media, Hasselt University - tUL - Flanders Make, Diepenbeek, Belgium
| | - Eva Geurts
- Expertise Centre for Digital Media, Hasselt University - tUL - Flanders Make, Diepenbeek, Belgium
| | - Karin Coninx
- HCI and eHealth, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jeanine A Verbunt
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
- Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, The Netherlands
| | - Henk A M Seelen
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
- Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, The Netherlands
| |
Collapse
|
13
|
Rosenfelder MJ, Helmschrott VC, Willacker L, Einhäupl B, Raiser TM, Bender A. Effect of robotic tilt table verticalization on recovery in patients with disorders of consciousness: a randomized controlled trial. J Neurol 2023; 270:1721-1734. [PMID: 36536249 PMCID: PMC9971146 DOI: 10.1007/s00415-022-11508-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Verticalization is a common therapeutic intervention during rehabilitation of patients with disorders of consciousness (DoC). The Erigo®Pro is a robotic tilt-table (RTT) with built-in stepping unit for the lower extremities to prevent orthostatic hypotension during verticalization. In addition, the system also provides functional electrical stimulation (FES) of muscles of the lower extremities. In this randomized controlled clinical trial (RCT), 47 patients with subacute DoC received a 4-week verticalization regime (16 verticalization sessions) and were allocated to one of three experimental groups: (1) verticalization by means of RTT with FES, (2) by means of RTT without FES, or (3) by conventional physiotherapy (CPT). Level of consciousness (LoC), spasticity, functional independence in daily activities, and functional brain connectivity measured by means of high-density quantitative EEG were assessed at baseline, directly after the verticalization program and after 6 months. There was a similar clinical improvement in all three experimental groups. RTT was not associated with an effect on any of the clinical outcomes. Verticalization or mobilization time during the study period was significantly positively correlated with recovery of consciousness (rho = 0.494, p < 0.001) in the short term and showed a statistical trend at the 6 months follow-up (rho = 0.244, p = 0.078). In conclusion, RTT treatment is not more effective in promoting recovery of consciousness than CPT in subacute DoC patients. Yet, our data suggest, that verticalization may be an important and feasible rehabilitation intervention in this group of patients. ClinicalTrials.gov NCT Number NCT02639481, registered on December 24, 2015.
Collapse
Affiliation(s)
- M J Rosenfelder
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany.
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89069, Ulm, Germany.
| | - V C Helmschrott
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany
| | - L Willacker
- Department of Neurology, Ludwig-Maximilians-University of Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - B Einhäupl
- Department of Neurology, Ludwig-Maximilians-University of Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - T M Raiser
- Department of Neurology, Ludwig-Maximilians-University of Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - A Bender
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany
- Department of Neurology, Ludwig-Maximilians-University of Munich, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
14
|
Ma B, Yang J, Wong FKY, Wong AKC, Ma T, Meng J, Zhao Y, Wang Y, Lu Q. Artificial intelligence in elderly healthcare: A scoping review. Ageing Res Rev 2023; 83:101808. [PMID: 36427766 DOI: 10.1016/j.arr.2022.101808] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The ageing population has led to a surge in the adoption of artificial intelligence (AI) technologies in elderly healthcare worldwide. However, in the advancement of AI technologies, there is currently a lack of clarity about the types and roles of AI technologies in elderly healthcare. This scoping review aimed to provide a comprehensive overview of AI technologies in elderly healthcare by exploring the types of AI technologies employed, and identifying their roles in elderly healthcare based on existing studies. A total of 10 databases were searched for this review, from January 1 2000 to July 31 2022. Based on the inclusion criteria, 105 studies were included. The AI devices utilized in elderly healthcare were summarised as robots, exoskeleton devices, intelligent homes, AI-enabled health smart applications and wearables, voice-activated devices, and virtual reality. Five roles of AI technologies were identified: rehabilitation therapists, emotional supporters, social facilitators, supervisors, and cognitive promoters. Results showed that the impact of AI technologies on elderly healthcare is promising and that AI technologies are capable of satisfying the unmet care needs of older adults and demonstrating great potential in its further development in this area. More well-designed randomised controlled trials are needed in the future to validate the roles of AI technologies in elderly healthcare.
Collapse
Affiliation(s)
- Bingxin Ma
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Jin Yang
- School of Nursing, Tianjin Medical University, Tianjin, China
| | | | | | - Tingting Ma
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Jianan Meng
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Yue Zhao
- School of Nursing, Tianjin Medical University, Tianjin, China.
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Tianjin, China; School of Integrative Medicine, Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Institute of Health Data Science at Peking University, Beijing, China.
| | - Qi Lu
- School of Nursing, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
15
|
Bressi F, Cricenti L, Campagnola B, Bravi M, Miccinilli S, Santacaterina F, Sterzi S, Straudi S, Agostini M, Paci M, Casanova E, Marino D, La Rosa G, Giansanti D, Perrero L, Battistini A, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Morone G, Gallotti M, Germanotta M, Aprile I. Effects of robotic upper limb treatment after stroke on cognitive patterns: A systematic review. NeuroRehabilitation 2022; 51:541-558. [PMID: 36530099 PMCID: PMC9837692 DOI: 10.3233/nre-220149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. OBJECTIVE To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. METHODS The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. RESULTS Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. CONCLUSION Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation.
Collapse
Affiliation(s)
- Federica Bressi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Laura Cricenti
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Benedetta Campagnola
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy,Address for correspondence: Benedetta Campagnola, Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy. E-mail:
| | - Marco Bravi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sandra Miccinilli
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Fabio Santacaterina
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Silvia Sterzi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | | | - Matteo Paci
- AUSL (Unique Sanitary Local Company) District of Central Tuscany, Florence, Italy
| | - Emanuela Casanova
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Dario Marino
- IRCCS Neurolysis Center “Bonino Pulejo”, Messina, Italy
| | | | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Luca Perrero
- Neurorehabilitation Unit, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Alberto Battistini
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Serena Filoni
- Padre Pio Onlus Rehabilitation Centers Foundation, San Giovanni Rotondo, Italy
| | - Monica Sicari
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | | | | | - Paolo Boldrini
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER), Rome, Italy
| | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (Faip Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Stefano Mazzon
- AULSS6 (Unique Sanitary Local Company) Euganea Padova – Distretto 4 “Alta Padovana”, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital – AUSL12, Viareggio, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | | | | | | | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | |
Collapse
|
16
|
Effects of a Novel Proprioceptive Rehabilitation Device on Shoulder Joint Position Sense, Pain and Function. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091248. [PMID: 36143925 PMCID: PMC9505091 DOI: 10.3390/medicina58091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Shoulder disorders are associated with pain, restricted range of motion and muscular strength, moderate disability and diminished proprioception. This study aimed to compare the effectiveness of an innovative technology-supported and a classical therapist-based proprioceptive training program in addition to conventional physiotherapy, on joint position sense (JPS), pain and function, in individuals with different musculoskeletal shoulder disorders, such as rotator cuff tear, subacromial impingement syndrome and superior labrum anterior and posterior tear. The innovative element of the proprioceptive training programme consists of the use of the Kinesimeter, a device created for both training and assessing shoulder JPS. Materials and Methods: The shoulder JPS test and the DASH outcome questionnaire were applied to fifty-five individuals (28 females, 27 males, mean age 56.31 ± 6.75), divided into three groups: 17 in the conventional physiotherapy group (control group); 19 in the conventional physiotherapy + classical proprioceptive training program group (CPT group); and 19 in the conventional physiotherapy + innovative proprioceptive training program group (KPT group). Assessments were performed before and after a four-week rehabilitation program, with five physiotherapy sessions per week. Results: When baseline and post-intervention results were compared, the value of the shoulder JPS and DASH outcome questionnaire improved significantly for the KPT and CPT groups (all p < 0.001). Both KPT and CPT groups showed statistically significant improvements in JPS, pain and function, compared to the control group which received no proprioceptive training (all p < 0.05). However, the KPT group showed no significant benefits compared to the CPT group. Conclusions: Our findings indicate that using the Kinesimeter device as a novel, innovative proprioceptive training tool has similar effects as the classical proprioceptive training programs among individuals with different non-operated musculoskeletal shoulder disorders such as: rotator cuff tear, subacromial impingement syndrome, and superior labrum anterior and posterior tear.
Collapse
|
17
|
Li Q, Xu L, Yang X. 2D Multi-Person Pose Estimation Combined with Face Detection. INT J PATTERN RECOGN 2021. [DOI: 10.1142/s021800142256002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pose estimation is the basis and key of human motion recognition. In the two-dimensional human pose estimation based on image, in order to reduce the adverse effects of mutual occlusion among multiple people and improve the accuracy of motion recognition, a structurally symmetrical two-dimensional multi-person pose estimation model combined with face detection is proposed in this paper. First, transfer learning is used to initialize each sub-branch network model. Then, MTCNN is used for face detection to predict the number of people in the image. According to the number of people, the image is input into the improved two-branch OpenPose network. What is more, the double judgment algorithm is proposed to correct the false detection of MTCNN. The experimental results show that compared with TensorPose, which is the latest improved method based on OpenPose, the Average Precision (AP) (Intersection over Union [Formula: see text]) on the validation set is 8.8 higher. Furthermore, compared with OpenPose, the mean AP ([Formula: see text]) is 1.7 higher on the validation set and is 1.3 higher on the Test-dev test set.
Collapse
Affiliation(s)
- Qiming Li
- Department of Computer Science and Technology, Shanghai Maritime University, Shanghai 201306, P. R. China
| | - Lu Xu
- Department of Computer Science and Technology, Shanghai Maritime University, Shanghai 201306, P. R. China
| | - Xiaoyan Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro System and Information Technology and the Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
18
|
Industrial Upper-Limb Exoskeleton Characterization: Paving the Way to New Standards for Benchmarking. MACHINES 2021. [DOI: 10.3390/machines9120362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exoskeletons have been introduced in industrial environments to prevent overload or repetitive stress injuries in workers. However, due to the lack of public detailed information about most of the commercial exoskeletons, it is necessary to further assess their load capacity and evolution over time, as their performance may change with use. We present the design and construction of a controlled device to measure the torque of industrial exoskeletons, along with the results of static and dynamic testing of an exoskeleton model. A step motor in the test bench moves the exoskeleton arm in a pre-defined path at a prescribed speed. The force measured with a beam load cell located at the interface between the exoskeleton arm and the test bench is used to derive the torque. The proposed test bench can be easily modified to allow different exoskeleton models to be tested under the same conditions.
Collapse
|
19
|
Beyond motor recovery after stroke: The role of hand robotic rehabilitation plus virtual reality in improving cognitive function. J Clin Neurosci 2021; 92:11-16. [PMID: 34509235 DOI: 10.1016/j.jocn.2021.07.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/27/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022]
Abstract
Robot-assisted hand training adopting end-effector devices results in an additional reduction of motor impairment in comparison to usual care alone in different stages of stroke recovery. These devices often allow the patient to perform practical, attentive, and visual-spatial tasks in a semi-virtual reality (VR) setting. We aimed to investigate whether the hand end-effector robotic device AmadeoTM could improve cognitive performance, beyond the motor deficit, as compared to the same amount of occupational treatment focused on the hand. Forty-eight patients (aged 54.3 ± 10.5 years, 62.5% female) affected by either ischemic or hemorrhagic stroke in the chronic phase were enrolled in the study. The experimental group (EG) underwent AmadeoTM robotic training, while the control group (CG) performed occupational therapy involving the upper limb. Patients were assessed at the beginning and at the end of the rehabilitation protocol using a specific neuropsychological battery, as well as motor function tests. The EG showed greater improvements in different cognitive domains, including attentive abilities and executive functions, as well as in hand motor function, as compared to CG. Our study showed that task-oriented VR-based robotic rehabilitation enhanced not only motor function in the paretic arm but also global and specific cognitive abilities in post-stroke patients. We may argue that the hand robotic plus VR-based training may provide patients with an integration of cognitive and motor skill rehabilitation, thus amplifying the functional outcome achievement.
Collapse
|
20
|
Moggio L, de Sire A, Marotta N, Demeco A, Ammendolia A. Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: systematic review and meta-analysis. Top Stroke Rehabil 2021; 29:539-550. [PMID: 34420498 DOI: 10.1080/10749357.2021.1967657] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The growing number of stroke survivors with residual hand disabilities requires the development of efficient recovery therapy, and robotic rehabilitation can play an important role. OBJECTIVE The study aims to compare the relative effects of end-effector (EE) and exoskeleton (EXO) hand devices in motor recovery of patients with finger-hand motor impairment stroke. METHODS We identified randomized controlled trials (RCTs) through search in database on PubMed, Embase, MEDLINE, Cochrane library until October 2020. We included as outcomes: motricity index (MI), quick version of disabilities of the arm, shoulder, and hand (QuickDASH) questionnaire, and Fugl-Meyer assessment for upper extremity (FMAUE). We performed a systematic review, a meta-analysis, and a surface under the cumulative ranking analysis (SUCRA). RESULTS We included five RTCs and 149 subjects. MI showed a signifìcant improvement (p < .05) in robotic intervention group compared to control group (effect size, ES: 9.47; confidence interval, CI: 3.91, 15.03). QuickDASH reported a significant reduction (p < .05) in EXO group (ES: -6.71; CI: -9.17, -4.25). FMAUE showed a significant improvement (p < .05) in the EE group (ES:3; CI:1.97, 4.04). SUCRA analysis of MI demonstrated that robotic interventions are more likely to be the best option for motor recovery (97.3% of probability EXO; 48.3% EE; 4.4% control). CONCLUSION Despite the limited number of studies included, exoskeleton robotic devices might be a better option than end-effector devices in the treatment of fingers motor impairment in stroke patients. Further studies are still needed to confirm the findings and should focus on a direct comparison of the two devices.
Collapse
Affiliation(s)
- Lucrezia Moggio
- Department of Medical and Surgical Sciences, University of Catanzaro,Magna Graecia, Catanzaro, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro,Magna Graecia, Catanzaro, Italy
| | - Nicola Marotta
- Department of Medical and Surgical Sciences, University of Catanzaro,Magna Graecia, Catanzaro, Italy
| | - Andrea Demeco
- Department of Medical and Surgical Sciences, University of Catanzaro,Magna Graecia, Catanzaro, Italy
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro,Magna Graecia, Catanzaro, Italy
| |
Collapse
|
21
|
Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:6103015. [PMID: 33454787 DOI: 10.1093/ptj/pzab010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The purpose of this study was to review the effects of robot-assisted therapy (RT) for improving poststroke upper extremity motor impairment. METHODS The PubMed, Embase, Medline, and Web of Science databases were searched from inception to April 8, 2020. Randomized controlled trials that were conducted to evaluate the effects of RT on upper extremity motor impairment poststroke and that used Fugl-Meyer assessment for upper extremity scores as an outcome were included. Two authors independently screened articles, extracted data, and assessed the methodological quality of the included studies using the Physiotherapy Evidence Database (PEDro) scale. A random-effects meta-analysis was performed to pool the effect sizes across the studies. RESULTS Forty-one randomized controlled trials with 1916 stroke patients were included. Compared with dose-matched conventional rehabilitation, RT significantly improved the Fugl-Meyer assessment for upper extremity scores of the patients with stroke, with a small effect size (Hedges g = 0.25; 95% CI, 0.11-0.38; I2 = 45.9%). The subgroup analysis revealed that the effects of unilateral RT, but not that of bilateral RT, were superior to conventional rehabilitation (Hedges g = 0.32; 95% CI, 0.15-0.50; I2 = 55.9%). Regarding the type of robot devices, the effects of the end effector device (Hedges g = 0.22; 95% CI, 0.09-0.36; I2 = 35.4%), but not the exoskeleton device, were superior to conventional rehabilitation. Regarding the stroke stage, the between-group difference (ie, RT vs convention rehabilitation) was significant only for people with late subacute or chronic stroke (Hedges g = 0.33; 95% CI, 0.16-0.50; I2 = 34.2%). CONCLUSION RT might be superior to conventional rehabilitation in improving upper extremity motor impairment in people after stroke with notable upper extremity hemiplegia and limited potential for spontaneous recovery.
Collapse
Affiliation(s)
- Jingyi Wu
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hao Cheng
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanli Yang
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Sufang Cai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Carswell C, Rea PM. What the Tech? The Management of Neurological Dysfunction Through the Use of Digital Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1317:131-145. [PMID: 33945135 DOI: 10.1007/978-3-030-61125-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Worldwide, it is estimated that millions of individuals suffer from a neurological disorder which can be the result of head injuries, ischaemic events such as a stroke, or neurodegenerative disorders such as Parkinson's disease (PD) and multiple sclerosis (MS). Problems with mobility and hemiparesis are common for these patients, making daily life, social factors and independence heavily affected. Current therapies aimed at improving such conditions are often tedious in nature, with patients often losing vital motivation and positive outlook towards their rehabilitation. The interest in the use of digital technology in neuro-rehabilitation has skyrocketed in the past decade. To gain insight, a systematic review of the literature in the field was conducting following the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) guidelines for three categories: stroke, Parkinson's disease and multiple sclerosis. It was found that the majority of the literature (84%) was in favour of the use of digital technologies in the management of neurological dysfunction; with some papers taking a "neutral" or "against" standpoint. It was found that the use of technologies such as virtual reality (VR), robotics, wearable sensors and telehealth was highly accepted by patients, helped to improve function, reduced anxiety and make therapy more accessible to patients living in more remote areas. The most successful therapies were those that used a combination of conventional therapies and new digital technologies.
Collapse
Affiliation(s)
- Caitlin Carswell
- Anatomy Facility, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Paul M Rea
- School of Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
23
|
Jiang S, You H, Zhao W, Zhang M. Effects of short-term upper limb robot-assisted therapy on the rehabilitation of sub-acute stroke patients. Technol Health Care 2020; 29:295-303. [PMID: 33285652 DOI: 10.3233/thc-202127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Robot-assisted therapy (RT) has become a promising stroke rehabilitation intervention. OBJECTIVE To examine the effects of short-term upper limb RT on the rehabilitation of sub-acute stroke patients. METHODS Subjects were randomly assigned to the RT group (n= 23) or conventional rehabilitation (CR) group (n= 22). All subjects received conventional rehabilitation therapy for 30 minutes twice a day, for 2 weeks. In addition, the RT group received RT for 30 minutes twice a day, for 2 weeks. The outcomes before treatment (T0) and at 2 weeks (T1) and 1 month follow-up (T2) were evaluated in the patients using the upper limb motor function test of the Fugl-Meyer assessment (FMA) the Motricity Index (MI), the Modified Ashworth Scale (MAS), the Functional Independence Measure (FIM), and the Barthel Index (BI). RESULTS There were significant improvements in motor function scales (P< 0.001 for FMA and MI) and activities of daily living (P< 0.001 for FIM and BI) but without muscle tone (MAS, P> 0.05) in the RT and CR groups. Compared to the CR group, the RT group showed improvements in motor function and activities of daily living (P< 0.05 for FMA, MI, FIM, BI) at T1 and T2. There was no significant difference between the two groups in muscle tone (MAS, P> 0.05). CONCLUSIONS RT may be a useful tool for sub-acute stroke patients' rehabilitation.
Collapse
|
24
|
Abstract
(1) Background: Motion planning is an important part of exoskeleton control that improves the wearer’s safety and comfort. However, its usage introduces the problem of trajectory planning. The objective of trajectory planning is to generate the reference input for the motion-control system. This review explores the methods of trajectory planning for exoskeleton control. In order to reduce the number of surveyed papers, this review focuses on the upper limbs, which require refined three-dimensional motion planning. (2) Methods: A systematic search covering the last 20 years was conducted in Ei Compendex, Inspect-IET, Web of Science, PubMed, ProQuest, and Science-Direct. The search strategy was to use and combine terms “trajectory planning”, “upper limb”, and ”exoskeleton” as high-level keywords. “Trajectory planning” and “motion planning” were also combined with the following keywords: “rehabilitation”, “humanlike motion“, “upper extremity“, “inverse kinematic“, and “learning machine “. (3) Results: A total of 67 relevant papers were discovered. Results were then classified into two main categories of methods to plan trajectory: (i) Approaches based on Cartesian motion planning, and inverse kinematics using polynomial-interpolation or optimization-based methods such as minimum-jerk, minimum-torque-change, and inertia-like models; and (ii) approaches based on “learning by demonstration” using machine-learning techniques such as supervised learning based on neural networks, and learning methods based on hidden Markov models, Gaussian mixture models, and dynamic motion primitives. (4) Conclusions: Various methods have been proposed to plan the trajectories for upper-limb exoskeleton robots, but most of them plan the trajectory offline. The review approach is general and could be extended to lower limbs. Trajectory planning has the advantage of extending the applicability of therapy robots to home usage (assistive exoskeletons); it also makes it possible to mitigate the shortages of medical caregivers and therapists, and therapy costs. In this paper, we also discuss challenges associated with trajectory planning: kinematic redundancy and incompatibility, and the trajectory-optimization problem. Commonly, methods based on the computation of swivel angles and other methods rely on the relationship (e.g., coordinated or synergistic) between the degrees of freedom used to resolve kinematic redundancy for exoskeletons. Moreover, two general solutions, namely, the self-tracing configuration of the joint axis and the alignment-free configuration of the joint axis, which add the appropriate number of extra degrees of freedom to the mechanism, were employed to improve the kinematic incompatibility between human and exoskeleton. Future work will focus on online trajectory planning and optimal control. This will be done because very few online methods were found in the scope of this study.
Collapse
|
25
|
Pinho JP, Parik Americano P, Taira C, Pereira W, Caparroz E, Forner-Cordero A. Shoulder muscles electromyographic responses in automotive workers wearing a commercial exoskeleton. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4917-4920. [PMID: 33019091 DOI: 10.1109/embc44109.2020.9175895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Work-related musculoskeletal disorders (MSDs) are a major concern in industries and working environments. They cause not only suffering to the employee and decrease in performance, but also high economic losses to the companies and the society. Workers from assembly lines and machine operators are one of the most frequently affected working population. Moreover, one of the main types of MSDs in occupational environments are shoulder injuries. Exoskeletons have been applied and tested in rehabilitation and they are gaining ground in occupational environments as assistive devices to augment human force and minimize loads on muscles and joints. However, more evidence about the effects of several exoskeletons models in assisting different tasks is needed. We measured shoulder muscles activity (AD - anterior deltoid and MD - medial deltoid) of seven automotive workers using the SuitX® upper limb exoskeleton while performing different screwing tasks, at different shoulder levels while handling different tools. We found significant muscle activity reduction for 2 of the 4 proposed tasks, suggesting a task-specificity effectiveness. Therefore, it seems to be a viable option to reduce muscle effort in certain tasks.
Collapse
|
26
|
Chien WT, Chong YY, Tse MK, Chien CW, Cheng HY. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav 2020; 10:e01742. [PMID: 32592282 PMCID: PMC7428503 DOI: 10.1002/brb3.1742] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Stroke survivors often experience upper-limb motor deficits and achieve limited motor recovery within six months after the onset of stroke. We aimed to systematically review the effects of robot-assisted therapy (RT) in comparison to usual care on the functional and health outcomes of subacute stroke survivors. METHODS Randomized controlled trials (RCTs) published between January 1, 2000 and December 31, 2019 were identified from six electronic databases. Pooled estimates of standardized mean differences for five outcomes, including motor control (primary outcome), functional independence, upper extremity performance, muscle tone, and quality of life were derived by random effects meta-analyses. Assessments of risk of bias in the included RCTs and the quality of evidence for every individual outcomes were conducted following the guidelines of the Cochrane Collaboration. RESULTS Eleven RCTs involving 493 participants were included for review. At post-treatment, the effects of RT when compared to usual care on motor control, functional independence, upper extremity performance, muscle tone, and quality of life were nonsignificant (all ps ranged .16 to .86). The quality of this evidence was generally rated as low-to-moderate. Less than three RCTs assessed the treatment effects beyond post-treatment and the results remained nonsignificant. CONCLUSION Robot-assisted therapy produced benefits similar, but not significantly superior, to those from usual care for improving functioning and disability in patients diagnosed with stroke within six months. Apart from using head-to-head comparison to determine the effects of RT in subacute stroke survivors, future studies may explore the possibility of conducting noninferiority or equivalence trials, given that the less labor-intensive RT may offer important advantages over currently available standard care, in terms of improved convenience, better adherence, and lower manpower cost.
Collapse
Affiliation(s)
- Wai-Tong Chien
- The Nethersole School of Nursing, The Chinese University of Hong Kond, New Territories, Hong Kong
| | - Yuen-Yu Chong
- The Nethersole School of Nursing, The Chinese University of Hong Kond, New Territories, Hong Kong
| | - Man-Kei Tse
- The Nethersole School of Nursing, The Chinese University of Hong Kond, New Territories, Hong Kong
| | | | - Ho-Yu Cheng
- The Nethersole School of Nursing, The Chinese University of Hong Kond, New Territories, Hong Kong
| |
Collapse
|
27
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
28
|
Khizhnikova A, Klochkov A, Kotov–Smolenskiy A, Suponeva N, Piradov M. Dynamics of post-stroke hand paresis kinematic pattern during rehabilitation. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
According to the literature data, only 5–20% of post-stroke patients are able to restore the hand motor function completely. Correct goal setting and individual approach to the patient's functional recovery are important. Our study aimed to develop an algorithm of impaired hand motor functioning assessment for post-stroke patients and to determine the principles of the rehabilitation tactics choosing based on the biomechanical analysis. Twenty five patients with hemispheric stroke and 10 healthy volunteers participated in the study. Formal clinical observation scales (Fugl-Meyer Assessment, Ashworth Scale, ARAT) and video motion analysis were used for evaluation of the hand motor function. Patients were divided into 2 groups according to the hand paresis severity (mild/moderate and pronounced/severe). Rehabilitation was carried out in both groups, including mechanotherapy, massage and physical therapy. It was revealed that in the 1st group of patients the motor function recovery in the paretic hand was due to movement performance recovery: biomechanical parameters restoration directly correlated with a decrease in the paresis degree according to the Fugl-Meyer Assessment Scale (r = 0.94; p = 0.01). In the 2nd group of patients, the motor function recovery in the paretic hand was due to motor deficit compensation: according to biomechanical analysis, the pathological motor synergies inversely correlated with a decrease in the paresis degree (r = –0.9; p = 0.03). As a result of the study, an algorithm for selecting the patient management tactics based on the baseline clinical indicators was developed.
Collapse
|