1
|
Dobrzyńska-Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv Healthc Mater 2024:e2401674. [PMID: 39233521 DOI: 10.1002/adhm.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
Collapse
Affiliation(s)
- Monika Dobrzyńska-Mizera
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Poznan, Poland
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, Pilsen, 30100, Czech Republic
| | - Xiaohua Liu
- Chemical and Biomedical Engineering Department, University of Missouri, 1030 Hill Street, Columbia, Missouri, 65211, USA
| | - Monika Knitter
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Poznan, Poland
| | - Reece N Oosterbeek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Pablo Salinas
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Eduardo Pozo
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, Newcastle, NE1 7RU, UK
| | - Emmanuel Rotimi Sadiku
- Tshwane University of Technology, Department of Chemical, Metallurgical and Materials Engineering, Polymer Division & Institute for Nano Engineering Research (INER), Pretoria West Campus, Pretoria, South Africa
| |
Collapse
|
2
|
Marcello E, Nigmatullin R, Basnett P, Maqbool M, Prieto MA, Knowles JC, Boccaccini AR, Roy I. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5136-5153. [PMID: 39058405 PMCID: PMC11322914 DOI: 10.1021/acsbiomaterials.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.
Collapse
Affiliation(s)
- Elena Marcello
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Rinat Nigmatullin
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Pooja Basnett
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Muhammad Maqbool
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Lucideon
Ltd., Stoke-on-Trent ST4 7LQ, Staffordshire U.K.
- CAM
Bioceramics B.V., Zernikedreef
6, 2333 CL Leiden, The Netherlands
| | - M. Auxiliadora Prieto
- Polymer
Biotechnology Lab, Centro de Investigaciones Biológicas-Margarita
Salas, Spanish National Research Council
(CIB-CSIC), Madrid 28040, Spain
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London NW3 2PF, U.K.
- Department
of Nanobiomedical Science and BK21 Plus NBM, Global Research Center
for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ipsita Roy
- Department
of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, U.K.
- Insigneo
Institute for In Silico Medicine, University
of Sheffield, Sheffield S3 7HQ, U.K.
| |
Collapse
|
3
|
Fukala I, Kučera I. Natural Polyhydroxyalkanoates-An Overview of Bacterial Production Methods. Molecules 2024; 29:2293. [PMID: 38792154 PMCID: PMC11124392 DOI: 10.3390/molecules29102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are intracellular biopolymers that microorganisms use for energy and carbon storage. They are mechanically similar to petrochemical plastics when chemically extracted, but are completely biodegradable. While they have potential as a replacement for petrochemical plastics, their high production cost using traditional carbon sources remains a significant challenge. One potential solution is to modify heterotrophic PHA-producing strains to utilize alternative carbon sources. An alternative approach is to utilize methylotrophic or autotrophic strains. This article provides an overview of bacterial strains employed for PHA production, with a particular focus on those exhibiting the highest PHA content in dry cell mass. The strains are organized according to their carbon source utilization, encompassing autotrophy (utilizing CO2, CO) and methylotrophy (utilizing reduced single-carbon substrates) to heterotrophy (utilizing more traditional and alternative substrates).
Collapse
Affiliation(s)
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, CZ-61137 Brno, Czech Republic;
| |
Collapse
|
4
|
San Valentin EM, Damasco JA, Bernardino M, Court KA, Godin B, Canlas GM, Melancon A, Chintalapani G, Jacobsen MC, Norton W, Layman RR, Fowlkes N, Chen SR, Huang SY, Melancon MP. Image-Guided Deployment and Monitoring of a Novel Tungsten Nanoparticle-Infused Radiopaque Absorbable Inferior Vena Cava Filter in a Swine Model. J Vasc Interv Radiol 2024; 35:113-121.e3. [PMID: 37696432 PMCID: PMC10872373 DOI: 10.1016/j.jvir.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023] Open
Abstract
PURPOSE To improve radiopacity of radiolucent absorbable poly-p-dioxanone (PPDO) inferior vena cava filters (IVCFs) and demostrate their effectiveness in clot-trapping ability. MATERIALS AND METHODS Tungsten nanoparticles (WNPs) were incorporated along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of WNPs. The physicochemical and in vitro and in vivo imaging properties of PPDO IVCFs with WNPs with single-polymer PHB (W-P) were compared with those of WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). RESULTS In vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physicomechanical properties of the PPDO sutures. W-P- and W-PB-coated IVCFs were deployed successfully into the inferior vena cava of pig models with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at Week 3 for both filters. CONCLUSIONS The results highlight the utility of nanoparticles (NPs) and polymers for enhancing radiopacity of medical devices. Different methods of incorporating NPs and polymers can still be explored to improve the effectiveness, safety, and quality of absorbable IVCFs.
Collapse
Affiliation(s)
- Erin Marie San Valentin
- Department of Interventional Radiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jossana A Damasco
- Department of Interventional Radiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marvin Bernardino
- Department of Interventional Radiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karem A Court
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | | | - Adam Melancon
- Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Megan C Jacobsen
- Department of Imaging Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Norton
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rick R Layman
- Department of Imaging Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie Fowlkes
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen R Chen
- Department of Interventional Radiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven Y Huang
- Department of Interventional Radiology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marites P Melancon
- Department of Interventional Radiology, the University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
5
|
Voinova VV, Zhuikov VA, Zhuikova YV, Sorokina AA, Makhina TK, Bonartseva GA, Parshina EY, Hossain MA, Shaitan KV, Pryadko AS, Chernozem RV, Mukhortova YR, Shlapakova LE, Surmenev RA, Surmeneva MA, Bonartsev AP. Adhesion of Escherichia coli and Lactobacillus fermentum to Films and Electrospun Fibrous Scaffolds from Composites of Poly(3-hydroxybutyrate) with Magnetic Nanoparticles in a Low-Frequency Magnetic Field. Int J Mol Sci 2023; 25:208. [PMID: 38203380 PMCID: PMC10778586 DOI: 10.3390/ijms25010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.
Collapse
Affiliation(s)
- Vera V. Voinova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Yulia V. Zhuikova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Anastasia A. Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Tatiana K. Makhina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Garina A. Bonartseva
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Evgeniia Yu. Parshina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Muhammad Asif Hossain
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Artyom S. Pryadko
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman V. Chernozem
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Yulia R. Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Lada E. Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Anton P. Bonartsev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| |
Collapse
|
6
|
Erdal E, Bakici C, Arslan A, Batur B, Yaman ME, Alçığır ME, Akyol M, Ekim O, Salih B, Uğurlu N. Ocular pharmacokinetics and toxicity of nanoparticular acetazolamide: In vivo distribution and safety of PHBV-ACZ nanoparticle. Int J Pharm 2023; 645:123336. [PMID: 37598873 DOI: 10.1016/j.ijpharm.2023.123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Diabetic macular edema (DME) is defined as fluid accumulation in the macular region, between the retinal layers, due to many diseases, especially diabetes. DME is one of the major complications of diabetic retinopathy (DRP). Carbonic anhydrase inhibitors (CAI) are a pharmaceutical agent used in different fields, especially glaucoma treatment. Acetazolamide (ACZ), which is a CAI, is an active substance that has been used off-label for many years in the treatment of macular edema due to diabetes and many other diseases. The low solubility and bioavailability of ACZ limit its use in the treatment of DME. In this study, a nanoparticulate formulation was developed that would increase the solubility and bioavailability of ACZ and allow it to be administered intravitreally. ACZ was loaded on poly(3-hydroxybutyrate-co-3-Hydroxyvalerate) (PHBV) nanoparticles and the loading efficiency was 71.58 ± 1.22%. Toxicity of nanoparticles after intravitreal application was evaluated with anterior segment and posterior segment examination findings, intraocular pressure (IOP) measurements and electrophysiological tests. At the end of the 3-month follow-up, electroretinography (ERG) measurements demonstrated that ACZ loaded PHBV (PHBV-ACZ) nanoparticles did not cause loss of function in retinal cells. On histological examination, rare degenerative changes were observed in several cell groups. In addition, pharmacokinetic studies were performed to determine the tissue distribution of ACZ at various periods. ACZ was identified in vitreous humor and retina at the highest concentration. Based on our results, the prepared nanoparticle formulation can release long-term CAI for DRP therapy and accordingly can reduce the need for monthly intravitreal injections.
Collapse
Affiliation(s)
- Ebru Erdal
- Faculty of Medicine, Advanced Technologies Application and Research Center, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | - Caner Bakici
- Faculty of Veterinary Medicine, Department of Anatomy, Ankara University, 06110 Ankara, Turkey
| | - Aslıhan Arslan
- School of Pharmacy, Medical Biology Center, Queen's University Belfast, Northern, Ireland, UK
| | - Barış Batur
- Faculty of Veterinary Medicine, Department of Anatomy, Ankara University, 06110 Ankara, Turkey; Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Mehmet Emrah Yaman
- Faculty of Pharmacy, Department of Analytical Chemistry, Ataturk University, 25240 Erzurum, Turkey
| | - Mehmet Eray Alçığır
- Faculty of Veterinary Medicine, Department of Pathology, Kirikkale University, 71450 Kirikkale, Turkey
| | - Mesut Akyol
- Department of Biostatistics and Medical Informatics, Ankara Yildirim Beyazit University, 06800 Ankara, Turkey
| | - Okan Ekim
- Faculty of Veterinary Medicine, Department of Anatomy, Ankara University, 06110 Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nagihan Uğurlu
- Faculty of Medicine, Advanced Technologies Application and Research Center, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey; Department of Ophtalmology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, 06800, Turkey.
| |
Collapse
|
7
|
Martínez MDLÁM, Urzúa LS, Carrillo YA, Ramírez MB, Morales LJM. Polyhydroxybutyrate Metabolism in Azospirillum brasilense and Its Applications, a Review. Polymers (Basel) 2023; 15:3027. [PMID: 37514417 PMCID: PMC10383645 DOI: 10.3390/polym15143027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative Azospirillum brasilense accumulates approximately 80% of polyhydroxybutyrate (PHB) as dry cell weight. For this reason, this bacterium has been characterized as one of the main microorganisms that produce PHB. PHB is synthesized inside bacteria by the polymerization of 3-hydroxybutyrate monomers. In this review, we are focusing on the analysis of the PHB production by A. brasilense in order to understand the metabolism during PHB accumulation. First, the carbon and nitrogen sources used to improve PHB accumulation are discussed. A. brasilense accumulates more PHB when it is grown on a minimal medium containing a high C/N ratio, mainly from malate and ammonia chloride, respectively. The metabolic pathways to accumulate and mobilize PHB in A. brasilense are mentioned and compared with those of other microorganisms. Next, we summarize the available information to understand the role of the genes involved in the regulation of PHB metabolism as well as the role of PHB in the physiology of Azospirillum. Finally, we made a comparison between the properties of PHB and polypropylene, and we discussed some applications of PHB in biomedical and commercial areas.
Collapse
Affiliation(s)
- María de Los Ángeles Martínez Martínez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Lucía Soto Urzúa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Yovani Aguilar Carrillo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Mirian Becerril Ramírez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Luis Javier Martínez Morales
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| |
Collapse
|
8
|
Bhende PP, Chauhan R, Waigaonkar S, Bragança JM, Ganguly A. Composites of Bacillus megaterium H16 derived poly-3-hydroxybutyrate as a biomaterial for skin tissue engineering. Int J Biol Macromol 2023:125355. [PMID: 37327940 DOI: 10.1016/j.ijbiomac.2023.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Composite films of Bacillus megaterium H16 derived PHB with 1%Poly-L-lactic acid (PLLA), 1%Poly-ε-caprolactone (PCL), and 0.3 % graphene nanoplatelets (GNP) were produced by solvent cast method. The composite films were characterized by SEM, DSC-TGA, XRD, and ATR-FTIR. The ultrastructure of PHB and its composites depicted an irregular surface morphology with pores after the evaporation of chloroform. The GNPs were seen to be integrated inside the pores. The B. megaterium H16 derived-PHB and its composites demonstrated good biocompatibility which was evaluated in vitro on HaCaT and L929 cells by MTT assay. The cell viability was best for PHB followed by PHB/PLLA/PCL > PHB/PLLA/GNP > PHB/PLLA. PHB and its composites were highly hemocompatible as it resulted in <1 % hemolysis. The PHB/PLLA/PCL and PHB/PLLA/GNP composites can serve as ideal biomaterials for skin tissue engineering.
Collapse
Affiliation(s)
- Prajakta Praveen Bhende
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Rashmi Chauhan
- Department of Chemistry, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Sachin Waigaonkar
- Department of Mechanical Engineering, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Judith M Bragança
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Anasuya Ganguly
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
9
|
Gasparyan KG, Tyubaeva PM, Varyan IA, Vetcher AA, Popov AA. Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials. Polymers (Basel) 2023; 15:polym15092042. [PMID: 37177186 PMCID: PMC10181107 DOI: 10.3390/polym15092042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Due to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy. The results showed rapid decomposition of the fibrous material and also showed how the surface of the material affects the rate of biodegradation and the mechanical properties of the material. It was found that maximum strength decreased by 91% in the fibrous material and by 49% in the film. Additionally, the DSC method showed that the crystallinity of the fiber after exposure to the soil decreased. It was established that the rate of degradation is influenced by different factors, including the surface area of the material and its susceptibility to soil microorganisms. The results obtained are of great importance for planning the structure of features in the manufacture of biopolymer consumer products in areas such as medicine, packaging, filters, protective layers and coatings, etc. Therefore, an understanding of the biodegradation mechanisms of PHB could lead to the development of effective medical devices, packaging materials and different objects with a short working lifespan.
Collapse
Affiliation(s)
- Kristina G Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Polina M Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Ivetta A Varyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Alexandre A Vetcher
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Anatoly A Popov
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| |
Collapse
|
10
|
Ponjavic M, Malagurski I, Lazic J, Jeremic S, Pavlovic V, Prlainovic N, Maksimovic V, Cosovic V, Atanase LI, Freitas F, Matos M, Nikodinovic-Runic J. Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. Int J Mol Sci 2023; 24:ijms24031906. [PMID: 36768226 PMCID: PMC9915418 DOI: 10.3390/ijms24031906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The quest for sustainable biomaterials with excellent biocompatibility and tailorable properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production costs and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. The samples were produced in the form of films 115.6-118.8 µm in thickness using the solvent casting method. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinity and thermal stability) and functionality of the obtained biomaterials were investigated. PG has acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability and morphology of the films. All samples with PG had a more organized internal structure and higher melting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymer was 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively. Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (colon cancer) cells, thus advancing PHBV biomedical application potential.
Collapse
Affiliation(s)
- Marijana Ponjavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Ivana Malagurski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: (I.M.); (J.N.-R.); Tel.: +381-11-397-6034 (J.N.-R.)
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Vladimir Pavlovic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nevena Prlainovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vesna Maksimovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Vladan Cosovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Filomena Freitas
- i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mariana Matos
- i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: (I.M.); (J.N.-R.); Tel.: +381-11-397-6034 (J.N.-R.)
| |
Collapse
|
11
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
12
|
Liang SY, Wan SC, Ho YP, Horng YT, Soo PC, Peng WP. Rapid Quantification of Polyhydroxybutyrate Polymer from Single Bacterial Cells with Mass Spectrometry. Anal Chem 2022; 94:11734-11738. [PMID: 35977070 DOI: 10.1021/acs.analchem.2c02807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyhydroxyalkanoate (PHA) is one of the biocompatible and biodegradable plastics that can be produced and accumulated as granules inside microorganisms. In this study, a new approach to rapidly quantify a short-chain-length PHA, polyhydroxybutyrate (PHB), produced from genetically engineered Escherichia coli containing phaCAB is presented. The mass of each bacterial cell was measured using a laser-induced radio frequency (rf) plasma charge detection quadrupole ion trap mass spectrometer (LIRFP CD QIT-MS), and then, the PHB contents were determined by calculating the change in cellular mass. The quantitative results showed that the PHB contents measured by LIRFP CD QIT-MS were consistent with those by reference analysis, gas chromatography (GC). The PHB content of each bacterial sample can be obtained within 20 min from sampling using LIRFP CD QIT-MS while GC analysis takes 2 days. In addition, LIRFP CD QIT-MS does not use any hazardous chemicals in cellular mass quantification as compared to GC. This indicates that LIRFP CD QIT-MS has potential in routine monitoring of PHB production.
Collapse
Affiliation(s)
- Shao-Yu Liang
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| | - Shih-Chih Wan
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| | - Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Hualien, Taiwan 970
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Hualien, Taiwan 970
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| |
Collapse
|
13
|
Honeycomb-Structured Porous Films from Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Physicochemical Characterization and Mesenchymal Stem Cells Behavior. Polymers (Basel) 2022; 14:polym14132671. [PMID: 35808716 PMCID: PMC9268957 DOI: 10.3390/polym14132671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films—water-assisted self-assembly (“breath figure”) and spin-coating techniques. The water-assisted technique made it possible to obtain porous films with a self-assembled pore structure, which is dependent on the monomer composition of a polymer along with its molecular weight and the technique parameters (distance from the nozzle, volume, and polymer concentration in working solution). Their pore morphologies were evaluated and their hydrophobicity was examined. Mesenchymal stem cells (MSCs) isolated from bone marrow were cultivated on a porous film surface. MSCs’ attachment differed markedly depending on surface morphology. On strip-formed stamp films, MSCs elongated along the structure, however, they interacted with a larger area of film surface. The honeycomb films and column type films did not set the direction of extrusion, but cell flattening depended on structure topography. Thus, stem cells can “feel” the various surface morphologies of self-assembled honeycomb films and change their behavior depending on it.
Collapse
|
14
|
Chernozem RV, Pariy IO, Pryadko A, Bonartsev AP, Voinova VV, Zhuikov VA, Makhina TK, Bonartseva GA, Shaitan KV, Shvartsman VV, Lupascu DC, Romanyuk KN, Kholkin AL, Surmenev RA, Surmeneva MA. A comprehensive study of the structure and piezoelectric response of biodegradable polyhydroxybutyrate-based films for tissue engineering applications. Polym J 2022. [DOI: 10.1038/s41428-022-00662-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Michurov DA, Makhina TK, Siracusa V, Bonartsev AP, Lozinsky VI, Iordanskii AL. Cryo-Structuring of Polymeric Systems. Poly(Vinyl Alcohol)-Based Cryogels Loaded with the Poly(3-hydroxybutyrate) Microbeads and the Evaluation of Such Composites as the Delivery Vehicles for Simvastatin. Polymers (Basel) 2022; 14:2196. [PMID: 35683869 PMCID: PMC9182817 DOI: 10.3390/polym14112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Highly porous composite poly(vinyl alcohol) (PVA) cryogels loaded with the poly(3-hydroxybutyrate) (PHB) microbeads containing the drug, simvastatin (SVN), were prepared via cryogenic processing (freezing-storing frozen-defrosting) of the beads' suspensions in aqueous PVA solution. The rigidity of the resultant composite cryogels increased with increasing the filler content. Optical microscopy of the thin section of such gel matrices revealed macro-porous morphology of both continuous (PVA cryogels) and discrete (PHB-microbeads) phases. Kinetic studies of the SVN release from the drug-loaded microbeads, the non-filled PVA cryogel and the composite material showed that the cryogel-based composite system could potentially serve as a candidate for the long-term therapeutic system for controlled drug delivery. Such PHB-microbeads-containing PVA-cryogel-based composite drug delivery carriers were unknown earlier; their preparation and studies have been performed for the first time.
Collapse
Affiliation(s)
- Dmitrii A. Michurov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2 Leninskiy Ave., 119071 Moscow, Russia;
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
| | - Alexey L. Iordanskii
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street, 4, 119991 Moscow, Russia;
| |
Collapse
|
16
|
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel) 2022; 14:2141. [PMID: 35683815 PMCID: PMC9182786 DOI: 10.3390/polym14112141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering technology aids in the regeneration of new tissue to replace damaged or wounded tissue. Three-dimensional biodegradable and porous scaffolds are often utilized in this area to mimic the structure and function of the extracellular matrix. Scaffold material and design are significant areas of biomaterial research and the most favorable material for seeding of in vitro and in vivo cells. Polyhydroxyalkanoates (PHAs) are biopolyesters (thermoplastic) that are appropriate for this application due to their biodegradability, thermo-processability, enhanced biocompatibility, mechanical properties, non-toxicity, and environmental origin. Additionally, they offer enormous potential for modification through biological, chemical and physical alteration, including blending with various other materials. PHAs are produced by bacterial fermentation under nutrient-limiting circumstances and have been reported to offer new perspectives for devices in biological applications. The present review discusses PHAs in the applications of conventional medical devices, especially for soft tissue (sutures, wound dressings, cardiac patches and blood vessels) and hard tissue (bone and cartilage scaffolds) regeneration applications. The paper also addresses a recent advance highlighting the usage of PHAs in implantable devices, such as heart valves, stents, nerve guidance conduits and nanoparticles, including drug delivery. This review summarizes the in vivo and in vitro biodegradability of PHAs and conducts an overview of current scientific research and achievements in the development of PHAs in the biomedical sector. In the future, PHAs may replace synthetic plastics as the material of choice for medical researchers and practitioners.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | | | | | - Azura Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| |
Collapse
|
17
|
Usurelu CD, Badila S, Frone AN, Panaitescu DM. Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:1974. [PMID: 35631856 PMCID: PMC9144865 DOI: 10.3390/polym14101974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/14/2023] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) is one of the most promising substitutes for the petroleum-based polymers used in the packaging and biomedical fields due to its biodegradability, biocompatibility, good stiffness, and strength, along with its good gas-barrier properties. One route to overcome some of the PHB's weaknesses, such as its slow crystallization, brittleness, modest thermal stability, and low melt strength is the addition of cellulose nanocrystals (CNCs) and the production of PHB/CNCs nanocomposites. Choosing the adequate processing technology for the fabrication of the PHB/CNCs nanocomposites and a suitable surface treatment for the CNCs are key factors in obtaining a good interfacial adhesion, superior thermal stability, and mechanical performances for the resulting nanocomposites. The information provided in this review related to the preparation routes, thermal, mechanical, and barrier properties of the PHB/CNCs nanocomposites may represent a starting point in finding new strategies to reduce the manufacturing costs or to design better technological solutions for the production of these materials at industrial scale. It is outlined in this review that the use of low-value biomass resources in the obtaining of both PHB and CNCs might be a safe track for a circular and bio-based economy. Undoubtedly, the PHB/CNCs nanocomposites will be an important part of a greener future in terms of successful replacement of the conventional plastic materials in many engineering and biomedical applications.
Collapse
Affiliation(s)
| | | | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (S.B.)
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (S.B.)
| |
Collapse
|
18
|
Damasco JA, Huang SY, Perez JVD, Manongdo JAT, Dixon KA, Williams ML, Jacobsen MC, Barbosa R, Canlas GM, Chintalapani G, Melancon AD, Layman RR, Fowlkes NW, Whitley EM, Melancon MP. Bismuth Nanoparticle and Polyhydroxybutyrate Coatings Enhance the Radiopacity of Absorbable Inferior Vena Cava Filters for Fluoroscopy-Guided Placement and Longitudinal Computed Tomography Monitoring in Pigs. ACS Biomater Sci Eng 2022; 8:1676-1685. [PMID: 35343679 PMCID: PMC9045416 DOI: 10.1021/acsbiomaterials.1c01449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) are promising alternatives to metallic filters and their associated risks and complications. Incorporating high-Z nanoparticles (NPs) improves PPDO IVCFs' radiopacity without adversely affecting their safety or performance. However, increased radiopacity from these studies are insufficient for filter visualization during fluoroscopy-guided PPDO IVCF deployment. This study focuses on the use of bismuth nanoparticles (BiNPs) as radiopacifiers to render sufficient signal intensity for the fluoroscopy-guided deployment and long-term CT monitoring of PPDO IVCFs. The use of polyhydroxybutyate (PHB) as an additional layer to increase the surface adsorption of NPs resulted in a 2-fold increase in BiNP coating (BiNP-PPDO IVCFs, 3.8%; BiNP-PPDO + PHB IVCFs, 6.2%), enabling complete filter visualization during fluoroscopy-guided IVCF deployment and, 1 week later, clot deployment. The biocompatibility, clot-trapping efficacy, and mechanical strength of the control PPDO (load-at-break, 6.23 ± 0.13 kg), BiNP-PPDO (6.10 ± 0.09 kg), and BiNP-PPDO + PHB (6.15 ± 0.13 kg) IVCFs did not differ significantly over a 12-week monitoring period in pigs. These results indicate that BiNP-PPDO + PHB can increase the radiodensity of a novel absorbable IVCF without compromising device strength. Visualizing the device under conventional radiographic imaging is key to allow safe and effective clinical translation of the device.
Collapse
Affiliation(s)
- Jossana A Damasco
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Steven Y Huang
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Joy Vanessa D Perez
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | - Katherine A Dixon
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Malea L Williams
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Megan C Jacobsen
- Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Roland Barbosa
- Covalent Metrology Sunnyvale, Sunnyvale, California 94085, United States
| | - Gino Martin Canlas
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | | | - Adam D Melancon
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rick R Layman
- Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Natalie W Fowlkes
- Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Elizabeth M Whitley
- Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marites P Melancon
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
19
|
Cavalcante MDP, de Menezes LR, Rodrigues EJDR, Tavares MIB. In vitro characterization of a biocompatible composite based on poly(3-hydroxybutyrate)/hydroxyapatite nanoparticles as a potential scaffold for tissue engineering. J Mech Behav Biomed Mater 2022; 128:105138. [DOI: 10.1016/j.jmbbm.2022.105138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022]
|
20
|
Uribe-Echeverría T, Beiras R. Acute toxicity of bioplastic leachates to Paracentrotus lividus sea urchin larvae. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105605. [PMID: 35316651 DOI: 10.1016/j.marenvres.2022.105605] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
In an attempt to ensure that bioplastics, progressively replacing petrochemical-derived plastics, do not release any harmful compound to the environment, the study assessed the toxic effects of three innovative bioplastic products: polyhydroxybutyrate resin (PHB), polylactic acid cups (PLA) and a polylactic acid/polyhydroxyalkanoate 3D printing filament (PLA/PHA), together with a synthetic polyvinyl chloride (PVC) toy in Paracentrotus lividus sea urchin larvae. PVC toy was the most toxic material, likely due to the added plasticizers; remarkably, even if PHB is conceived as a nontoxic polymer, it showed a slight toxicity and Gas Chromatography-Mass Spectometry analysis (GC-MS) revealed the presence of a wide range of additives. Conversely, PLA cups and PLA/PHA filament were innocuous for the larvae, a positive outcome for these renewable solutions. Proven that additives are also used in some bioplastic formulations, they should be carefully addressed to ensure that they are as safe as regarded.
Collapse
Affiliation(s)
- Teresa Uribe-Echeverría
- Centro de Investigación Mariña, Universidade de Vigo, 36331 Vigo, Galicia, Spain; Institute of Environment and Marine Science Research (IMEDMAR), Universidad Católica de Valencia SVM, Avda. del Puerto s/n, 03710, Calpe, Alicante, Spain.
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, 36310, Vigo, Galicia, Spain.
| |
Collapse
|
21
|
Ganea IV, Nan A, Ciorîță A, Turcu R, Baciu C. Responsiveness assessment of cell cultures exposed to poly(tartaric acid) and its corresponding magnetic nanostructures. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Stoica D, Alexe P, Ivan AS, Stanciu S, Tatu DM, Stoica M. Bioplastics from Biomass. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Dudun AA, Akoulina EA, Zhuikov VA, Makhina TK, Voinova VV, Belishev NV, Khaydapova DD, Shaitan KV, Bonartseva GA, Bonartsev AP. Competitive Biosynthesis of Bacterial Alginate Using Azotobacter vinelandii 12 for Tissue Engineering Applications. Polymers (Basel) 2021; 14:polym14010131. [PMID: 35012152 PMCID: PMC8747204 DOI: 10.3390/polym14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain Azotobacter vinelandii 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate. We demonstrated experimentally the applicability of bacterial alginate for tissue engineering (the cytotoxicity testing using mesenchymal stem cells (MSCs)). The isolated synthesis of high molecular weight (Mw) capsular alginate with a high level of acetylation (25%) was achieved by FFD method under a low sucrose concentration, an increased phosphate concentration, and a high aeration level. Testing the viscoelastic properties and cytotoxicity showed that bacterial alginate with a maximal Mw (574 kDa) formed the densest hydrogels (which demonstrated relatively low cytotoxicity for MSCs in contrast to bacterial alginate with low Mw). The obtained data have shown promising prospects in controlled biosynthesis of bacterial alginate with different physicochemical characteristics for various biomedical applications including tissue engineering.
Collapse
Affiliation(s)
- Andrei A. Dudun
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Elizaveta A. Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Nikita V. Belishev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Dolgor D. Khaydapova
- Department of Soil Physics and Reclamation, Soil Science Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Konstantin V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
- Correspondence: ; Tel.: +7-4959306306
| |
Collapse
|
24
|
Kocherginsky N. Biomimetic Membranes without Proteins but with Aqueous Nanochannels and Facilitated Transport. Minireview. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [PMCID: PMC8675542 DOI: 10.1134/s251775162106010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- N. Kocherginsky
- NEXT-ChemX, Department of Chemistry, University of Illinois, 61801 Urbana, Illinois USA
| |
Collapse
|
25
|
Panaitescu DM, Popa MS, Raditoiu V, Frone AN, Sacarescu L, Gabor AR, Nicolae CA, Teodorescu M. Effect of calcium stearate as a lubricant and catalyst on the thermal degradation of poly(3-hydroxybutyrate). Int J Biol Macromol 2021; 190:780-791. [PMID: 34517031 DOI: 10.1016/j.ijbiomac.2021.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB) is a promising substitute to petroleum-based polymers in packaging and biomedical applications provided that its melt processability and degradability are improved. A new method to control the properties of PHB by using cheap calcium stearate (CS) as a lubricant and decomposition catalyst in melt-mixed PHB-CS compounds was first used. CS is composed of a metallic cation, which promotes PHB degradation, and a hydrophobic anion that improves the compatibility with PHB and processability. An environmentally friendly melt mixing technique was employed to obtain the PHB-CS compounds. Incorporation of 0.5 or 5 wt% CS reduced the melt viscosity and molecular weight of PHB, decreased the melting temperature with up to 5 °C, the crystallization temperature with more than 25 °C, and the degradation temperature with 15 and 40 °C, respectively. In small amounts (0.05 wt%), CS improved the processability and mechanical properties of PHB. In higher amount (0.5 wt%), CS slightly improved the Young's modulus, reduced the tensile strength and enhanced degradation. A better control of thermal and mechanical properties of PHB is, thus, possible by using different CS amount and processing conditions. These results are relevant for PHB application in the context of the global transition to biodegradable packaging.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania.
| | - Marius Stelian Popa
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania; Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Valentin Raditoiu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Liviu Sacarescu
- Romanian Academy, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania.
| | - Mircea Teodorescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
26
|
Advancing Regenerative Medicine Through the Development of Scaffold, Cell Biology, Biomaterials and Strategies of Smart Material. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Shin G, Jeong DW, Kim H, Park SA, Kim S, Lee JY, Hwang SY, Park J, Oh DX. Biosynthesis of Polyhydroxybutyrate with Cellulose Nanocrystals Using Cupriavidus necator. Polymers (Basel) 2021; 13:2604. [PMID: 34451143 PMCID: PMC8398664 DOI: 10.3390/polym13162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a natural polyester synthesized by several microorganisms. Moreover, it has excellent biodegradability and is an eco-friendly material because it converts water and carbon dioxide as final decomposition products. However, the applications of PHB are limited because of its stiffness and brittleness. Because cellulose nanocrystals (CNCs) have excellent intrinsic mechanical properties such as high specific strength and modulus, they may compensate for the insufficient physical properties of PHB by producing their nanocomposites. In this study, natural polyesters were extracted from Cupriavidus necator fermentation with CNCs, which were well-dispersed in nitrogen-limited liquid culture media. Fourier-transform infrared spectroscopy results revealed that the additional O-H peak originating from cellulose at 3500-3200 cm-1 was observed for PHB along with the C=O and -COO bands at 1720 cm-1. This suggests that PHB-CNC nanocomposites could be readily obtained using C. necator fermented in well-dispersed CNC-supplemented culture media.
Collapse
Affiliation(s)
- Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Da-Woon Jeong
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Hyeri Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Semin Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
28
|
Pryadko A, Surmeneva MA, Surmenev RA. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers (Basel) 2021; 13:1738. [PMID: 34073335 PMCID: PMC8199458 DOI: 10.3390/polym13111738] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Collapse
Affiliation(s)
| | | | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050, Russia; (A.P.); (M.A.S.)
| |
Collapse
|
29
|
Owji N, Mandakhbayar N, Gregory DA, Marcello E, Kim HW, Roy I, Knowles JC. Mussel Inspired Chemistry and Bacteria Derived Polymers for Oral Mucosal Adhesion and Drug Delivery. Front Bioeng Biotechnol 2021; 9:663764. [PMID: 34026742 PMCID: PMC8133231 DOI: 10.3389/fbioe.2021.663764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Ulceration of the oral mucosa is common, can arise at any age and as a consequence of the pain lessens enjoyment and quality of life. Current treatment options often involve the use of topical corticosteroids with poor drug delivery systems and inadequate contact time. In order to achieve local controlled delivery to the lesion with optimal adhesion, we utilized a simple polydopamine chemistry technique inspired by mussels to replicate their adhesive functionality. This was coupled with production of a group of naturally produced polymers, known as polyhydroxyalkanoates (PHA) as the delivery system. Initial work focused on the synthesis of PHA using Pseudomonas mendocina CH50; once synthesized and extracted from the bacteria, the PHAs were solvent processed into films. Polydopamine coating was subsequently achieved by immersing the solvent cast film in a polymerized dopamine solution. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy confirmed functionalization of the PHA films via the presence of amine groups. Further characterization of the samples was carried out via surface energy measurements and Scanning Electron Microscopy (SEM) micrographs for surface topography. An adhesion test via reverse compression testing directly assessed adhesive properties and revealed an increase in polydopamine coated samples. To further identify the effect of surface coating, LIVE/DEAD imaging and Alamar Blue metabolic activity evaluated attachment and proliferation of fibroblasts on the biofilm surfaces, with higher cell growth in favor of the coated samples. Finally, in vivo biocompatibility was investigated in a rat model where the polydopamine coated PHA showed less inflammatory response over time compared to uncoated samples with sign of neovascularization. In conclusion, this simple mussel inspired polydopamine chemistry introduces a step change in bio-surface functionalization and holds great promise for the treatment of oral conditions.
Collapse
Affiliation(s)
- Nazanin Owji
- Division of Biomaterials and Tissue Engineering, Royal Free Hospital, Eastman Dental Institute, University College London, London, United Kingdom
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - David A Gregory
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Elena Marcello
- Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea.,Department of Nanobiomedical Science, BK21 Nanobiomedicine (NBM) Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea.,University College London (UCL) Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Royal Free Hospital, Eastman Dental Institute, University College London, London, United Kingdom.,University College London (UCL) Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| |
Collapse
|
30
|
Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, Knowles JC, Boccaccini AR, Roy I. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Front Bioeng Biotechnol 2021; 9:647007. [PMID: 33898403 PMCID: PMC8059794 DOI: 10.3389/fbioe.2021.647007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Elena Marcello
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Muhammad Maqbool
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Lucideon Ltd., Stoke-on-Trent, United Kingdom
- CAM Bioceramics B.V., Leiden, Netherlands
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | | | | | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Faculty of Medical Sciences, University College London Eastman Dental Institute, London, United Kingdom
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- The Discoveries Centre for Regenerative and Precision Medicine, University College London, London, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ipsita Roy
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
31
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
32
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
33
|
Naseem R, Tzivelekis C, German MJ, Gentile P, Ferreira AM, Dalgarno K. Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules 2021; 26:molecules26040992. [PMID: 33668466 PMCID: PMC7917714 DOI: 10.3390/molecules26040992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Polyester-based materials are established options, regarding the manufacturing of bone fixation devices and devices in routine clinical use. This paper reviews the approaches researchers have taken to develop these materials to improve their mechanical and biological performances. Polymer blending, copolymerisation, and the use of particulates and fibre bioceramic materials to make composite materials and surface modifications have all been studied. Polymer blending, copolymerisation, and particulate composite approaches have been adopted commercially, with the primary focus on influencing the in vivo degradation rate. There are emerging opportunities in novel polymer blends and nanoscale particulate systems, to tune bulk properties, and, in terms of surface functionalisation, to optimise the initial interaction of devices with the implanted environment, offering the potential to improve the clinical performances of fracture fixation devices.
Collapse
Affiliation(s)
- Raasti Naseem
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (P.G.); (A.M.F.); (K.D.)
- Correspondence:
| | - Charalampos Tzivelekis
- School of Dental Sciences, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (C.T.); (M.J.G.)
| | - Matthew J. German
- School of Dental Sciences, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (C.T.); (M.J.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (P.G.); (A.M.F.); (K.D.)
| | - Ana M. Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (P.G.); (A.M.F.); (K.D.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (P.G.); (A.M.F.); (K.D.)
| |
Collapse
|
34
|
Abstract
Abstract
In the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.
Collapse
|
35
|
Roman DL, Isvoran A, Filip M, Ostafe V, Zinn M. In silico Assessment of Pharmacological Profile of Low Molecular Weight Oligo-Hydroxyalkanoates. Front Bioeng Biotechnol 2020; 8:584010. [PMID: 33324621 PMCID: PMC7726197 DOI: 10.3389/fbioe.2020.584010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a large class of polyesters that are biosynthesized by microorganisms at large molecular weights (Mw > 80 kDa) and have a great potential for medical applications because of their recognized biocompatibility. Among PHAs, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxyvalerate), poly(4-hydroxyvalerate), and their copolymers are proposed to be used in biomedicine, but only poly(4-hydroxybutyrate) has been certified for medical application. Along with the hydrolysis of these polymers, low molecular weight oligomers are released typically. In this study, we have used a computational approach to assess the absorption, distribution, metabolism, and excretion (ADME)-Tox profiles of low molecular weight oligomers (≤32 units) consisting of 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxyvalerate, 3-hydroxybutyrate-co-3-hydroxyvalerate, and the hypothetical PHA consisting of 4-hydroxybutyrate-co-4-hydroxyvalerate. According to our simulations, these oligomers do not show cardiotoxicity, hepatotoxicity, carcinogenicity or mutagenicity, and are neither substrates nor inhibitors of the cytochromes involved in the xenobiotic's metabolism. They also do not affect the human organic cation transporter 2 (OCT2). However, they are considered to be inhibitors of the organic anion transporters OATP1B1, and OATP1B3. In addition, they may produce eye irritation, and corrosion, skin irritation and have a low antagonistic effect on the androgen receptor.
Collapse
Affiliation(s)
- Diana Larisa Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adriana Isvoran
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Mǎdǎlina Filip
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Delémont, Switzerland
| |
Collapse
|
36
|
Frone AN, Nicolae CA, Eremia MC, Tofan V, Ghiurea M, Chiulan I, Radu E, Damian CM, Panaitescu DM. Low Molecular Weight and Polymeric Modifiers as Toughening Agents in Poly(3-Hydroxybutyrate) Films. Polymers (Basel) 2020; 12:E2446. [PMID: 33105812 PMCID: PMC7716241 DOI: 10.3390/polym12112446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
The inherent brittleness of poly(3-hydroxybutyrate) (PHB) prevents its use as a substitute of petroleum-based polymers. Low molecular weight plasticizers, such as tributyl 2-acetyl citrate (TAC), cannot properly solve this issue. Herein, PHB films were obtained using a biosynthesized poly(3-hydroxyoctanoate) (PHO) and a commercially available TAC as toughening agents. The use of TAC strongly decreased the PHB thermal stability up to 200 °C due to the loss of low boiling point plasticizer, while minor weight loss was noticed at this temperature for the PHB-PHO blend. Both agents shifted the glass transition temperature of PHB to a lower temperature, the effect being more pronounced for TAC. The elongation at break of PHB increased by 700% after PHO addition and by only 185% in the case of TAC; this demonstrates an important toughening effect of the polymeric modifier. Migration of TAC to the upper surface of the films and no sign of migration in the case of PHO were highlighted by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) results. In vitro biocompatibility tests showed that all the PHB films are non-toxic towards L929 cells and have no proinflammatory immune response. The use of PHO as a toughening agent in PHB represents an attractive solution to its brittleness in the case of packaging and biomedical applications while conserving its biodegradability and biocompatibility.
Collapse
Affiliation(s)
- Adriana Nicoleta Frone
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Cristian Andi Nicolae
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Mihaela Carmen Eremia
- National Institute for Chemical Pharmaceutical Research and Development ICCF, 112 Calea Vitan, 031299 Bucharest, Romania;
| | - Vlad Tofan
- Cantacuzino National Institute of R&D for Microbiology and Immunology, 103 Splaiul Independentei, 050096 Bucharest, Romania;
| | - Marius Ghiurea
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Ioana Chiulan
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Elena Radu
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| | - Celina Maria Damian
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for R&D in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.A.N.); (M.G.); (I.C.); (E.R.)
| |
Collapse
|
37
|
Raza ZA, Khalil S, Abid S. Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. Int J Biol Macromol 2020; 160:77-100. [DOI: 10.1016/j.ijbiomac.2020.05.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/25/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
|
38
|
Volkov AV, Muraev AA, Zharkova II, Voinova VV, Akoulina EA, Zhuikov VA, Khaydapova DD, Chesnokova DV, Menshikh KA, Dudun AA, Makhina TK, Bonartseva GA, Asfarov TF, Stamboliev IA, Gazhva YV, Ryabova VM, Zlatev LH, Ivanov SY, Shaitan KV, Bonartsev AP. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110991. [PMID: 32994018 DOI: 10.1016/j.msec.2020.110991] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023]
Abstract
A critical-sized calvarial defect in rats is employed to reveal the osteoinductive properties of biomaterials. In this study, we investigate the osteogenic efficiency of hybrid scaffolds based on composites of a biodegradable and biocompatible polymer, poly(3-hydroxybutyrate) (PHB) with hydroxyapatite (HA) filled with alginate (ALG) hydrogel containing mesenchymal stem cells (MSCs) on the regeneration of the critical-sized radial defect of the parietal bone in rats. The scaffolds based on PHB and PHB/HA with desired shapes were prepared by two-stage salt leaching technique using a mold obtained by three-dimensional printing. To obtain PHB/HA/ALG/MSC scaffolds seeded with MSCs, the scaffolds were filled with ALG hydrogel containing MSCs; acellular PHB/ALG and PHB/ALG filled with empty ALG hydrogel were prepared for comparison. The produced scaffolds have high porosity and irregular interconnected pore structure. PHB/HA scaffolds supported MSC growth and induced cell osteogenic differentiation in a regular medium in vitro that was manifested by an increase in ALP activity and expression of the CD45 phenotype marker. The data of computed tomography and histological studies showed 94% and 92%, respectively, regeneration of critical-sized calvarial bone defect in vivo at 28th day after implantation of MSC-seeded PHB/HA/ALG/MSC scaffolds with 3.6 times higher formation of the main amount of bone tissue at 22-28 days in comparison with acellular PHB/HA/ALG scaffolds that was shown at the first time by fluorescent microscopy using the original technique of intraperitoneal administration of fluorescent dyes to living postoperative rats. The obtained in vivo results can be associated with the MSC-friendly microstructure and in vitro osteogenic properties of PHB/HA base-scaffolds. Thus, the obtained data demonstrate the potential of MSCs encapsulated in the bioactive biopolymer/mineral/hydrogel scaffold to improve the bone regeneration process in critical-sized bone defects.
Collapse
Affiliation(s)
- Alexey V Volkov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; N.N. Priorov National Medical Research Center of Traumatology and Orthopedics of the Ministry of Health of the Russian Federation, Priorova Str. 10, 127299 Moscow, Russia
| | - Alexander A Muraev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. 8/2, 119991, Moscow, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Elizaveta A Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Vsevolod A Zhuikov
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Dolgor D Khaydapova
- Faculty of Soil Science, M.V.Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119234 Moscow, Russia
| | - Dariana V Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Ksenia A Menshikh
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Andrej A Dudun
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Tatiana K Makhina
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Garina A Bonartseva
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Teymur F Asfarov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Ivan A Stamboliev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Yulia V Gazhva
- Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Valentina M Ryabova
- Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Lubomir H Zlatev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Sergey Y Ivanov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. 8/2, 119991, Moscow, Russia
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
39
|
Bessonov I, Moysenovich A, Arkhipova A, Ezernitskaya M, Efremov Y, Solodilov V, Timashev P, Shaytan K, Shtil A, Moisenovich M. The Mechanical Properties, Secondary Structure, and Osteogenic Activity of Photopolymerized Fibroin. Polymers (Basel) 2020; 12:E646. [PMID: 32178313 PMCID: PMC7182815 DOI: 10.3390/polym12030646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Previously, we have described the preparation of a novel fibroin methacrylamide (FbMA), a polymer network with improved functionality, capable of photocrosslinking into Fb hydrogels with elevated stiffness. However, it was unclear how this new functionality affects the structure of the material and its beta-sheet-associated crystallinity. Here, we show that the proposed method of Fb methacrylation does not disturb the protein's ability to self-aggregate into the stable beta-sheet-based crystalline domains. Fourier transform infrared spectroscopy (FTIR) shows that, although the precursor ethanol-untreated Fb films exhibited a slightly higher degree of beta-sheet content than the FbMA films (46.9% for Fb-F-aq and 41.5% for FbMA-F-aq), both materials could equally achieve the highest possible beta-sheet content after ethanol treatment (49.8% for Fb-F-et and 49.0% for FbMA-F-et). The elasticity modulus for the FbMA-F-et films was twofold higher than that of the Fb-F-et as measured by the uniaxial tension (130 ± 1 MPa vs. 64 ± 6 MPa), and 1.4 times higher (51 ± 11 MPa vs. 36 ± 4 MPa) as measured by atomic force microscopy. The culturing of human MG63 osteoblast-like cells on Fb-F-et, FbMA-F-et-w/oUV, and FbMA-F-et substrates revealed that the photocrosslinking-induced increment of stiffness increases the area covered by the cells, rearrangement of actin cytoskeleton, and vinculin distribution in focal contacts, altogether enhancing the osteoinductive activity of the substrate.
Collapse
Affiliation(s)
- Ivan Bessonov
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
- JSC Efferon, 143026 Moscow, Russia
| | - Anastasia Moysenovich
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| | - Anastasia Arkhipova
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
- Regional Research and Clinical Institute (“MONIKI”), 129110 Moscow, Russia
| | - Mariam Ezernitskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (Y.E.); (P.T.)
| | - Vitaliy Solodilov
- Semenov Institute of Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (Y.E.); (P.T.)
- Semenov Institute of Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Konstantin Shaytan
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| | - Alexander Shtil
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia;
- Institute of Gene Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail Moisenovich
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| |
Collapse
|